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GLOBAL SOLVABILITY OF NONLINEAR WAVE EQUATION
‘WITH A VISCOELASTIC BOUNDARY CONDITION
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Abstract

The paper -deals with the global solvability of nonlinear wave equation with a viscoelastic
boundary condition. The problem is a mathematical mode for nonlinare one-dimensional motion
of an elastic bar connected with a viscoelastic element at one end of the bar. Under some
physically reasonable assumptions, the boundary condition is dissipative and the existence of
global smooth solution of the problem is proved for small data.
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$1. Introduction

The paper deals with the following boundary value problem of nonlinear wave equation:

’utt—a(u@)m:O, 0<-’L‘<L, t>0,: (11)
u=0, =0, , S (1.2)

P ¢ ~
®)9 v /0 a(t — 7)o (us)(z, T)dr = g(#), ==L, (1.3)
L u = up(x), us = ui(z), t=0. » (1.4)

Problem (P) is a mathematical model for nonlinear one-dimensional motion of an elastic
bar connected with a viscoelastic element at z = L. The integral equation (1.3), satisfied at
the end z = L by wu, is a nonlinear and nonlocal boundary condition. Under some physically
reasonable assumptions on kernel a(t), (1.3) is a dissipative boundary condition as well and
we shall show that Problem (P) admits a global smooth solution for small data. '

When a(t) is a positive constant, (1.3) reduces to a local nonlinear dissipative boundary
condition u;+ao(u;) = ¢'(t). In this case, the viscoelastic element comprises only a dashpot.
Greenberg and Li Ta-tsien discussed the problem with ¢/(t) = 0 in [3]. If the viscoelastic
element at the end z = L of the elastic bar consists of a spring and a dashpot in parallel,
i.e. the Kelvin-Voigt’s model, then ' '

—kt/r —k (T —kt/r
¢ and g(t) = ___uq_(li)e__.

a(t) =

‘ : r
For this particular case, the problem was-studied recently by Alben and Cooper in [1].

And the problems discussed in [3] and [1] are just both the typical examples of our results,
corresponding to the cases a(t) € L!(0,00) and a(t) ¢ L(0, o0), repectively.
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The rest of the paper is organized as follows. Section 2 contains a statement of our results
.and an outline of the proof of the main theorem, based on some priori estimates. In section
3 we give some energy estimates of the problem. And Section 4 is devoted to the proof of
the dependence of the energy integrals on the boundary value of the solution.

§2. Statement of Results and Outline of Proof
We first list the hypotheses on the kernel a(t). These are:

a(t) = ac + A(t), A(t) € C?[0,00), where a, is a constant, (2.1)
a(t) >0, 4 20, A(t) 20, A'(t) <0, (22)
# AM (1) € L)(0,00), j,m < 3. (2.3)

For o we reguire:
o € C3(R), o(0) =0, ¢'(0) > 0. (2.4)
As the main results in the paper, we have | '
Theorem 2.1. Suppose that hypothese (2.1)-(2.4) hold. Assume further that up €
C3([0,L)), u1 € C?([0,L]) and g € C3([0,00)) N H3(0,00) satisfy the following compati-
bilty conditions '

uo(L) = 9(0), | (2.5)
u(L) + a(0)o (uo(L)) = g'(0), (2.6)
o' (up(L))ug (L) + a(0)o" (ug(L))uy (L) + o' (0)o (ug(L)) = ¢"(0), (2.7)

0"(U6(L))UB(L) g (L) + o' (ug(L))ug (L)
+ a(0)0” (up(L))up” (L) + a(0)o” (up (L))o (up(L))ug (L)
+a(0)o"* (up(L))wg (L) + d' (0)0" ('ao(L))u1 (L) +a"(0)o(up(L)) = g"(v), 8)
u0(0) = u1(0) = u"(0) = u{(0) =0. (2.9)
Then there exists a constant € > 0 such that z'f} ‘ v

| “'”'0“%{3(0,1) + ||“1||%12(o,z) + ||9||§13(o,oo)' <é’,
the Problem (P) admits a solution u € C3([0,L] x [0,00)). Here H® denotes the Sobolev
space.
In order to prove Theorem 2.1, we first give a theorem on local ex1stence of the solutlon

to Problem (P). :
Theorem 2.2. Under the assumptions of Theorem 2.1, there exists a T > 0 such that

