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A CLASS OF HOMOGENEOUS LEFT INVARIANT 
OPERATORS ON THE NILPOTENT LIE GROUP Gd+2**

J ia n g  Y a p i n g * * * L u o  X u e b o *

A b stra c t

This paper is devoted to a class of homogeneous left invariant operators L \  on the nilpotent 
Lie group Gd+2 of the form

d 2
Lx = ~ Y , X j - i J 2 XmTm’ A = (AbA2)€ 0 2,j—1 m=l

where {X i, • ■ • , X d ,7 i ,  T2} is a base of left invariant vector fields on Gd+2. With aid of 
harmonic analysis on nilpotent Lie groups and the method of increment operators, for all 
admissible Lx , subelliptic estimate and an explicit inverse axe given and the hypoellipticity 
and the global solvability are obtained. Also, the structure of the set of admissible points A is 
described exhaustively.

K eyw ords Lie group, Homogeneous left invariant operators, Hypoellipticity,
Global solvability

1991 M R  S u b je c t C lassifica tion  47F05, 22E25

§1. Introduction
Since the 70’s, harmonic analysis on nilpotent Lie groups has become an active area, 

whcih affords a new powerful tool for the analysis of LPDOs. In recent fifteen years, a 
lot of important results have been obtained^1-5’11-14!. In particular, investigation for left 
invariant operators on the Heisenberg group Hn or more general nilpotent Lie groups is the 
most widespread.

This paper is devoted to a, family of second order operators of the form
d 2

L x = - ' £ X j - i J 2 X™T™' (L 1)
j=l m—1

where {X l, • • • , X j,  Ti, T2} is a base of left invariant vector fields associated to the Lie group 
Gd+2, and Ai, A2 are complex numbers. The operator L x may be regarded as a nontrivial 
extension of the operators discussed in [1], which plays an essential role for studying the 
parametrix and hypoellipticity of second order operators with the form

d
L  =  -  9jk (z ,r)Z jZ k - i V  +  C (z ,r )

j ,k = l
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on a smooth manifold U with dimension d + 2. In general, a quadratic change of coordinates 
can not convert simultaneously the matrices Am =  [ a ^ ] ( m  = 1,2) into ones in normal 
form (see §2), so that one cannot directly apply the method in [1] to the operators L \  of 
(1.1). To overcome this difficulty, we employ the method of increment operators (proposed 
in [9,10]) so tha t the operator L \  of (1.1) is changed into the one discussed in [1]. We 
establish a subelliptic estimate to show the invertibility for the operator L \  and construct 
explicitly the inverse of the operator L \.  Moreover, the set of admissible points A =  (Ai, A2) 
in (Г2, characterizing the invertibility of the operator L \,  is described exhaustively. Further, 
we obtain the hypoellipticity and solvability for the operator L\. For the hypoellipticity of 
left invariant operators on general nilpotent Lie groups, it is well know that B.Helffer and 
J.Nourrigat in [5] and L.P.Rothschild in [11] obtained general results characterized by the 
unitary representations of the operators. But, for the operator given in this paper, it seems 
difficult to verify their conditions. The conditions of hypoellipticity by us, characterized by 
the parameter A, are easily verified. As applications, the hypoellipticity and solvability for 
heat operators and Schrodinger operators on the Heisenberg group Hn and the generalized 
Kolmogorov operators on R d+2 and the operator A d t — AV* are discussed.

§2. The Group Gd+2 and the Operator Lx
The group Gd+2 is the Lie group whose underlying manifold is Rd+2 with coordinates 

(*!,••• ,X d ,h ,t2 ) = (x,t) and whose group structure is given by

(x ,t)-{y ,s )  = (x + y ,t  + s+ ~ y A x ),  (2.1)

where у Ax  =  {yA\x, yA 2 x) and the matrices Am = [ a ^ ] ( m  =  1,2) are skew-symmetric. It 
is easy to verify that the group Gd+2 is a two step nilpotent Lie group. In particular, when 
A2 = [($]  =  0, d =  2n +  m (n ,m  € I+ ), and

