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GENERALIZATION OF THE NOTION
OF FUNDAMENTAL GROUP*

GAN DANYAN*

Abstract

The classical definition of fundamental group for a topological space is based on the pathwise
connectedness. A space with less path will not be able to be described effectively by its funda-
mental group. The author introduces a definition of generalized fundamental group for a given
topological space by means of its own connectedness. For a well-behaved space, e.g., a locally
pathwise and semilocally simply connected compact metric space, the generalized fundamental
group coincides with the classical one.
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The usual definition of fundamental group [»%9) is based on the pathwise connectedness,
i.e., the connectedness of an interval in reals R is taken to be the standard one. A space with
less pathwise connectedness will not be able to be described effectively by its fundamental
group. For instance, letting X be a totally pathwise disconnected space, £ an arbitrary
point of X, we always have w(X, z) = 1. But maybe the space is quite complicated, and the
fundamental group gives no information.

In this paper we introduce a definition of generalized fundamental group for a given space
by means of its own connectedness. For some locally pathwise connected and semilocally
simply connected space the generalized fundamental group coincides with the classical one.
Ina subsehuent paper(® we establish the theory of covering space associated with the sheaf of
generalized fundamental group for a space not necessarily being locally pathwise connected.

Recently, John F. Kennison gave a definition of the fundamental group in {7, Definition
4] which uses a Cech-type approach. His idea is similar to ours in some sense. It might be
interesting to compare the definitions of Kennison’s and ours. The author wishes to thank
the referee for his helpful comments and for pointing out the referencel”l related to this

paper.

§1. Generalization of Fundamental Group

Let X be a topological space. Let {x be the collection of all open neighbourhoods of
the diagonal A in X x X. Let U € Ux. A subset A of X is said to be of order U if
Ax A Cc U. A is said to be a U-set if there is an open neighbourhood of A which is
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of order U. Let z and y be two points of X. A U-path A from z to y or with origin
and terminal y in X consists of a connected subset S(A), called the support of X, and an

ordered sequence Dy (), - -+, Di(A) of nonempty connected U-sets, called a representation
of A, such that € D1(A), y € Di(A) and D;(A) N Dypq(A) #0fori=1, .+, k—1 and

S(A) = U D;(A). Each D;(]) is called a U-segment of A, ¢ =1,-:, k, and we can take an

arbltrary pomt z; € D;(A)ND;41(A),4=1,--+,k—1, as the terminal of D;()\) and the origin
of D;y1(A) and regard z(= xo) to be the origin of Dy()) and y(= %) to be the terminal
of Di(A). If we extend the representation of A by repeating some terms and keeping the
order we can get a new representatlon Di(A), -+, Dy (A) such that Dy(A) = --- = D} (A) =
Dy(A),---,Dj . +,k_1+1(z\) =-oe =D} 1ai (A) = Dg(N), iy + -+ i = k'. We call the
sequence D 1(A)y -+, D ()) an extension of the sequence Dl(A), -+, Dg(A) or the sequence
Dy(}), -+, Dr()) a contraction of the sequence D] (/\), +++, Di,()) and regard them as
representing the same U-path .

Two U-path A and X' with the same origin and termmal are said to be U-contiguous if
A and X can be represented into sequences with the same length D;(A), «+-, Dg(X) and
Dy(X'), -+, D(N) such that D;(A) N D;1(NY N Dy(N) ND (M) #0, i = 1,--- bk~ 1,
and D;()) U D;()) is a connected U-set for each ¢ = 1,--- , k. Two U-paths A and X' with
the same origin and terminal are said to be U—hombtopic, A = X, if there is a sequence
A1, , Ay of U-paths such that A\; = A and A; = X, and ); is U-contiguous to A;4; for all
i=1,---,1-1. : »

Let A be a U-path from z to y and )’ another U-path from y to 2. The product AN of
A and ) is a U-path from z to z defined as follows: if D;()), -+, Dg(A) and Dy(X), ---,
Dys(X') are representations of A and X' respectively, we take

SOWN) = S(A) U S(V)

" and

D;(AX) =D;()), i<k
D;(AN)=D;—(\), k<i<k+k.

Let X be a U-path from  to y. The inverse A=! of X is a U-path from y to = defined as:

S(A~1) = S(X) and if Dy(A),- -+ ,Dg(]) is a representation of A, we take
Di(/\—l) = Dk..i+1(A), i=1,--,k.

