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TOTALLY REAL MINIMAL SUBMANIFOLDS
IN A QUATERNION PROJECTIVE SPACE*
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Abstract '

Some curvature pinching theorems for compact totally real minimal submanifolds in a
quaternion projective space are given, so that the corresponding results due to B. Y. Chen
and C. S. Houh in [1] are improved.
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§0. Introduction

A qua,ternion Kaehler manifold is defined as a 4m-dimensional Riemannian manifold
whose holonomy group is contained in Sp(m)-Sp(1) with the additional condition for m = 1
that it is a self-dual Einstein space. A quaternion projective space QP™(c) is a quaternion
Kaehler manifold with constant quaternion sectional curvature c>0. A complex projec-
tive space CP™(c) with constant holomorphic sectional curvature c can be isometrically
imbedded in QP™(c) as a totally geodesic submanifold.

Let M be an n-dimensional Riemannian manifold and J : M — QP™(c) an isometric
immersion of M into QP™(c) . If each tangent 2-subspace of M is mapped by J into a
totally real plane of @ P™(c), then M is called a totally real submanifold of QP™(c). In [1],
some fundamental properties of totally real submanifolds in QP™(c) were studied and the
following theorems were shown.

Theorem A(ll; Theorem 4l) ' [et M be an n-dimensional compact totally real minimal
submanifold in QP™(c). If

2
p> n(32(6n5—nl) Le or equz'valently ol < 3?72%%-{—-—-}1)76’

then M is totally geodesic, where p and ||o||? denote the scalar curvature and the length

square of the second fundamental form of M, respectively.
Theorem B(l:Theorem 6)) . It A be an n-dimensional compact totally real minimal

submanifold in QP™(c). If the sectional curvature Kpr of M satisfies ‘

' | (n—2)c

. T 4@2n-1)’

then either (i) M is totally geodesic or (i) n =2 and M is a flat surface.

Ky >
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Unfortunately, there is an error in the proof of Theorems 5 and 6 in [1]. The pinch-
ing constant in Theorem B may be adopted only for n-dimensional totally real minimal
submanifolds of CP"(c) (cf. [1], Theorem 8).

In this paper, we shall further study the intrinsic rigidity of compact totally real minimal
submanifolds in @P"(c). In §1 some necessary preliminaries for this article will be given.
In §2 an improvement of Theorem A above will be shown (Theorem 2.1), which can be
regarded as a generalization of the pinching theorem for the scalar curvature of totally real
minimal submanifolds in CP™(c) given in [6]. In §3 some pinching theorems for the sectional
curvature and the Ricci curvature of totally real minimal submanifolds in QP™(c) will be
established (Theorems 3.1 and 3.2), which correct and improve Theorem B above. In the last
section, we shall consider 3-dimensional totally real minimal submanifolds in QP3(c) and
obtain some more advantageous pinching constants for the Ricci curvature and the scalar
curvature.

§1. Preliminaries

We give here a quick review of basic formulas about totally real submanifolds in a quater-
nion Kaehler manifold, for details see [1].

Let (M,g) be a 4m-dimensional quaternion Kaehler manifold with almost quaternion
structures I, J and K satisfying

IJ=K, JK=1I, KI=J, DIP=J*=K?=-1

For a unit vector X on M, let Q(X) denote the 4-plane spanned by X, IX, JX and KX,
which is called the quaternion-section determined by X. Any 2-plane in a quaternion-section
is called a quaternion-plane, whose sectional curvature is called the quaternion sectional
curvature. For any two vectors X and Y on M, if Q(X) and Q(Y) are mutually orthogonal,
the 2-plane spanned by X and Y is called a totally real plane of M. It is well known that
. (M,3) has constant quaternion sectional curvature c if and only if the curvature tensor R
‘of M is of the following form: '

R(X,Y)Z =£—{§(Y, 2)X - §(X, 2)Y +3(IY, 2)IX - §IX,Z)IY +29(X,IV)IZ
+9(JY, Z)IX~g(J X, Z)JY +2g(X,JY)J Z+g(KY, Z)KX -g(K X, Z)KY
+25(X,KY)K Z}.