Problem (P) has a unigue solution u € C3([0, L] x [0, T]) and T depends only on |luollczo,z)

and ||u1lc1fo,z)-
Reducing equation (1.1) to a ﬁrst order system, then we can obtain Theorem 2.1 from [1,

Theorem 2.3].
Without loss of generality, we can assume that

o'(s) > 01 >0, Vs € R,
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where o' is a constant. There is no harm in making this assumption bécause we shall show
a posteriori that

[ug(z,t)| < 6, Vz.€ [0,L], t >0 (2.10)
for a sufficiently small § > 0.
We set
B(t) = max / (4 + 2+ 2+ o2, o+ o) (o, 0)do
* / / (u2 + u’g + u? + u:a: +o 4t utztt)(x’ s)dzds,
/J'(t) = slg[(a)‘}:] (u’ + u’mw + uwt)(w s)
z€[0,L)
e 2 12 m2
6lo)= [ @0 +d°O+90) + ¢ O)as
0 .
and

Uo(uo, u1) = lluollFra(o,zy + lluliZre(o,z)-
The main work of the paper is to establish the following estimates.
Theorem 2.3. Let (2.1)~(2.4) hold and u € C3([0,L] x [0,L]) be a solution of Problem
(P). Then there exists a constant C, independent of ug,u;,g and T, such that
E(t) < C(Uo(uo, u1) + G(9)) + C(p(t) + 1’ (1) E(t) (2.11)
for 4T* < t < T, where
T* = oi’L. . (2.12)

Now we give a proof of Theorem 2.1 on the basis of Theorems 2.2 and 2.3.

Proof of Theorem 2.1. According to Theorem 2.2 and Sobolev embedding theorem,
we can get a local solution u € C’3 ([o,L] x [0,L])) and T depends on e. We first choose an
E* > 0 satisfying

C(IM?*E*'/? + LE*) < 1/4,
then take € > 0 so small that

Ce® < E*/a, (2.13)
T > a7 . (2.14)
and
| E(t) < B*/2, V0 < t < 4T*, | (2.15)
For such an €, the local solution u must satisfy
E(t) <E*/2, VO<t<T. (2.16)

It is easy to see that
u(t) < L'PE()M2.
So we have from (2.11) '
E(t) < C(Uo(ug,uy) + G(g)) + C(L1/2E3/2(t) + LE?(t)), VaT* <t < T. (2.17)
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If E(t) < E* for AT* <t < T (< T), the estimate (2.17) gives
E(t) < Ce? + C(LM2E*3/? + LE*Z) <E*/2, 4T* <t < T.

Consequently, by continuity, we have (2.16) from (2.15). Thus we complete the proof of

Theorem 2.1 and get the boundness of E(t) on [0,00). Therefore, it is justified to make

assumption (2.10). :
The proof of Theorem 2.3 relies on the estimates give- in Propositions 2.1 and 2.2.
Setting '

©pL U
1 @ o1
Eq(t) =/ (—uf +/ a(n)dn) dz + ~koou?(L, 1),
o \2 0 2
1 ~L 1. -
Ba)) = [+ o' (u i) + oL,
1 [k '
Ba() =3 | (b + ' ol + L)
0

B(t) = / (W2 + 2 + -+ uy) (e )de,

where ko, is defined in Lemma 3.2, we can get the following energy estimate.
Proposition 2.1. Let u € C3([0, L] x [0, L]) be a solution of Problem (P). Then

’ t
Bv(0)+ Balt) + Bo(t) + 0n | (ud +u+ ube)(E )ds
| i 1
<C1Uo(uo, up) + Cl”ﬂ“%{ﬁl(o,t)
| ; -
+ Cr(u(t) + £2(2)) / B(s)ds, 0<t<T. (2.18)
' 0

Here and throughout the paper, we use Cy, 0y, C2, g, - to denote various positive constants
independent of ug,u1,9 and T. | .

For deriving the estimate (2.11) from (2.18), we need a further estimate which gives the
dependence of the solution on the boundary values. ‘ '

Proposition 2.2. Let u € C3([0, L] x [0,T1) be a solution of Problem (P). Then

t . t
/ E(s)ds <CaUp(ug,u;) + Ca / (u? + U2 +u2,)(L,s)ds
0 0
+ Callgl s o,y + Ca(m(?)
t
+12(1)) / (s)ds, Vt € [4T*,T]. (2.19)
0

 We can prove Theorem 2.3 immediately from Propositions 2.1 and 2.2 and Poincare’s
inequality. The proofs of Propositions 2.1 and 2.2 are givén in §3 and §4 respectively. .

