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ON THE LIMITING BEHAVIORS OF INCREiVIENTS
OF SUMS OF RANDOM VARIABLES
WITHOUT MOMENT CONDITIONS*
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Abstract

The a.s. limiting behaviors of big increments of partial sums of a sequence of random -
variables are obtained without moment conditions.The theorems sharpen the results of Lin!%].
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§1. Introduction and Results

The a.s. limiting behaviors of increments of partial sums of a sequence of random vari-
ables are profound and elegant results in the probability theory. Csérgd and Révész!!l have
obtained many fine results of this kind for iid. random variables. Linl®% and Shaol®!
generalized their results to more general cases. But all require existence of either moment
generating functions of 2 + §-order moments (§ > 0). Recently, Lin/® first considered incre-
ment problem without moment hypotheses aécording to an idea that strong limit theorems
depend (in principle) on probabilities rather than moments. Lin’s theorem imply the ex-
isting results with moment conditions; however, more complicated conditions are imposed.
The purpose of the present paper is to give a group of simpler conditions, with the results
that we sharpen Lin’s theorems.

~Let {X,,,n > 1} be a sequence of independent but not necessarily identical distributed
random variables and {a,,n > 1} a non-decreasing sequence of positive integers. Denote
Sp = ‘E X;. Furthermore, let {B,n,n=0,1,--- ,N;N = 1,2, -+ } be a double sequence of

i=1
positive numbers, which is non-decreasing on N for fixed n and tends to infinite as' N — oo

uniformly in n. Denote
By =Bon, . : ‘
2 _of 2 2 2
by =2{10g(Bx 1oy /Bay) +loglog B;, }.
For every N, n+a, < N < (n+1) + an41, define
va =Bn,nta, (so B5V+aN = BN;N'HLN))
2 2 2
by? =2{log(B2,,,/By”) + loglog By},
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And definefore >0

Xje =(X; V (~eBib, ™) A (eBIb, ™Y,
_N+an ' ntan

Tw(e) =Byiay Z Var (Xje), Tan(e) = Brigay 2, Var (Xje),
‘ j=n+1

T2 —-hmhmmf TN( )/\TN ~(e),

el0 N-ooo -

T_,_ = llﬂ)x 11? _s::g gla<x T.n(€).

Assume T} < oo.
Theorem 1.1.Let {X,,} be an independent sequence. Suppose that there exist sequences
{an} amd {Bnn} of above-mentioned kinds satisfying, for any >0,

(i) E P{|X,| > eBlbl} < o0;

] . 13 —_
@) Jim mox | mox (Bu,b)| 5 BOGI(X| < B =

(i) fm  lm max Z)HEXZI(EB'-’%'1 < X5l < eBjby)/(BLy (BRyay/Bay)
Pl _
log BZ,,)™?) < 0o for some B > 0;

(iv) hm (Oina%xN Bn.ntan)/( mlélN B ntay) < 00;

- (v) BN.+azv < ABN-itay_, @nd Boy < ABgy_, for some A> 0 and every N > 2.
Then |

— Sy ' S
: T_<hmsuplNLl-<hmsup max lnL—l <Ty as.

Nooco BN N+aybN Nooo 1SnEN1<k<an Bpnionbn —

Remark 1.1. This theorem greatly simplifies the conditions of Lin’s Theorem 1 in [5]
Hence, of course, our theorem also implies the existing results about increments of partial
sums of a sequence with moment conditions, e.g., conditions relative to a non-negative and
non-decreasing continuous function H(z), the condition “EXZlog?(1 + |z,|) < 0o for some
p > 0”and the condition “Eexp{alog”(1 + |Xn|)} < oo for some & > 0 and 7 > 1” (see
[5] Remarks 1 and 2, also see [3], [4] and [6]). Furthermore, it is interesting to say that the
condition “(I2)’ hm 0 Gty / an, = 1” imposed in [5] can be relaxed, accordmg to our theorem,

as condltlon _
| (I)" ay < Aay_1 for some A > 0 and every N > 2,

In order that a theorem without moment hypotheses implies that for the case when there
exist r-order moment generating functions (0 < 7 < 1), we rewrite Theorem 1.1 as follows
(cf. [5} Remark 3):

