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THE ESTIMATION OF . ? IN LINEAR
REGRESSION WITH CENSORED DATA*

ZHENG ZUKANG *

Abstract

This paper proposes a new estimator of the parameter o2 in simple linear regression model
when the observations are randomly censored on the right. This estimator is explicitly de-
fined and easily computable. The strong consistency and the asymptotic normality are also
established under certain conditions.

Keywords Censored data, Strong consistency

1991 MR Subject Classifications 62F10, 62F12

Consider the linear regressidn model

where ¢; are independent random variables with mean zero and finite variance o2. Sometimes ’
the y; may be censored and therefore not completely observable. We can only observe

‘ 2 = min(y,-,'u,,-), (Sz = I(yisui), (2)
where u; are censoring random variables which are supposed to be independent (also inde-
pendent of {y;}). The problem is to estimate the parameters of , 3, o2 based on (21,6;),
(22,62), -+, (#n,6n). In recent years some authors have studied the estimatiotis of o, 8
with the pioneering effort made by Miller!¥, Buckley and James!!l. But there is not an
ideal method for o2, In the present work we will give an estimate of 0 which is asymptotic
unbiasedness, strong consistency and asymptotic normality.

In sequel, we discuss model (1), (2) and always assume ¢; ii.d. with continuous distri-
bution function F, Fe; = 0, var 6; = 02 < 00. Also we suppose that censoring random
variables u; are i.i.d. and positive with continuous distribution function G. The main idea
of this paper is the generalization of the Class K method due to Zheng Zukang!®"l, Recall
the Class K method: If y; is censored we add something to it to make up for the censored
part and if y; is uncensored we also modify it appropriately to ensure unbiasedness in the
sense that the modification of y; has the same expectation as y;. For known G case, we give

Definition 1. Let ¢y, ¢2 be continuous functions such that :

@) [1-CGWI1(v) + f5 ¢2(t)dG(t) = v, 3
{ (i) 1,0 are independent of F; (but may depend on G), 3)
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where F; is the distribution function of y;. _
The class of all such pairs (¢1,¢d2) is called the Class K.
Let .
| y; = 0i1(zi) + (1 — 6:)a(2s). (4)
It is easy to verify '
| Ey; = Ey;. (5)
Here are the examples: ‘

hi(z) = ma ha(a) =0,
¢WY1 o~ o wdGW), $a(s) = (1~ G() - [ wdGlu

@@=LFI%? ”@=LTTTY
z du du ’
In order to construct the estimates of o2 , the same techmque will be used to the second
moment of y;. We need '
Definition 2. Let ¢1, ¢2 be continuous functions such that

@) [1-GW)hi()+ f§ b2(t)dG(t) = ©)
(ii) ¢1, ¢2 are zndependent of F; (but may depend on G). '
We denote the class of all pairs (¢1, ¢2) by the Class K. Similarly, let |
Bi = i1 () + (1 - 8:)a(z:). m
We have '
Ej; = By}.. (8
Some elements of the Class K a,rzez
$1(2) = I_%—(_S $a(2) =0;
d ~ d
B =2 ) 6 =28 o)
Now we suggest
- ﬁ=52@—W+M%+ﬁm ©)
with g; of (7) and
'3 = Z(wl - x)yz
{ DCED (10)
&= y - ﬂ— Z,

where T = H Emi, 72 = E T %Zy{ (3 always from 1 to n).
Remark By Zheng Zukang[ ], var y} > 2. We write
var yf = 0% + T; (11)
with T; = T(F;, G) > 0. So the usual estimates of o2, '

1 . A
—1 > (w5 - - fr)?,
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can not be available any longer.
Theorem 1. If supT; = o(n), then
i<n
lim E62 = o2, (12)

Proof. Since
var & = var y* + T2var § — 2cov (%, AF)
L7 > (i —T)?var yf N S(z; — T)var y}
D+ PR - R

z2(z; — )2 2% (x; — )
= vy { (@i—22 ny(m-2) }
Ty — :D)

var ﬁ Z var y, W,

and
(o) 1D D e gy
o @) ST T o@D
we have
== Z Ey; — |[E&® + 2ZEap + 2 Ef?) |
== Z E¥; — [var & + o® + 2Ecov (&, B) + 2Zaf + z2var §+ wzﬂz]
=o? + - Z(a + Bz;)? — [0 + 2Taf + 220%) - [Zvar Y
1 z2(x; — T)2 2%(z; — T) 28z —F)
(= S -  ny(wi-2) ) DDAy s
S var gy BT T S g )]
(i - TP (- T)?
2 * (wz - 5)2
=0 —Zvar yi{ﬁg-l- m},
or

|E6? - o?| = Zvar Yy { ——n gz; i)a:)2 }
= o(1).