We close this section by giving another form of boundary condition (1.3). Differentiating
both sides of equation (1.3), we get ‘

ug + a(0)o(ug) + /; a(t - 'r)a(um)(:c,T)df =g¢'(t), == L. - (2.20)

The kernel k(t) obtained by solving integral equation

o(OK) + @ (0/a0) + [ o= rIk(r)ir =0, e21)
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can be used to express o(u;) in terms u; and ¢/, that is,
¢

o(uz) +u/a(0) + /0 k(t = 7)ue(, T)dr

—'(8)/a(0) + /0 k(t-r)d(r)dr, =L (2.22)

In the course of the proof of Theorem 2.3, instead of (1.3) we use boundary condition (2.22).

§3. Proof of Prdposition 2.1

We fisrt give some lemmas. _
Lemma 3.1. Let a(t) satisfy (2.1)-(2.3). Then there exists a positive constant o such
that ' .

i) if a(t) € L}(0,00), then

*%%,')5 >a, VEER, @

ii) if a(t) ¢ L*(0, c0), then ,
Qoo — §Imfi(i§) S
|aco + €| A()I

Proof. Suppose first a(t) € L!(0, 00). It is easily seen that conditions (2.1)-(2.3) imply

t B
¢ j a(t) sin(ét)dt > 0, V€ #0O.
(1] .

a, V¢€R, (3.2)

Thus
_ Ima(i€) '
£aGiE) 2 >0, VE#0. (3.3) «
It is not difficult to verify :
: _ Imé(i£) ) - ® 14(0)12
él_l}%) ( Eale) /0 ta(t)dt/|a(0)|* > 0 | (3.4)
"~ and ~ _ .
o Ima(i£)> -
Jim. ( TaF) = 1/a(0) > 0. - (39)

(3.3),‘(3.4) and (3.5) imply (3.1). In a similar way, we can prove (3.2). The proof of the
lemma; is completed. ' _
Lemma 3.2. Under the assumptions of Lemma 3.1, the kernel k(t) in (2.22) satisfies
i) k(t) € C2([0,00)), :
ii) k(t) = koo + K (t), where K(™(t) € L1(0,00), m <2, and
a~1(0), if a(t) € L*(0,00),
oo = {o, if aft) ¢ L0, ),
iid) g |
T ¢ .
f ult) /0 K(t - r)u(r)drdt > (@ — a=1(0)) /0 w2(R)dt,
’ VT >0 and u€ C([0,T)).
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Proof. For the proof of assertions i):-and ii), we refer to [2,4,5]. We note that our

assumptions (2.2) and (2.3) are weaker than the corresponding assumptions in [2,4,5], by
reason that their results are used only in 6btaining the assertion i) and ii). Now we prove

assertion iii). Setting

0, t<Qort>T,

. uT(t) {'u,(t), te [0,T7,

0, t<o,
we have _
' T pt ' o :
[ ww [ K@= = [ oo R O
=% / " kGe)ie) e, (3.6)
where |
£©= [ e rrwin= ko),

() = / " (it

—co

From (2.21) and assertion ii) of the lemms, we find that

_ ) L L 140,00
Rg={ COUOF al) a0k

if a ¢ L*(0,00).

too +i€A(iE)  a(0)’

Thus we have

Ima(€) 1 -, g,
- - —, if a € L7(0,00),
o gaGee a0
Rel(i8) = ¢imA(ig) 1
| 2= n} .z - , if a ¢ L*(0,00).
aca + i€AGE)?  a(0)
Substituting (3.6) into (3. 5) and using Lemma 3.1, we conclude that

/ t)/ K(t — )u(r)dr >( / |t (€)|2d¢

)2
dt.
-5 / ()
This completes the proof of the lemma.
Proof of Proposition 2.1. Taking the compatlblhty condition (2. 5) and assertion ii)

of Lemma 3.2 into account, we can write the boundary condition (2.22) as

o(uy 'u,t+/ K(t — m)us(z T)d'r+k°°u

=koog( )+ (10 g (t / K t— T)g (T)d'r, z = L. (3.7)
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We multiply equation (1.1) by » and infegrate over [0, L] x [0,], using integration by
parts, (1.2) and (3.7) to obtain