Let M be an n-dimensional Riemannian manifold and J : M — M an isometric immer-
sion. If each tangent 2-plane of M is mapped by J into a totally real plane in M, then M
is called a totally real submanifold of M.

In the following, let @P"(c) denote a 4n-dimensional quaternion projective space with
constant quaternion sectional curvature ¢ > 0. Let M be an n-dimensional totally real
manifold in QP"(c) with n > 2. We choose a local field of orthonormal frames in QP"(c):

€1,*" ; 1€ny €I(1) = Iey,--- y€I(n) = Iey;
eya) = Jei, - ,egm) = Jenjex1) = Kex, - ek (n) = Ken,

in such a way that, restricted to M, vectors e, - - , e, are tangent to- M. With respect to
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this frame field, I, J, K have the following forms:

| 0 -E 0 0 0 0 -E 0 0 0 0 —E

1 |E o o of |0 0 o E o o -E o0

: - =lo o o —E|” 7=l 0o o o|l' EloE o o]
0 -E 0 0 E 0 0.  O0:

0 0 E 0
' (1.1)

where E stands for the indentity (n x n)-matrix.
We shall use the following convention on the range of indices unless otherwise stated:

A)B’C7"' = 1"" anvI(l),"' ,I(n)’J(l)’ ’J(n)aK(l)’ ,K(n);

i’j’k= 1, ,m
ajIB"Ya"' $=I(1)7"' aI(n))'](l)"" ’J(n),K(l)’ ’K(n);
p=1,Jor K. '

Let w4 and wf be the dual frame field and the connection forms with respect to the
frame field chosen above. Then, the structure equations of @P"(c) are

de=—§ wh AwB, wh +wf =0,
1 —
A_ An,C 2t CA,.D
,de— ch/\wB-l'ZZRABch Aw™,
where

—_ c
Rapop = ;(8acbsp — 8apbsc + 1aclep — Iaplsc +2aplep + Jac/Bp

— JapJBc +2JaBJop + KacKep — KapKpc +2KapKep). (1.2)
Restricting these forms to M, we have
w*=0, wf=) h%w hg = hg,
i k
R = he) = h;;.( ), (1.3)
The second fundamental form o of M in QP"(c) is defined as
Zh“w' QW ® eq, (1.4)
whose length square is
loll? = 3 (h5)*.
- rird |
By (1.1) and (1.2), the Gauss-Codazzi-Ricci equations of M in QP"(c) are
c A [24 [+ apo
Riji = 7 (6wt — budje) + > (hghg — hghS), (1.5)
hiik = hikjs | (1.6)

Ropr =E(Iak.-[ﬁl ~ Lalgr + JarJdpt — Jardpr + Ko Kpi — K Kpr)
+ Z(h hg hah?). (1.7)

If M is minimal in QP”(c), i.e., trace o = 0, then from (1.5) we have

c o Lo
R;; = Z(n - 1)6;; — E h, ki1 (1.8)
a,k
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p= —n('n 1)~ lloll?, | (1.9)

where R;; and p are the Ricci tensor and the scalar curvature of M, respectlvely
Let H* and A denote the (n x n)-matrix (h &) and the Laplacmn on M, respectively.
The following formula can be found in [1] or [9]:

“A(”U” ) = Vo> + (1 +a) Z h$; (b Rusje + hiiRikjk)

+§ﬂ—wﬁ§:u H?Hﬁ—HﬂHﬂ2+a§:@rH“Hﬁ2fEum—lmﬂﬁ\Ujm

for any real number a.