Thus we conclude.

Remark 1. In the proof we can see that EG2 is less than o2 strictly. It means that 62

is underestimate in average.
Furthermore, denoting

= inf{t : F;(t) = 1}
and
T = SuUp7F,,

we obtain

(13)

Theorem 2. Suppose that supT; = R < oo, sup |z;| = M < 00 and S2 = Y (z; —F)% —
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co. If
o o] ~ .
| Pz 00 (=1, (14
then '
6202 =0 a.s. - (15)
In particular, if for j = 1,2, a,- is increasing on [0,00) and decreasing on (—oo,O]‘ with
¢;(0) = 0 and E¢;(z) < oo, E¢;(z) < oo, where 29, z; are the random variables with
distribution functions 1~{1-G(¢)){l - F(t—a—|8|M)} and 1-[1-G(t)|[[1- F(t— o+ |6|M)]
respectively, then (14) holds.
Remark. (i) A simple but more strict assumption on ¢;, ¢5 of strong consistency is
max sup |$;(t)] < L < o0 - (16)
Jj=1,2 t_<_1' .
for some constant L. In practice, (16) fails even in the case that 7 = oo and G(z) > 0 for
z > 0. _ ‘
(ii) The assumption on ¢;, ¢2 in Theorem 2 can be satisfied in many situations. The
above examples of the Class K are the illustrations of the particular part of Theorem 2
under some suitable G and F. ‘

Proof. By the theorem of strong consistency of least square estimates due to Lai and
Weil?l, we get

of (10) under our assumptions (ct. [7]).
On the other hand, 6% — 02 can be decomposited as follows:

—o?= —Z(yz Ej) + = ZEyz - 0% — (&% + 243 + f2?)
=;;Z?7z‘"‘Eyi +-T;Z(a+ﬂ:ci )? —(&® +2&ﬁ?+ﬂ2$2)
= %Z(E — Efi) + (o® — &%) + 22(8° — B°) + 2%(af — P).

We only need to show that the first term tends to zero almost surely. We will use the
following fact (cf. [3]): Let V; (¢ = 1,2,---) be the independent random variables such
that there exists a random variable W with P(|W| > t) > P(|V;| > t) for all ¢ > 0 and
E|W| < co. Then

1« -
p Z(Vz —EV;)—0 as.
It is also clear that the condition can be changed by
o o]
/ sup P(|V;| > t)dt < .
0

In our case

./0 sup P(|;| > t)dt < /0 sup P(|¢1(2i)| + |b2(z:)| > t)dt

< /omsuppual(zinz%)dw / sup P(|Fa(z0)] > L)dt < co.

[SGN S
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Therefore we conclude.
For the particular case, denoting the roots of ¢J () =tfort>0 by Ajs and Bj; with

—00 < Bjt <0< Ajy < 00, we obtain
P($(z) 2 t) = P(z > Ajs) + P(z < Bjs).

If there does not exist such Aj; or B, the correspondmg proba,blhty turns zero. It is clear
that for any t > 0,

P(z2t)=[1~G@)]P(y; 2 t) = [1 - GA)|P(a + Pz; + € 2 t)
<[1~G@)]P(a+|BIM +e; 2 t) < [L - GE)IL - F(t — o — |5 M)]
= P(zp > t), '

P(z < —t) =1~ P(z; > —t)=1-[1 — G(=t)|P(a + Bz; +¢&; > —t)
=1—Pa+fz;i+e>—t)=Pla+Po+6 < —t)
<Pla—|B|M+e <—t)=1—Pla—|BIM+e > —t)
=1—[1 - G(=t)|P(e — |BIM + &; > —1)

| =1~[1-G(-V)]|[L ~ F(~t - a+|B|M)] = P(z < —1).
Thus,
| P($;(2) > t) = P(z 2 Ajs) + P(z < Bj)
< P(z > Ajt) + P(2 < Bjt)
< P($5(20) 2 t) + P($5(z) 2 ¥)
and

JAE I CTOEEY:
0 .

< fo | P(c?b}-(zo)~ > t)dt + /0 P($j(2) > t)dt
= E¢;(#0) + Ed;(2) |

< 0.

It completes the proof.
For the asymptotic behaviour of \/n(6% — 0%), we notice that

&2 + 2667 + 22
@ - fa)+ 2 — fpa+ P
=7 + f*(@® - )
(i - Z)yi]?
> (z: — %)%

=y* +
It turns out that | '
5% —o% = 1 Z@ —o? - (&% + 2&,35—1—[32?)