Theorem 1.2. Suppose that the following conditions are satisfied:

(o) .
iy X P{|X.|>alog® n} < 0o for somea >0 and @ > 1;
n=1 )

<
(ii) Jim —max gr,:gx (Baybn)™? _Zn)+ E{X;I(|X;| < alog® j)}| =

(iii)’ there exists a to > 0 such that
E exp(t| X, |Y*)I(r1og®  n < |X,| < alog® n)<M< 0o
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for every n, any |t| <ty and someT >0asa>1andT=0asa=1;
(iv)’ axy < N and an/(log N)?*~! — oo;
(V) an < Aan-—1 for some A > 0 and every N > 2.
Define
(Xj V(—elog® ' ) A(elog®t5) asa>1,

% = XJ-I({XJ'I < %) wsa=1

Let Ty and T be the same as in Theorem 1.1. Then the conclusion in Theorem 1.1 remains
true.

§2. Proof of Theorems.

In order to prove our theorems, the following lemmas are employed.
Lemma 2.1, Let {g,(¢)} be a sequence of non-negative functions, d. ‘ned for all e > 0.
Define g, = lj_rg lim gn(s) and g* = Hlfﬁ lim gn(e). Then there exis* <equences {e,} and
€10
{el,} such that €n, | 0, en 1 0 and lim g,(e,) > g«, hm gn(e Y < g*. Moreover, if gn(s) is

n—+oo
a non-decreasing function of € for everyn > 1, then hm gn(En) = ..
N>
The following conclusion is well-known. ’
Lemma 2.2. Let {X,} be a sequence of independent random variables with means zero.

Suppose that there exists some d > 0 such that
| Xkl <ds,  as.

for1<k < n, where s2, Z EXZ. If v > 0, then there exist constants () and w(v) such

that, when ¢ > e(y) and sd < 7r('y) , we have ,
P{S, > es,} > exp{—(1+7)e?/2}. (21)
Lemma 2.3.  Let {€n,n > 1} be a sequence of independent random variables with
Et, =0. And let {an,n > 1} be a sequence of positive integers tending to infinity. Suppose
' that there exists a double sequence {onN,n =0,1,++- ,N; N =1,2,---} of positive numbers,
* which is non-decreasing on N for fized n and tends to infinity as N — oo uniformly in n.
Put

2 : 2
OnNy = Iin o
N 0<n<N nan’

B ={202,, 108(02 N 4oy /02N) +logloga?,  }1/2.

If
(8) ooay < Aoggy_, for some A > 0;
nton .
2/.2 <1:
() Jm max 5 BeH/ok,, <1,
(c) there exists an € > 0 such that
lén| < e{o3r/(108(05 ay /%) + loglogad)} 2, as,
then there is a c(¢) with c(¢) — 0 as € — 0 such that
n+-k
lim < 8.
l\}—r»noo 0SneN 19kean Z &)/ﬂnw Ltcle) as

i=nt1
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The proof of this Lemma can be found in [7].

Proof of Theorem 1.1. Without loss of generality, we assume T_ > 0. The proof of
the theorem is based on the following facts.

Fact 1.
L N4an L
leiﬂ)l A}l_r’noo - EXZI(eBjb,™ < |X;| < eBjb})/BYrray =0
g=1
Proof. Take such an a, for N that
On-1 < N +ay < ap. (2.2)

Then, by condition (v),

N+an e )
Y EX2(eBib, ™" < |X;| < eBY;)/BY 1w
2

On—1

@y 1
<y EX}I(eBjb; ™ < |X;| < eB}b;)/BL

j=1
\

Qan ]
<A?Y " EX2I(eBjb;™" < |X;| < eBjb;)/BL,.
Jj=1 :
Hence
N+4an
Tm Y. EX?I(eBjb ™" <|X;| < eBjb})/Biriay
i=1 . :

N—oo 4

ntan

T -1
<A? Nanéo Jpax, E EXZI(eBjb;™ < |X;| < eBjb})/Ba, .
' - T j=n4l :

And further, by condition (iii),

N4an .