§2. Scalar Curvature

In this section, we improve Theorem A as follows.
Theorem 2.1.Let M be an n-dimensional compact totally real minimal submanzfold in
the quatermon projective space QP™(c). If

p > (n—2)(5n% +4n +1)c/4(5n+2) or equivalently |o||? < (n+1)(3n + 2)c/4(5n + 2),

then either (i) M is totally geodesic in QP™(c) or (ii) n = 2 and M is a flat surface in

QP?(c) with the parallel second fundamental form and a parallel no'rmal subbundle of fiber
dimension 4.

For proving it we establish firstly the following ,

Lemma 2.1.Let M be a compact totally real minimal surface in QP?(c) with nonnegative
Gauss curvature. If M is not totally geodesic, then M is o flat surface in QP?(c) with the
parallel second fundamental form and a parallel normal subbundle of fiber dimension 4.
Moreover, with respect to an adapted dual orthonormal frame field (w4), the connection
form (wf) of QP%(c), restricted to M, is given by

[0 wi —aw? —aw! T
w? 0 -—aw' aw?® O
aw?  aw! 0 2w? a = v/2¢/4,
aw' —aw? 2w} 0 ,

.............................. ;...- “es l.l:,V = J(l), J(2),K(1),K(2).

Proof. By the proof of Theorem B in [1] (cf. (3.5) below), we have for n = 2
1
5A(lol%) 2 IV* + 3Knlle |,

where K stands for the Gauss curvature of M. Thus, if Kps > 0 and ||o||? # 0, then we
obtain immediately

Vo=0, Ky=0. (2.1)
Moreover, at most two of matrices {{*} are nonzero and, with respect to suitable frames,
these two matrices have the following forms (cf. [2], Lemma 1):

0 1 1 0
ame(le) e )
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where a and b are scalar factors. Without loss of generality, we may assume that H'(1) = A,
‘1.e.,

WM =pID =0, I =g, | (2.2)
By using (1.3) and the minimality, one can easily see that
WP =a, wP=-q, #P=0 (2.3)

Therefore, we should have H'®) = B with b = a and H/®) = H/® = gK(1) = gX(@) =0,
Since Kjs = 0, it follows from (1.9) that a? = ¢/8. Thus, we may assume that

a=v2/4..

Since Vo = 0, i.e., b, = 0, we have

dhg =Y hfwk + ) RGwk — Y Riwg.
k k B

Settihg o = (k) where ¢ = J or K, i = j = 1, we see that wf((élc)) = 0. Similarly, setting
a=p(k),i=1,7 =2, we see that wI‘p((S) =0, Hence,

which implies that the normal subbundle with the ﬁber, spanned by ej(1), €5(2), €x(1) and
ex(2) is parallel in the normal bundle over M. B
Setting again a = I(1), i = j = 2, we see that

wi =28 e
Moreover, from (2.2) and (2.3) it follow that
w{u) _ h{gl)wz = aw?, w;(l) — hﬁl)u} = ai?,
w{(z) = hﬁz) w! = aw!, w21(2) = hégz)wz = —aw?.

These with (2.4) and (2.5) prove the lemma.

Remark 2.1. From the proof of lemma we see that the minimal flat surface M in QP?(c)
is totally geodesic with respect to the parallel normal subbundle of fiber dimension 4.

Remark 2.2. The flat torus minimally embedding in CP?(c) with the parallel second
fundamental form ! provides an example of such totally real minimal surfaces in QP2(c)
as in Lemma, 2.1. _ ' .