. 1 ' s . . :
Eq(t) + / ut(L, 8)(—=us(L, s) + / K(t — t)ug(L,7)dr)ds
0 a(0) " 0 ‘
] 1 t
=B+ o | w(L,9)g(s)ds + o5 [ (L, s)g ()
< Jo: . R a(()) 0 _ .
4 8
+ / us(L, s)/ K(s — 7)g'(7)drds. (3.8)
0 JO - : -
Using the assertion iii) of Lemma 3.2 and inequality
lazag| < v|ay|? + leldglz, V>0
from (38) we obtain |
¢ ‘
Ei(t) + a/ uZ(L, s)ds
0
1 A ¢ ‘2 ’
<Ey(0) +v (koo Ok 1) /0 (L, 5)ds

* 215_1<k°°+ ?(165 +1) [ (9 () + g% (s) + (/ K(s—r )2) ds. -
/Ot (/:,’K(s_'r)gl(r)d”')zd,ss ”K”%I(O,m) /Otg'z(s)ds

and taking v sufficiently small, we find that

Ey(t) + s /ot uz (L, 8)ds < EiA(O) +Cs /Ot(gz(S) +9"(s))ds - (3.10)

Noticing

for some constants a3 and Cj.
Differentiating (1.1) and (3.7) with respect to ¢, we can find that

Ut — o'(um)mt = 07 . | | (311)
o(ug)s utt + / K(t — TYug(z, 7)d7 + koot + K (t)us(z,0) |
hood () + (10) )+ / K(t—r)g"(n)dr + K§)g©), o=L  (3.12)

We multipl& (3.11) by w4 and integrate over [0, L] x [0, t], using integration by parts, (1.2)
and (3.12) to obtain

Es(t) +:./0t utt(L s)( (1 )utt (L,s) / K(s- T)utt('L T)d’l‘) ds
=B(0) + /0 /0 d"(um)uf’ct(w,s)dmds+(g'(O)—ut(L,O)) / K(s)uss(L, 8)ds
+/0t( g (8) + == ( ”(s / K(s—T) "(T)d’l') ug (L, s)ds, : (3.13)
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Following the procedure used to derive (3.10) from (3.8) and noticing

/ / "(ug)ud,(x, 8)dzds| < Cyu(t) f / uss(z s)d:z:ds,

we conclude from (3 13) that
oot ' t
Byt) + as [ (L, 5)ds SCo(Ba0) + 3 (5,0) + °(0) + G [ (" +4") ()i
~Jo Jo

t pL
+C5;1,(t)/0/(') uit(m,s)dmds. : (3.14)

Differentiating (3.12) with respect to ¢, we have

1 ¢ |
a'(u,,,.)u + '———’u,ttt + / K(t — T)uttt (:l:,’l')d’l‘ + K(t)'u,tt(L, 0) + K'(t)ut(L, 0) + kooutt

a(0)

koot (8) + —= " (1) / Kt~ 5" + KOG O+ KO0, 2=L,

1
a(0)’
For h > 0, we apply the difference operator A, deﬁned by
(AhW)(?’,t) - ‘w(:z:,t + h) — w(z,t)

to (3.11), multiply the result by Apus and integrate over [0,L] x [0,#]. After appropriate
integrations by parts we divide the resulting equation by h, let 2 | 0, and then use (1 2) and
(3.15). The result of this computation is

E3(t) +/0 “tft(L, 5)(;(@%&([1, s) + /0 K(s — T)use(z,7)dr)ds

(3.15)

—Es(0) — /0 (L, 0K (5) + wa(L, 0)K'())uene(L, )ds
+ [ 6 OK )+ OK 6L, 5)
+ / t (koog (s) + Ezlajgm(s)* /0 ) K(s— T)g"'(’r)d‘r) (L, 8)ds
# [ (3o o+ o e + 20" e v ) (o 8)dads

—/ ('U,w)’ul tum(L s)ds | .' (316)
0 .

A similar argument used to derive (3.14) from (3 13) yields
Bu() + o [ alL, o)
<Os(E3(0) + u(L,0) + (L, 0) + 47(0) + 4"°(0)) + Cs / " 6) + 9" e
+Calutt) +172) | t / Y bl by il ) eds, (317

From the compatibility conditions (2.6) and (2.7), ‘we have
g2(0) + g"* < CrUs(uo, wa). (3.18)
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Now we obtain the energy estimate (2.18) from (3.9), (3.13),.(3.14) amd (3.17). The proof
of Proposition 2.1 is completed. »

§4. Proof of Proposition 2.2

Let u be a solution of Problem (P) in C3([0, L] x [0, L]), and T > 4T*.
Lemma 4.1.