T 5 -1

m T Y EXZI(eBjb;™ < |X;| < Bjb})/BYan
j=1 |

n+an

27T v 2 130 —1 . I I'
<A 1elﬂ)l Nhglooogagclv{j_;HEXjI(ijbj < |X;| < eBjb)

X [(BYan /Bay Y108 B3, 7P} /{ By [(BY 4oy /Bay) log B2, 1%} = 0.

Fact 2.
N+an
T T 2 ;
leli% Nh_r)noo ; Var (Xje)/Bé1ay < HAT? for some H > 0.
Proof. Define n to be the same 5s in Fact 1. Then
N4an [/

. _ , Z Var (Xje)/BJZVMN SZVar (Xje)/B2 .

j=1 j=1

Gn
<A? Z Var (Xje)/Bgn .

j=1
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Hence, by condition (iv) there exists an H > 0 such that
N+an
Ty B, 3 Vs (%) By
<H Azlelﬂ)l Nh—I»noo R Ton(e) < HA2T+
Fact 3. There ex1sts a subsequence {N;} of integers such that for j > 1 ,
Ban,,, N1 /B,,Nj N; < 2AC | (2.3)
for some C > 0, and for any e>0
Z(Ba,, /BN;+an, )a/logl‘*'e Boy, < oo (24
=1
Proof. Define N; byJ .
N; = min{n : By, b, > 27},
which implies that _
' Boy,bn; 22, Bay,_;bn;-1 <%
From condition (v) we can find a constant C' > 0 such that for every N' > 2
by < Cbn-3.
Therefore
. Bay,bn; < ACBay, _,bn;-1
and '
ACY 2 By by, 2 2.
The latter implies (3), and further we have either
Boy, 22/ (2.5)
or
Boy, <22, by, 22972, (2.6)

If (2.5) is true, then , _
(Bazv,- / BNj+aNj )¢/ IOgH-s BaNj
1, -
S(log Bay, )~ < (3log2) =+,
If (2.6) is true, then
, 108(312V,+a,vj / BzNj) + log log BgNj > 2’T‘1
and
| log(B;"‘vj,,_aNj /BﬁNj) > 21 _loglog 2’ > 2972,
Hence, for all large j,
(Bazvj /BNj+aN,- ) <e -5 < J_(He)
In any way, we have for all large j
(BaN /BN;+an, )/ 1087 By, < 5709,
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which implies (2.4).
Fact 4. For some § >0and C >0

N+aN N—-14+an-1
N_Jm Zl Var (X,e)/ Z Var (Xje) <
=
uniformly in 0 < ¢ < 6.
Proof. By condition (v) and Fact 2,
N+an N—-l4an-1
Z Var (Xje)/ Z Var (XJE)
N+an N—-l+4an-1
=(B?v+aN/BN-1+aN_1>( >~ Var (X;e)/Bisay) / (X VarXi)/Biossans)
j=1 j=1

<A?%.2HA%T? lTE =4HA*T? /T2
+ 9 +

provided that IV is large enough and ¢ is smali enough.
Using these facts, we proceed to prove our conclusion.
For a given § > 0, let ¢ = £(6) be indicated later. Define ¢, = eB,b, ™", d, = eB,b,, and

X':z, =Xne;
Yy, =(Xy — cosign X,)(cn < |Xn| < dn), |
Zn =X:z + Yn, . }
s, =Y (Xi - EX}),

k=1
Upn=) (Y — EYi),

k=1

n

Vo= (Zx— EZ).

k=1

Then
Zp = XoI(|Xn| < dy) + ensign XpI( X 0| > dn),

| | Xn = Zy| < | X I(|Xn| > dn).
So, by dint of condition (i), |
P{X, # Zy, i..o.} =0. ' (2.7)

Hence we may only consider Z,, instead of X,,. From conditions (i) and (ii) and the definition

of ¢, we have '
1 n+k .
lim max max ———I Z EZjI =0. (2.8)
N—oo 1<n<N 1<k<Lan Bn n+aNbN faveri ;

Combining it with (2.7) implies that the conclusion of the theorem is equivalent to

- v, .
T_ < limsup Viv+ay = Viv| < limsup max max Lﬂ——l <T, as. (2.9)

N—oo BN N+a,NbN N—oo 1SnSNi1<k<an Bn,n+aNbN
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As the first step, we prove

limsup m ———-—lU"+k — Ul

<6 as. 2.10
N—oo 1<n<N1<k<aN Bn,n+aNbN - . ( )