Proof of Theorem 2.1. We use the method in [5]‘." Let UM — M be the unit tangent
bundle over M. Define a function f : UM — R by

f(u) = ||lo(u,uw)||® for ue UM. : (2.6)

Since UM is compact, f attains its maximum at some vector in UM. Suppose that this
vector is v € UMy, for some point g € M. As is seen in [5], we can choose tangent vectors
€1, ,€n at Tg such that v = e; and the matrix (3 A1 hg)nxa is diagonalized at xo.

a . )

Setting -
bij = ) By, - @)
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we have from the maximum condition ! at z,

f(v) = bu = max f(u), (2.8)
by=0 (i), (29)
2) (h3)? +bek — f(v) SO (k#1), (2.10)
Zh % < - (1)
Summing up for ¢ in (2.11) and using (2.9) and the Ricci identity, we get
0 > Z(bzszllz + bllRlzlz) + Z hllthﬂalz (2-12)
o8,

By (1.1), (1.3), (1.5) and (1.7) we find
| Z(biiRilli + b1 Ruini) —-—nf(v) + me (h3:)? ~ Z(bu - f(v) Z(h‘f‘i)z

Z RSy B Rgars = f('”) + Zbcz (he)" = f ”)Z (A3
1ﬂ1 i,a
Introducing these into (2.12), we obtam

0> 4(n +1)f(v) +2 Zbkk(h W) —2f(0) D (Ag)® = D (0kk)* = f(@)bu.  (2.13)
kgl . k1 k#1
By the following inequalities

2bi > —f(v) = Y _(hf)? and (bex)® < f('v)Z(h%k)z,

(2.13) can be written as

02 f(0){3(n+1)-2 S 2= Y027} - 10) TP - T (T ehe?) (02).
ot k1 B

: k;xél k#1 o
| (2.14)
Summmg up for k(s 1) in (2.10) and using the minimality, we have
2Z(h W)? < nf(v),
from which it follows that : ‘
[+ 7 n (o4 . «@ .
F0) 057 < f(v){;aZ(hu)z (1 -a) Y (52} (2.19)
k1 * ' k1

for any real number 0 < a < 3 :
On the other hand, by (2. 8) and (2.10), one can easily see that

) (hR) < f(),

o

which together with (2.8) yields

DY A Z(h P < f{5e Y () + (1-2a) Y hsn}. 216)
k#£1

k#1 « o
# k#1
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Substituting (2.15) and (2.16) into (2.14), we get
0> f(v){g(n +1) - ( —a-— ——a) Z(h (1 + -a) Sk @

Taking a = 4/(3n + 2) in (2.17), we obtal_n 1mmed1ately

02 fo{fn+D- T} 20 (218)

according to the hypothesis of the theorem.

As the same as the proof of Theorem 1.1 in [5], it can be concluded from (2.18) that either
M is totally geodesic or n = dim M = 2. In the later case, the condition of the theorem
becomes p > 0, i.e., the Gauss curvature of M is nonnegative. Thus, by the above Lemma
2.1, Theorem 2.1 is proved.

Remark 2.3. Obviously, our pinching constant is better than that of Theorem A. A
result analogous to Theorem 2.1 for compact minimal submanifolds in a sphere has been
obtained by the author(”). As a direct consequence of Theorem 2.1, we can improve the
result of [6] for totally real minimal submanifolds in CP"(c) as follows.

Corollary 2.1. Let M be an n-dimensional compact totally real minimal submanifold in
the complex projective space CP™(c). If p > (n— 2)(‘5'n.2 +4n+1)c/4(5n+2) or equivalently
lellZ < (n+ 1)(3n + 2)c/4(5n + 2), where p and ||o||? denote the scalar curvature and the
length square of the second. fundamental form of M, respectively, then either M is totally
geodesic orn =2 and M = S x S, :

$3. Sectional Curvature and Ricci Curvature

We now shall use (1.10) to give some pinching conditions for totally real minimal sub-
manifolds in QP™(c) in terms of the sectional curvature and the Ricci curvature. | First of
all, we prove the following

Theorem 3.1. Let M be an n-dimensional compact totally real minimal submanifold in
QP™(c). If the sectional curvature Kas of M satisfies o

. - Ky 2 (n—2)c/8n, ' (3.1)
then either (i) M is totally geodesic or (ii) n = 2 and M is a flat surface in QP?(c) with the
parallel second fundamental form and a parallel normal subbundle of fiber dimension 4.