_1 2 [yl
=R T e o

= Z[ﬁ% — o2~ (a+ Bz)?] + % Y o+ f2i)? — (7 — o~ f7)?
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~ (o + $3)? ~ 2e+ BE)GF —a~ f7) ~ - Y (&~ 7Y

{5z ol + o3G5 - o))

=EZ[gz.__az_(a-;-ﬁmi)Z]—2(a+ﬂ§)(§/_*—a—ﬁf)
- 1Y - ay2p[EE I ] - G- o

2(zi —7)?
1 ' T;—T f 2
— -ﬁ (:L'z - ':'1;')2 [___...—Zz::((xi — 53;‘!2 — ,3] .

Using this expression, we can easily prove
Theorem 3. Suppose that supT; = R < 0o, sup|z;| = M < oo and there exist positive
constants C; and Cy such that

Cinz Y (2 —7)% > Con's
for some d > 0 and large n. Denote U; = y; — 2yz- (a + Bz;) and assume that

1+4d

2

c* = lim 1 Zvar U? (17)
exists with finite positive value. If

(i) {U;} obey the Linderberg condition;
or

(ii) sup E|U; — EU;|*tA < oo, for some A > 0,
then

V(62 - 62) 2 N(0,0*°).
Proof. Since
| 2 (z — Ty} > (zi — T)?var yf
e[ ot - o] VRS 2

< Vnsupvar yf =——3 (2 )2 =o(1)

and _
VRE(y* — o — BT)? = /nvar §* = o(1),
we obtain ’ »

\/_(0' —o? \/—Z[yz—a a+ﬂxz)]_\/_—(a+ﬂ_)
Z(yz - ﬂmz)“—'—Z(.’Ih—dt Z(mz—w

(o + Bz;)] + 0p(1)
_ % S {5 — 2+ fE)y} — 26(z: — D))

— [0% + (a + Bz;)? - 2(e + f7) (0 + Bei)
—26(z; — T)(a + Pxi)]} + 0,(1)

= = Yl ~ 2a-+ Beuf] - [ - (a+ B} + ()
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= % Zﬁz + OP(]-)’

where U; = [§; — 2(a + Bz;)y?] — [02 — (o + Bz;)?] with EU; = 0. By the CLT we conclude
with the assumptlons
In the remains of this paper we will discuss the unknown G case. We assume in the sequel
that ‘

F(t) = Jim — ~ ; F;(t) exists for all ¢, (18)
T < 00, (19)
and for some known positive y < 1, |
G(rr) <7,
where 7 = inf{t : F(t) = 1}. It leads ,
|  mp< . - (20)

It is natural to substitute G(t) by an estimator of it, regarding u; censored by y;. Here
we suggest the modified Kaplan-Meier estimator

A ) 1 1-8¢3)
Gn(t) = mln{l - H (1 - m) ,’)’} . . (21)
2y <t
Using the similar technique of Peterson(?, the uniform strong consistency of é’n(t) can be

established, i.e.,
| sup |Ga(t) - G@)| =0  as.

To indicate the dependence of Gn(t) we denote ¢y (Gn) ¢2( ),4~51(én), az(én) instead
of ¢1, d2, b1, ¢2. For example, .
0z A 6z
¢1 =

—_— Gp) = ——5———.
T=ae A )= 12 Gn(2)
Also the notations y(Gr), 7i(Gr), B(Gr),&(Gy), and 62(G,) are used. Thus (9) becomes

&2(671) = % Z gz(én) - [&2(én) + 26“((’;’n)l[;’(én)E + B(én)p] (22)
For keeping the consistency of 62(G,,), we should restrict the selections of (¢1,$s) and
(51, ;52) We need the following '
Definition 3. Let K, (K,) be the class of dll pairs (¢1,¢2) € K ((1,$2) € K) with the
following properties (at the censoring distribution G ):
(i) For every d with 1 > d > 0 and every s, there exists a constant C such that

max |6(6)| < C

- t<s
(max |$;(G)| < C)

§=1,2
t<s

for all distribution functions G with G(s) < 1.
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(i) For every e > 0 and every s with G(s) < 1, there exists n > 0, such that

max |¢;(G) - ¢5(G)| <e
t<s

(max |6;(G) - 4;(G)| <)

t<s
for all distribution functions G with sup IG(t) - G(t)] <.

Theorem 4. Suppose that (¢1,¢2) € K., ($1,82) € K., and the design constants T
satisfy

=2
sup |z;| < oo, liminf—z—M > 0.

n—00 .mn

Then
6%Gr)—62 -0  as.

The proof is very similar to that of (G,) ~ B — 0 as. (cf. [7]), and we omit the details
here.
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