Let r =‘r(6) be a positive integer indicated later on. Put Yp = (. Define a function of n, N
and r as follows:

. k .
’ ? 5 - s e o
Ny = max {k : E Var (Y;) < ;BﬁN((B,ZW_aN‘/BgN)logBZN) A, where isatisfies

j=1
?
Bg)v((BIzV-i-aN/BgN)log ) ﬂ<ZV&I’ (Y)
i+l _,
<LB2 (Bhyan/B2,) g BL,) }

Put Up = 0. Write
IUn+k - Unl S |Un+k - U(n+k)r| + IU('I'H‘k)r - Unr‘ + IUn - Unrl' (2'11)

Consider the first term of the right hand side. We have

. 1
P{ 12%%N -151161%}21\! Bn,n+a1v bN ‘Un+k - U(n+k),.| 2 ZACH}

N+ay .
<{r > Var (Y)/B2,((B¥1ay/Biy)log BL,) P +1}
=1
' )
X 1 <o23% ,,, PUUn = Un.| 2 5775 Baybu}: (212)
From Fact 1, there exists a constant M > 0 such that
N+4an | N+an
3 Var () <2 ) {EXzI (¢; < |X;] < d))
j=1 _ j=1. .
+EP(c; < |X;| < dj)} < 2MBN+aN. . (2.13)
pBé Bby

Estimate the probability in the right hand side of (2.12). Let ¢ =
4ACH?
0

T6ACH® '~ 2eH ~

by. Then, for j < N + ay, we have d; < eHB,, by and

)}

| <1+211_;22 Var (Y){1+3(thN)+-i1§(?3tjj)2+;..}

2

¢ (B
<t+ 3BT ——Var (Yj)exp{—b?v}

Eexp { Bt

A202H4 b2 (BN+aN

, \B/2
<exp { 232 B2 log B;EN) Var (Y,)} (2.14)
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Put I, = max{m : m, = n,}. Using Lévy’s maximum inequality, we obtain

6
P{ml?g’}é |U Unrl = 2ACHzBaNbN}

- 5

<2P{|U;, — Uy, | > 2ACHzBaNbN 24/ Var (Uy, = U,,)}
. 8Bayby

<2P{[Ui, - Un| > 370000}

n

<2e (- g05) 11 Bow {5

j)} .

J=n+
§2exp{ - -;b + o(b% )}
<(BR+ax/Biy) 108 B,)™? | (2.15)

for every large N, where the definition of n, and condition (iv) are employed for the last
but two inequality. Combining (2.12), (2.13) with (2.15) yields

1 )
P { 1SN 15han BrmtanbN Unt = Utntye| 2 2ACH}
<5rM(B2, /B%.,0,) P /(log B2 )*~5. (2.16)
By (2.4), we have ' '
P{ max  max -————1————-|U k= Unti),| 2 }<oo
1<n<N; 15kSan; Bnntan, b nt (ntk)el = 2ACH ’
which 1mphes that
1 ' ’ 6
_ - 2 — a.8. .
h]mi»sol:p léxfll.%}.%f, 1<IIIc12icN Bn,n+aNJ. ij |Un+k U(n+k),.‘ ~ 2ACH a8 (2 17)

Furthermore, noting that the ranges in two max’s in (2.17) enlarge as j increases and using
(2.3), (2.17) implies that
1

—_— - < 8. .
R BB B By byt T Vel S0 as 218

The second and the third terms of the right hand side of (2.11) can be treated by the same
procedure except that condition (iii) is applied for the second term, and we have the similar
inequalities. (2.10) is proved. Thus inequality (2.9) is equivalent to
(1 -26)T- < limsup l——l—v“"“”—NI
N-—o0 BN N+-an bN

s -8 ’
<limsup max Snk = Sl < (14367 as. (2.19)

Nooo 1Sn<N1<k<an BpntaybN

for any 0 < 6§ < 1/2. _

It is easy to verify that the condition of Lemma 2.3 is satisfied for {X]}. Consequently
We have the right inequality of (2.19) from the condition of T%.