/ (a5 +ut2)('77’t)d-77 <Cs /t (w2 +w2)(L,7)dr
0 t—2T

+ Cau(t) / / & +u§)(.z- )dadr, Vte[2T* 1), (4.1)

. 2T
/ (u2 + v?)(z, t)de < Cg/ (u2 + u2)(L,7)dr

, t+2T* )
+ Caplt) / / (62 + u2)(a, 7)dwdr, Vi€ 0,2T"), (4.2)
t 0 _
Proof. Introducihg the Riemann invariants
1 . Uy :
R =3 (ut - / V 0'("7)d77) )
0
1 o
S =3 (ut + Uz \/ 0'(77)d77> )
- Jo

equation (1.1) becomes : _

R+ MS~R)R, =0, S—\S—R)S, =0, (4.3)

where A(S — R) = 1/o(F—1(S — R)) and function F is defined by F(a) = [ +/o’(n)dn.
For t > 2T™, let the backward 1-characteristic curve Iythrough (L,t) meet line z = 0 at

(0,7¢) and the backward 2-characteristic curve I through (0, 7;) meet line z = L at (L, 72).
We denote by 2, the domain bounded by lines 7 = ¢, = = 0 and curve /3, and by Qz the

domain bounded by line z = 0, curve l; and [ .
From (4.3), we have

/ / (B + AR2)R + (s — 1S,)S)dadr = 0. (4.4)
JJa,
Using integrations by parts and noticing that R? — S% = 0 at line z = 0, we obtain

1/ (R? + 8%)(z, s)dx + = /((R2+52)cos(n T)

+ M(R? — 8?)cos(m,x))dl — = / XN (R, — 85)(R? — §%)dzdr = 0. (4.5)

It is not difficult to verify that

%/ll((m + 52)cos(m,7) + MR2 — §2) cos(m, z))dl = _/l1 \/T:\-FX?

S2di (4.6)

and

< Conlt) / /Q (R? + 2)(w,)dadr.  (47)

' / /Q 1 /\'(Rm. — 8, )(R? — 8%)dzdr
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Combining (4. 5) (4.6) and (4.7 ), we have the estimate

/ (R + %)@, 0ds <2 | —Zsd1+ Coutt) / / (R + 32)(:1: rdedr. (45
| o,

0 11\/

Similarly, from

/ (S — AS,)Sdwdr =0 © (49)
JJa, A
we can obtain estimate
1 [t
Sdl < AS?(L, 7)dT + Ciou(t / / S%dxdr. 4.10
[ . m o ( ) 10.“( ) o ( )

Now (4.1) follows immediately from (4.8) and (4.10).

Instead of _bdckward characteristic curves taking forward characteristic curves and pro-
ceeding as in the derivation of (4.1), we can obtain (4.2). The proof is completed.

. Applying a similar argument, as in the proof of Lemma, 4.1, to the differentiated equations

Ry + ARyt + AR, =0,
Stt - ASmt - Atsm =0’
Ryt + ARyir + 20 Ryt + At Ry = 0

and
Sttt — ASget — 2248zt — AuSz =0,

we can prove the following lemmas.

Lemma 4.2,
L
IR
0

. t ' t L
<Cn / (@2, + w2)(L, 7)dr + Cuau(t) / / (w2, + 92, + ) (2, 7)dadr,
t—2T t—27+ Jo
Vt € [2T*,T). (4.11)

L
/ (2, + ) (2, t)de
0

427" t+2T"
<on [ @A) Endr+Cun) [ [ (Rl ) r)duar
Sl A t 0 _
vt €[0,2T%). (4.12)

Lemma '4.3.

L t
/ | (uitt + uftt‘)(-’”,t)dw < Cre / T (uiu + u%tt)(L, T)dT
1—2T*

L
+ Cl2(#(t) + 12(t)) o / (w2, + uy + ulgy + vl + udyy) (z, 7)dadr,
t *
Vi€ [27*,T), (4.13)
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-~ oL t-+27* o
/0 (ufztt + ut2tt)($, t)dz < Crz / (,uitt + utztt)(L’ T)dr
t

t42T™ L : : . o
+ Cr2(p(t) + p(t)) / f (u2, + ud, + ulg, +udy + vl ) (@, 7)dadr,
t 0 : ]
Vvt € [0, 27%). (4.14)

Proof of Proposition 2.2. From Lemmas 4.2, 4.3 and (1.1), we find that
t oL : |
»LT* /(; ('Ulg::n + 'uf:t + ’U:ft + uizm + uimt + uitt + ugtt)(w’_ T)d‘J)d‘T

<Cis / / (w2, + 2, + 22y, + uly) (L, )drds
2T* J g—2T* :
8

t L
OO+ w2 0) [ [ [ ikl st s+ ), iadrds.