U-homotopy is an equivalence relation in the set of all U-paths with the same origin and
terminal. The U-homotopy class of U-path ) is denoted by [}]. If A - X and p = @', and
Ap and My can be defined, we have

~ Myt
| Al '(}' A,
Set [A][u] = [Ap]. It is easy to see that if z is the origin of A then [AA~!] = [z], where z
denotes the U-path with S(z) = =.
Theorem 1.1. Let X be a topological space and x € X. Let U be in Ux. The set

of U-homotopy equivalence classes of U-paths with origin and terminal x forms a group
under the operations of multiplication and inverse as defined above. This group is denoted
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by P(X,z;U) and is called the generalized fundamental group of order U for pair (X, z). If
V is in Ux with V C U, there is a canonical homomorphism hY, : P(X,z; V) — P(X,z;U)
satisfying '
RGRY =hY,  for WV CU insx.
Proof. The class [z] will be the identity of P(X,z;U). We must show that for [A] €
P(X,z;U)

[=](A] = [A] = [A][],
AT = [a]

and

(N D] = A([u]@])-

The proof is straightforward. ,

For V € Yx with V C U, every V-path is a U-path and V-homotopy implies U-homotopy.
Thus the last statement follows.

Let 4x be directed by inclusion. We then obtain an inverse system {P(X,z;U), h} over
the directed set iix. Take the inverse limit/?. ‘

P(X,z) = l_iI_nP(X,:c; U)
Ux

with the projection hy : P(X,z) — P(X,z;U).

Definition 1.1. We call P(X,z) the generalized fundamental group for pair (X, ), and
x the base point. ,

We introduce a uniformity for P(X, ). For U € {x the collection [U] of couples of classes
in P(X,z) mapped into the same U-homotopy class by hy : P(X,z) — P(X,z;U) is called
a vicinity associated with U. Clearly we have

w=0=m
and |
V]c[U] forVCU inUy.

All vicinities associated with the members of {lx form a base for a uniformity!¥l for P(X, x).
This gives a uniform topology of P(X,z), so that P(X,z) is a topological group. Thus we

“have

Theorem 1.1. With the uniform topology associated with {x defined above the general-
ized fundamental group P(X,xz) becomes a topological group. The neighbourhood of identity
of P(X,z) associated with U € Ux is an invariant subgroup of P(X,x) and is the kernel of
the projection hy.

§2. Generalized Path Class Space

Given two base points 2o and z; in X, we cannot in general expect any relationship
between P(X,zo) and P(X,z;). For example, if 2 and z; do not lie in a common connected
component of X, there can be no relationship. But for a connected and locally connected
space, the situation is better.
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Let X be a topological space, and let 2o, z; € X. Let U be in Ux. The collection
o U-homotopy classes of U-paths from zo to #; is denoted by P(X,zo,z1;U), and for
V C U in Ux there is a canonical map h}; : P(X,xo,a1;V) — P(X,20,z1; U) such that for
WcCVcUinlyx ’ '

RGRY = hYY.
It can be given a uniform topology just as for P(X,z).
The first thing that we are interested in is whether the generalized path class space is

nonempty.

Lemma 2.1. Let X be connected, and xz,y € X. Then for any open éoverz'ng {Us} of X
there is a finite number of elements Uy, - -+, Uy, of {Uy} such that U;NU; 1 # 0 and x € Uy
and y € Uy. '

Proof. Set

A = {f : there is a finite number of elements Uy, - ,Uq, of {Ua}

such that Uy, NU,, ., # 0 and Uy, = Up and z € Uy, }.

Let A= |J Uy and B = |J U,. It is easy to see that A and B are open, AUB = X and

aEA adA

AN B =0. Clearly A # 0; thus A = X. This implies the conclusion.

Lemma 2.2. Let X be locally connected, and let x and y be in the same component of
X. Let U be in 4x. Then we have P(X,z,y;U) # 0.

Proof. By local connectedness we can take an open covering {U,} for X con81st1ng of
connected U-sets. Lemma 2.2 follows from Lemma 2.1.

Lemma 2.3. Let X be locally connected, and let z and y be in the same cOmpo'nént of
X. Let U and V be in Ux with V C U. Then the canonical map hY : P(X, z,Y; V)
P(X,z,y;U) is surjective.

Proof. Let A be a U-path from z to y with support S()) an open connected subset of X
containing = and y and a representation consisting of open U-sets D;(A), 1 =1, -- , k. Take
an open covering for S()) of V-sets which is a refinement of {D;(\)}i=1,... 4. By Lemma 2.2
P(S(A),z,y; V) # 0, ie., there is a V-path X from x to y in S(X), then in X. X determines
a V-homotopy class [\'] € P(X,z,y; V) and obviously A}}[N] = [A]. '

Theorem- 2.1. Let X be connected and locally connected, and z and y in X. Then
P(X,z,y) # 0. . | :

Proof. Lemma 2.2 and Lemma 2.3 complete the proof of Theorem 2.1.