n+-anN

= z Var X max

2
= v . For
n,n+an 1 ]’ aN 1< <N n,n+an

Next, we prove the left of (19). Let v2
J <N +an, _
|X; - EX;l S 2Cj S 26N+aN

-1
= 26V’ N yap (BN,N+an [UN,N-+an )UN,N+ay-
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Noting 0 < T < 00, we have By N+4ayON/UN,N+ay — 00 as N—o0 and (eb/ ;,—ﬂ_aN(BN N+ay
vy N+aN)(BN N+anbNUN N+a~)<Qs for some constant @ > 0 and every N > 1. Hence, if
let ¢ = ¢(6) be small enough, we use Lemma 2.2 and obtain
1 ) ! /
- ~ 8> (16T
'P{ BN,N+aybN IS tay =Sl 2 (1=9) }

> exp { (14 8)(1 = T2 BY nyanb }

208 Nty
2 1—6 2
>( < 2 ) 2 = 2 g
BN+a log BZ Bty 108 Bty |
According to the definition of 7_ and Ty, we can choose an € such that the right hand side
of (2.20) is larger than

(2.20)

R'UJZV,N-}-a,N/('Ug,N-l—aN log vg,N+a1v) . (221)
for some R > 0. Let 0 <7 < § A (6272 /4T2), Ny = 1. Define Ny41 by '
Nk+1 mln{n UO nt 'm)n tan 2V Nk+aNk} ' (2‘22)

Then, we have

2 L o2 2 :
VO, Niys T+ ';ka+1:Nk+1+aNk+1 2 UGNy tay, fOr every k, (2.23)

Vg, + 102 ntan < vg Nitay, forevery n < Neii. : (2.24)

Hence we find that Nk_,.l > N and Ngy1+an,,, > Ni+an, for every k> 1. At first, we
. prove that : :

o0

Z U%Vk,Nk-}-aNk /(vg,Nk+auk ]'Og v(z),Nk-I-aNk) = Q. : (2‘25)
k=1

In terms of (2.24), we get
2 2 2
V0,Ni—1+an,_, 2 'UO,Nk—-l = Vg, N, — var (vak)

22 11— 2 212 y—2
>0}y, —€*B'Nb N, 2 W N, — He*BR Nyban, VN

a2 0.2
ZIUO,Nk - kayNk+aNk - 'UO,Nk+aNk 2yNk,Nk+0ka ’ (2'26)
when k is large enough. And
9 _ 2 . N 2 ' '
vO:Nk—~1+0/Nk_1 2 nUO,Nk—1+aN,,—1 2 EvO,Nk+aNk _ (2‘27)

by (2.24) and Fact 4. Now using (2.26) and (2.27), we have

e o]

Z ka,Nk+aNk /(UO Nk-i-a,Nk lOg Vo Nk+aNk) i
k=2

_.2 Z(UO Nk+aNk 1)0 yNi—1+an, 1)/( ONk'I'aNk lOg ONk+a,N )
k—2

n 2 C
—>-§5 kzz(v(z)’N"+aNk - vg,Nk_1+aNk_1 )/(vO,Nk_1+aNk_1 log(;]—'vo,Nk_1+aNk_1 ))
o0 'uz
77 O,Nk+a.Nk
> dz = o0
—4C Z / zlogx ’

2
k=2 UO,Nk...1+aNk__1
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which proves that (2.25) holds true.
Put

G={k:Ny 2> Np_1+an,_,},
K ={k : Np < Np—1 + a’Nk—l} 5
. To prove the left of (2.19), we consider two cases.

Case 1. Suppose that

Z 'vlz\fk,Nk+aNk /(’vg,Nk-}-aNk log vg,Nk+aNk) = 00. ) (2'28)
keG

Then, by (2.21)

1 ' |
E P{— Shvan. — S| > 1 =8)T-} = oo. 2.99
keG {BNk,Nk-{-a,Nkkal Ni+an, — SN/ 2 (1= 9) } (2.29) |

By noting that {Sy, ., — N.»k € G} is an independent sequence, (2.29) implies that _

|vak+aNk - sf\’kl

lim

>(1-6)T- as.,
";c"é’g? BNk,Nk'I‘aNk A '

and hence
Hfﬁ |S.’N+aN — Sf\f l
i.e., the left of (2.19) holds true.