2T

¢
<2T*Cy3 / (uds + ufy + ulyy + uly)(L, 7)dr
0

t L
2T Cua(u(t) + 12(1) / / (W2 + 02, + 1, 12y + ey + u) (2, ) ddr

and

2Tt ‘ ¢
/0 /0 (uim +eeet '”'ftt)(“” 7)dzdT < 2T*Cy3 /0 (uit + u%t + “itt"" u%tt)(L’ 7)dT

’ t L .
2T Ca(u(t) + p2(2)) / / (W2, + - + 42, (e, 7)dadr.
0 JO

Now we get
t oL t
[ ] @t ot s eridndr < Cuo [ @it vt s+ k) B 7
0

t pL :
+Ouu®) +w®) [ [ kot oo+ ) o, o (@15)
0 JO -
From (3.12) and (3.15), we find that |
t t
/ w2, (L,7)dr <Cis / (u? + uZ) (L, T)dr
0 0 .
. |
+ 015/ (g'2 + g"2)(7')d7' + 015(uf(L, 0) + g'2(0))
Jo (4.16)

and
¢

t
/O W2y (L,7)dr <Cisp(2) / u2,(L,)dr

t t '
+ 0 [ (o4 )L )+ Cs [ (77 45" r)er
0 0
+ C1s(u2(L,0) + u}y(L,0) + g™ (0) + "*(0)). (4.17)
The compatibility conditions (2.6) and (2.7) yield
5(0) +4"(0) < Cro(2(L,0) +u3(L,0) + 3,(L,0) + 4(L,0).  (418)
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Using Sobolev embedding theorem, we have
uZ(L,0) + u?(L,0) + u2,(L,0) + v (L,0) < Cy7Uo(ug,u1).  (4.19)
From (4.15)-(4.19), we obtain

t oL -
/ / (uhg + -+ + +uly) (z, 7)dadr
0 0
. pt
<C18Uo(uo,u1) + Cis / (u + uf, + vl )(L, 7)dr + Cis / (g% +g" + g"*)(s)ds
; ,

t pL
© + Cug(u(t) + #(2)) /0 /0 (w3 + -+ + ufy)(e, s)dads. (4.20)

* The boundary condition (3.7) can be written as
1 t L L o
o (uyp)t + koo Lty + —-—ut + / K(t — m)ug(z, 7)dr — / / Ugpy (€, t)dEdn
0 ©

=koog'(t) + = g '(t) +/ Ki-7) ( TYdr, == L. (4.21)

Noticing S
|0 (15) + koo Ltte| < (01 + koo L)|ti,
from (4.21) we obtain

t Copt : t oL
[ i< cn [(3@0+P0+ @i+ o [ [ @ dett. @2
0 0 ’ 0 JO

Combining (4.20), Lemma 4.1 and (4.22), we conclude (2.19). The proof of Proposition 2.2
is completed.

Acknowledgment. I wish to thank Prof. Li Ta-tsien who brought the reference [1],
which is helpful especially in the proof of Proposition 2.2, to my attention during the prepa-
ration of this paper. I am also indebted to the authors of [1] for their priprint..

REFERENCES

[1] Alber, H. D. & Cooper, J., A free boundary value problem for a quasilinear hyperbolic system (to appear
in J. fur die reine und augew. Math.).

[2] Dafermos, C. M. & Nohel, J. A., Energy methods for nonlinear hyperbolic Volterra integrodifferential
equations, Comm. Partial Diff. Equa. , 4 (1979), 219-278. _

[3] Greeberg, J. M. & Li Ta-tsien, The effect of boundary damping for the quasilinear wave equation, J.
Diff. Equa. , 52 (1984), 66-75. )

[4] MaCcamy, R. C., An integro-differential equation with apphcatlon in heat flow, Quart. Appl. Math.
35 (1977), 1-19.

[5] Macamy, R. C., A model for one-dimensional, nonlinear viscoelasticity, Quart. Appl. Math., 35 (1977),
21-33.