§3. Changing Base Point |
We can define an isomorphism v : P(X,z) — P(X,y) for each v € P(X,z,y) as follows.
Lemma 3.1. Let U € iy and [y,] € P(X,z,y;U). There is an isomorphism
[wls : P(X,2;U) — P(X,4,U)
defined by » |

ole(lal) = ol Mol = hitery] for o] € P(X, 2 D).
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And the following commutative diagram

. Ry
P(X,z;V) —— P(X,z;U)

[vv]#l hv]#l

hV
P(X,y;V) —— P(X,4;U)
holds provided h¥ ([vy]) = [vy| for U,V € iy with V C U.
Proof. For [a], [8] € P(X,z;U) one obtains

brole (o) ol ((8]) = bro] ™ el llvo] ™ [Blbvy]
= [yu] " [ed[B)lru] = bruls([]1B))-

So [yy]# is a homomorphism. In fact, {yy]s is an isomorphism because it has an inverse,
namely, [fyU]#l = [y7'}#- The commutativity of the diagram is straightforward.

Theorem 3.1. Lety be in P(X,x,y). There is an isomorphism v : P(X,z) — P(X,y)
such that

-

P(X,3) —— P(X,a;U)

| ol |

P(X,y) SN P(X,y;U)

is commutative, where [yy] = hu(v) € P(X,z,y;U) and U € Ux.

Proof. We define vy by : :
74(e) = limfy ]y (hu(@)) for a € P(X,2).
For V € Ux with V C U we have

holahu(@) = ylehthv(e) = kg lwlghv(e).

That is an isomorphism from inverse system {P(X,z; U)} onto inverse system {P(X,y; U)}.
So v : P(X,z) — P(X,y) is.a well defined isomorphism with inverse fy;,l._ = (y71)4 and
the diagram is commutative.

Remark 3.1. For the connected and locally connected space X and any x and y in
X, Theorem 3.1 implies that all generalized fundamental groups are isomorphic, that is,
associated with the space X is a certain abstract group P(X), the generalized fundamental

group of X.
Corollary 3.1. Let v; and vz be in P(X,2,y). Then

()% = (71)#as
where i is the inner automorphism of P(X,x) due to a = y175 " € P(X,z). Particularly,
each a € P(X,z) induces the inner automorphism i,.
Proof. For [a] € P(X,x)
C()F ()4 () = mv; eler
= (my el )™ = il

that is, (71)3' (v2)# = fa, or (12)g = (71)#ta-
Corollary 3.2. Leto : I — X be a path from x to y. Then o determines an isomorphism

oy : P(X,z) — P(X,y).
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§4. Comparison with the Classical One

Let X be a pathwise connected and locally pathwise connected space, and let  be in X.
Let n(X,z) be the classical fundamental group for (X, ). We will compare this with the
generalized fundamental group P(X,z). For U € {x each loop A at & can be decomposed
into pieces by a partition I} = [0,¢], - - -, I = [ty—1, 1] for I = [0,1] and determines a U-path
and it is easy to show that the homotopy class [A] determines a U-homotopy class. So we
have a canonical map '

Ui W(X’w) - P(X,:B; U),
which is clearly a homomorphism. This induces a canonical homomorphism
n:7(X,z) - P(X,z).

Theorem 4.1. Suppose that X is locally pathwz'se connected. Then n is surjective.

Lemma 4.1. Let X be locally pathwise connected. Let A be a connected subset of X. Let
z and y be two points of A. Let B be an open neighbourhood of A. Then there is a path in
B from z to y.
~ Proof. All points in A which can be connected by a path in B with origin & form a
relative open subset in A which is nonempty. The connectedness of A implies that the
subset is the whole A.

Proof of Theorem 4.1. For U € YUx let Ay be a U-path with a representation
Di(Av),--- , Di(Ay) such that [Ay] = hu([A]) € P(X,z;U). By the definition D;(Ay),
+++, Dg(Ay) are connected U-sets and D;(Ay) N Dip1(Av) # 0 for i = 1,-- ,k — 1 and
x € Dy (Au) N Dk(Au)

Without loss of generality we can assume that all D;(Ay)’s are open, for if it is not the
case we can modify Ay in its U-homotopy class as follows. Let ¢; € D;(Av) N Diy1(Ay) for
i=1,---,k—1and zx = z0 = 2 € Di(Av) N D1(Ay). For each ¢ = 1,--- ,k, D;(Ay) is
a connected subset of order U. We can get an open connected covering C; of order U for
D;(Av). By Lemma 2.1 we can choose a finite number of elements D] ,,---, D; ;. of C; such
that D}, N D;,,, #0forl=1,---,j;—1and z;_; € D}; and z; € D} ;,. So the sequence

i
D} =Di;_(ji4etiso) At <I<a++g, i=1,0 0k

determines a U-path Ay which is U-homotopic to Ay. _

By Lemma 4.1 there is a loop ! at z such that with some decomposition [;,:-- ,I; of
I = [0,1] each I(I;) is contained in D;(Ay). Thus ! determines a U-path with origin and
terminal & which is U-homotopic to Ay. This completes the proof.