Case 2. Suppose that

>2(1-6)T- as.

Z v?\fk,Nk-{-aNk /(vg,Nk+aNk log vg,Nk+aNk) < oo, (2'30)
keG

Then, by (2.25),
Z Ulzvk,N,,+aNk /(vg,Nk+aNk log vg,Nk+aNk) = . (2'31)
keEK . '

For every k € K, by (2.23)

2 2 2 ' _—
- 0< vO,NkF1+aN,c_1 =~ Yo,Ny < nka,Nk'l“aNk . (2‘32)

Hence

2 2 2 2
(1 - n)ka,Nk+aNk < 'UO,Nk+aNk - vO,Nk—1+aNk_1 < ka,Nk+aNk . (2.-33)
Write

ISij’l‘“Nk - S;Vkl 2 |S;Vk-|-aNk - S.;Vy?_1+a1vk_1| - |S§Vk_1+a1vk_1 - S;Vkl

Consider the first term of the right hand side. Noting (2.33), we can use Lemma 2.2 again
like (2.20) and obtain '

1 ! ’ . . -
- > (1 — 3
Z P{ BNk,Nk+aNk ka |SNk+aNk SNk—1+aNk_1| 2 (1 §)T }

kekx
> (B2, /(B tan, 108 B, say, )0/
kEK .

§ : 2 2 2 : —
ZC ka’Nk'l"a'Nk/(voyNk'l'aNk lOg vO,Nk+a,Nk) =0
keK
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for some ¢ > 0, which implies that

__ |Sx ~ SN, |
Tm “;‘"k N ;*“”k-l > (1- 6)T-. (2.34)
kz%o ngNk"}'aNk Nk ’

By using (2.32) and noting 7 < 6°T2 /4T7%,

Ni—1+an,_,

3bn
| | Eexp E X! -EX!
Jj=Ni+1 {5T—BN"”N’°+G’NI<: ( ’ J)}

Ng-1tan,_,

3%
<exp : . Var (45)
{52TEB_12Vk,Nk+aNk j=?VA;+1 ’ }

S exP{37lb%Vk 'U%Vk,Nk-l-aNk /62T—2—B]2Vk,Nk+aNk }
- exp{477T_,2_b?\,,c /62T2} < exp(b%,—k)
for large k and small €. Hence, using the definitions of T); and 7_, for large & and small ¢,
we have

1 , ,
- > 0T
P{ BNk;Nk+(lNk ka l’S'N‘k—1'|'¢J'Nk__l SNkI z ) }

<exp{-3b%, +b%,} = Bl /(BN,tan, 108° B, )

3 3 2 2
Ska,Nk+aNk/(vo,Nk+aNk log ka,Nk'l‘aNk)

2 . 2 2.2
Ska,Nk+aNk/(v0,Nk+aNk log vO,Nk-I-aNk)' (2'35)

By (2.23)

’ 2 ) 2

UNk,Ni+an, = Y0,Np+an, — V0,N;
2 2 2
< Vo,Ne+an, — YO,Np—1+an, _, + NVN ,Nitan, *
So, if n <1/2,

2 2 2
’UNk’Nk‘l'aNk S 2(vO,Nk+G,Nk - 'UO,Nk_l-l'aNk_l ).
Using this inequality and imitating the proof of (2.25), we can get

[0 o)
2 (a2 2. 2
Z'ka,Nk+aNk /(vO,Nk+aNk log vO,Nk-I-aNk) < .
) k=1
Therefore

Z U?Vk,Nk+aNk/(vg,Nk+aNk logz U(Z),Nk-l-aNk) < oo.
keH
Thus, from (2.35) we have
— SN stan,_, ~ Shl '
fm ——— et F < 5T g, (2.36)
Ifc‘e"f? BNk’Nk+aNk by,

Combining (2.36) with (2.34) yields

= IS}Vk"'aNk - Sijl
1m

>(1-20T- a.s,
k2 ByuNitan, 0N, |

and hence

Er— IS§V+a - f\ll
fm oNtey ~ “NUs (1 96T as,
N—oo BN,N+aNbN _( )
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i.e., the left of (2.19) holds true. The theorem is proved.
The route of proof of Theorem 1.2 is the same as that for Theorem 1.1. We omit it.
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