Proof. Let Kj; denote the function which assigﬁs to each point of M the infimum of -
the sectional curvature of M at that point. By the minimality it is easy to see that (cf. [9])

>~ g (hgiRusjk + hiiRukin) > nKullo||*. (3.2)
On the other hand, by virtue of Proposition 1 in [3] we have
1 .
NP > . oarrB _ B rroeN2
) (tr H"HF) 2 nZtr (H*HP — HPH*)?., | (3.3)

Introducing (3.2) and (3.3) into (1.10), we find
1 1 - (1
SA(Iol?) 2I9e + (1 + aynKaell? + (

- Z) > tr (H*HP — HPH)?

- 7 (na = D)o]? (3.4)
forl1>a>0.
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By taking a = n/(n + 2) in (3.4), we have
mO Dtk G
Thus, (3.1) implies that the right hand side of (3.5) is nonnegative. Since M is compact,
we have Vo = 0, i.e., M has parallel second fundamental form. Moreover, we have either
llel|? =0 or Kps = (n —2)c/8n and all equalities in (3.2)—(3.5) hold. The latter case may
occur only if n = 2. In fact, if n > 3, for the same reason as in the proof of Theorem 1 in
[3], one easily see that M would have constant sectional curvature Kjs. Since the second
fundamental form of M is parallel, the constant K would be either c/4 or zero according
to Theorem 10 of [1]. It contradicts the equality of (3.1) for n > 3.
Hence, either M is totally geodesic or M is a surface with nonnegatwe Gauss curvature

1
S > Vol +

Combining with Lemma in §2, we complete the proof of Theorem 3.1.

Remark 3.1. The proof of Theorem 6 in [1] is incorrect because Y (tr A2)% > ||o||*/3n
for M in QP™(c). So, the pinching constant produced by using the method in [1] should be
(3n —4)c/4(6n — 1) but not (n — 2)c/4(2n — 1). Anyhow, our pinching constant (n 2)c/8n
is always better.

Now we consider the pinching problem for the Ricci curvature.

Theorem 3.2. Let M be an n-dimensional compact totally real mzmmal submanifold in
QP"(c) with n > 4. If the Ricci curvature of M satisfies

Ric (M) > (n —2- —)c/4, (3.6)

then either (i) M is totally geodesic in QP™(c) or (ii) n = 4 and M is a locally symmetmc
Einstein space which is not of constant curvature.
Proof. The formula (1.10) with a = —1 gives

—A(||a|| )=Vol?+ ) tr (H*H? - Hﬁﬂa =Nt (HoHP) + (n + 1)l (3.7)
’ﬁ ) ,ﬁ
Let Q be the function which assigns t6 each point of M the infimum of the Ricci curvature
of M at that point. From (1.9) we get

el >nlo-Sn- -
ol 2 n[@ - §(n - ). (39)
Let o; be the eigenvalues of the matrix H*. For a fixed a, we see from (1.8) that
> tr (HoHP — HPH*P = = (b)) (s — @)* > —4 Z )2(0;)?
B ]
ﬁ;ga ﬁ#a

> -4Y" [Sn-1- Q- (@) (@)

> [4Q ~ (n—Vler (H*V+ or (PP, (39)
from which it follows that
> tr (H*HP — HPH*) > [4Q — (n - 1)dfjo | + % > ler (H)P (3.10)
axﬁ [
For a suitable choice of {e,}, We may assume that tr (H*HP) = 0 for o # 8. Then,
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introducing (3.10) into (3.7) and using (3.8) and the fact that -
> e (HF < o, (3:11)
[
we see easily that _
1 n—4 o c
SA(I0l?) > Vo = 2==3 [t (B + [4Q - £(3n-5)]lol*
«

2 |[Val? + nllollz-[Q - 2(“2 —2- %)] | | (3.12)

~ Thus, if n > 5, (3.12) with (3.6) yields the equality (3.11), which implies that at most

one of matrices {H*} is nonzero. Furthermore, by means of (1.3) and the minimality we
conclude that all of {H*} are zero, i.e., M is totally geodesic in @QP"(c).