Theorem 4.1. Let X be a locally pathwise connected and semilocally simply connected
space satisfying

(H) For any open covering {Ny} of X there is a U € Ux such that if A C X is of order
U, then A C N, for some a.
Then 7 is an isomorphism and the topology of n(X,z) = P(X,z) is discrete.

Proof. Because X is locally pathwise and semilocally simply connected, for each point
of X there is an open pathwise connected neighbourhood in which any two paths with the
same origin and terminal are homotopic in X. These open sets form an open covering {N,}
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for X. Hypothesis (H) implies that there is a U € x such that if A C X is of order U,
then A C N, for some a. :

Let ! and !’ be two loops at z and be U-homotopic. First we assume that they are U-

contiguous, that is, there is a decomposition I; = [0,%1],+- , Iy = [tk—1,1] for I such that
I(t;) =U(t), i =1,--- ,k— 1 and I(I;) UU(I;) is of order U. Therefore I|I; and U|I; are
contained in some N, and have the same origin and terminal for § = 1,--- , k. Thus I|I; and

I'|I; are homotopic in X with origin and terminal fixed; that is to say, U-contiguous loops
are homotopic. Therefore U-homotopic loops are homotopic. This proves the injectivity.

The last statement follows from the fact that each element of m(X,z) = P(X,x) has a
neighbourhood associated with U as above consisting only of itself.

Remark 4.1. We hoped to prove the conclusion of Theorem 4.1 W1thout 1mposmg
hypothesis (H), but so far have not succeed '

Corollary 4.1. For a compact metric space X which is locally pathwise and semzlocally
simply connected, n is an zsomorphzsm and n(X,z) = P(X,z) is discrete.

Proof. The Lebesgue number of a given open covering guarantees that the condition (H)
is satisfied. : v

Corollary 4.2. For a CW complez X, 7 is an isomorphism and 7(X,z) = P(X,z) is
discrete.

Proof. The paracompactness and the local compactness imply that X = U X;, where

each X; is compact and X; C Int X’H—l, it =1,2,---. Taking the Lebesgue numbers ; of
W; = X; — Int X;_; and assuming 6; > 63 > -+, we can get a positive function § on X .
by means of a partition of unity such that §|W; < §;. The function § guarantees that the
condition (H) is satisfied.

§5. An Example

The following is one of the simplest examples which has nontrivial generalized fundamen-
tal group and. trivial classical fundamental group.

Let X be a countable space with finite complement topology. The space X is connected
locally connected and compact, but totally pa,thwrse disconnected. Any open subset of X is
connected.

Let z and y be two different points in X. Set V,, = (X\{z}) x (X\{z}), V,, = (X\{y}) x
(X\{y}) and V =V, ][ V,.. Then V is an open neighbourhood of the dlagonal Ain X x X
not containing (z,y) and (y,z). Let G be a connected open subset of X which contains x
and y. Then G x G ¢ V, that is to say, G is not of order V', and every subset A of X which
contains both z and y is thus not a V-set. '

Let X' be a copy of X, and 2’ and ' in X' the copies of z and y, respectively. The space
Y is constructed from X and X' by connecting x and z' by a copy of the unit segment [0, 1]
and y and y' by another copy of [0,1]. X and X' are regarded as the subspaces of Y. The
segment between x and ' is denoted by I, and the other one between y and y' by I,,.

Let V' be the copy of V corresponding to X'. Let V;, € {7, and V;, € Uy,. Let U be the
image of the disjoint union VI[V'[[V, ][V, in Y x Y. It is obvious that U € {y.
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A U-path X\ with origin = and terminal y in Y has support in X if and only if A is
a V-path in X. And a U-path A with origin z and terminal y in X is not U-homotopic
to a U-path X' with origin X and terminal y and support S(X') C Y\(X\{z,y}). Thus
g=[AN ;1] is not the identity of P(Y,z;U). Therefore, P(Y,z;U) is nontrivial. Moreover,
P(Y,z;U) D {g";n € Z} = Co, the infinite cyclic group. .

For W € Yy with W C U, one has h{y : P(Y,z; W) — P(Y,z;U). Since Y is locally
connected, Lemma 2.3 implies that hlY is surjective. - Passing to the inverse limit, one
claims that the generalized fundamental group P(Y,x) is nontrivial. However, the classical
fundamental group 7(Y, z) is trivial. :
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