If n = 4, (3.12) with (3.6) yields that either ||o]|?> = 0 or ||Vo|* = 0 and equalities (3.8)-
(3.10) hold. In latter case, M is an Einstein space with parallel second fundamental form.
By (3.6) and Theorem 10 of [1], M is not of constant curvature except that M is totally
geodesic. Since Vo = 0, M is locally symmetrlc Hence the theorem i is proved completely.’

In the next section, we shall use a different way to prove a similar theorem for n = 3.

" 84, 3-dimensional Submanifolds

In this section, we consider the case that n = 3: Firstly, we show that Theorem 3.2 is
valid for n = 3. Precisely, we prove the following '

Theorem 4.1.Let M be a 3-dimensional compact totally real minimal submanifold in
QP3(c). If the Ricci curvature of M is larger than c/6, then M is totally geodesic in
QPY(o). |

Proof. We return to the formula (2.13) and restrlct ourselves to the pomt 2o € M where
the function f defined by (2.6) attains its maximum. By (2.7) and (2.8) it is easy to see
that

ue)? < (L ()50 < (Bu® BRCEY
[0 4 o .
from which and the minimality of dimension 3 it follows that
baa <0, bas <0, Y (bwk)® < O i) = (bur)? (4.2)
k#1 kL
By virtue of (2.7) and (1.8) we have
A . '
—Y (h%)? = Ru — 5 b ' (4.3)
k1 o
Substituting (4.3) into (2.13) and using (4.2), we find
0> 2f(v)R11 +2 Y b (). (4.9)
k1

By (4.1), (4.2) and (2.10) we have respectively

1 . .
Zbkk(hlk) > = Zbkk b — bix) = —5 > (bi)” (4.5)
k1 ¢

Ic;él
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and

zajbkk(h‘i‘k) bnz(h = f(v) (R11—-2-+b11) | (4.6)

Introducing these inequalities into (4.4) respectively, we can obtain
~ 1 ' c c .
022f(v)Ru~ 3 > (i) + f(0)(Rar — 5 +bu) =3F(v)(Bu - ¢). (4.7)
. i °
Thus, if Ric (M) > ¢/6, then (4.7) implies that f = 0, i.e., M is totally geodesic.
Remark 4.1. As a direct consequence, a 3-dimensional compact totally real minimal
submanifold in CP3(1) with Ric (M) > 1/6 must be totally geodesic in CP3(1). This

-improves the pinching constant 3/16 in Theorem 1 of [4] for n = 3.

Now, in the similar manner, we may improve slightly Theorem 2.1 for n = 3 as follows.
Theorem 4.2. Let M be a 3-dimensional compact totally real minimal submanifold in
QP3(c). If p > 5¢/6 or equivalently |jo||? < 2¢/3, then M is totally geodesic in QP3(c).
- Proof. As the same as the proof of Theorem 4.1 above, it follows from (2.13), (4.1), (4.5)
and (4.6) that '

02ef(e) + [Zbkk(h )2—2f(v)z ] [zbgk(h«;k)z—Z(bkk)z-(bn)z]
ki1 k1

k#£1

> cf(v) 3f('v) Z(h‘fm — @b = 3 3 (ows)?

21 lc;él
> 25(0)[2e- - S0 zzh ] 2 250 [Ze - o) 48)

Thus, under the hypothesis of the theorem, (4.8) implies that f = 0 identically, i.e., M is
totally geodesic. The theorem is proved. - :

»Ren'lark 4.2. Some results analogous to Theorems 4.1 and 4.2 for compact minimal
submanifolds in a sphere have been obtained (cf. [8]).
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