»<»)

,<01jk

aj,n+j _„(0 a — i 2an+j,j > 3 — 4^1
a^) = 0, otherwise,

we have
G2n+m+2 C*H nX Rrn+l (studied in [16])j

where Hn is the Heisenberg group of degree n.
A base of the left invariant vector fields on Gd+2 is {Xi, • • • ,X a ,T i,T 2 }:

d 2 . , ч Я
j  = i) 2, • • • , d,X j

9 1 v—v
+  o E E s

Tm -

9Xj

_d_
dt„

( m )
)k  >xk

fc=l m=1 dtr

m  = 1,2.

Their commutation relations are as follows:
2

[Aj, Afc] =  ^  a,jkTm, j, к 1,2, • • ■ , d,
m= 1

[Xj, Tm] = \Tm, T„) =  0. m ,n  = 1,2.

( 2 .2)

(2.3)
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D efin itio n  2.1. For p > 0, we define the dilations on Gd+2 to be p(x,t) = (px,p2t ) =  
(pxi, • • • , pxa, p2h ,p 2t2), (x,t) e Gd+2, and the dilations on L2(Gd+2) by

SPfix , t) =  /(/>ж, P2*), /(®, t) G L2(Gd+2). (2.4)

D efin itio n  2.2. We say that a function f  in L2(Gd+2) is G-homogeneous of degree m if

6p f(x,t) = pmf(x ,t) ,  p>  0. (2.5) -

D efin itio n  2.3. An operator Q on L2(Gd+2) is G-homogeneous of order m  if it satisfies

S^Q Sp  =  pmQ, p>  0. (2.6)

We introduce the G-norm || • || of (x, t) € Gd+2:

ll(*. Oil =  (W 4 +  W2)1/4,

and denote the Euclidean norm of (x , t ) by |(ж, t)\. Then it is easy to verify the following 
relation:

c - ' a + i o m ) d 1 / 2  <  i + к * , o n  < c ( i + K * , o i ) ,
C > 1. (2.7)

For any Л =  (Ai, Аг) €(T2, we define the operator
d 2

Ьл =  - ^ Х ? - г ^ А т Тт , (2.8)
j=l m=l

where X j, Tm are given by (2.2). The operator L \  is left invariant and G-homogeneous of 
order 2 on Gd+2.

§3. The Increment Operator and a 
Subelliptic Estimate for the Operator Lx

Put

IMIgo i m p + E  ii* m p + E  + E  № ■  i p
j=1 m=l j—1

1/2

) u e Go°(Gd+2),

where || • || denotes the L2-norm. Let Go denote the completion of the space Co°(Gd+2) in 
the || • 11g0-norm.

By the same argument as (2.12)-(2.22) in [1], we can obtain the following lemmas. 
L em m a 3.1. ||. • ||<?0 is independent of the choice of ,Xd, also of coordinates

*1) ‘ ) *£?•

L em m a 3.2 . |M |Go ~  H I  +  E  ll-X?«ll +  E  M ,  « € C0” (G‘!+2).
j=l m=l

To discuss the invertibility of the operator in L2, we need to set up a subelliptic estimate. 
, For given u (x ,t) G S(Gd+2), we have

Л /  в  i f f  (m) д \ 2 . Л .  d
- Е ( ^ + 5 Е Е “У ^ )  - e -

j—1 \  J h—1 m—1 /  m=1
L xu (x ,t) = dtr

u(x,t).



358 CHIN. ANN. OF MATH. Vol.14 Ser.B

Taking the Fourier transformation in the two sides of the above equality in the variable 
t =  (ti, <2 ) and denoting the dual variable by r  =  (т^тг), we get

- E I ^ E E » ^ )  + X >dxj ' 2 3=1 \  J k= 1 m =1 m=l
(FtLx(u)(x,T) =

Let

+  ffll-m X k  ) +  £  А л >

(Ftu )(x ,r ). (3.1)

. , \ d x j ' 2J=1 \  J fc=lm=l m=l
then (3.1) shows that

(FtL \u)(x,T) = LTx(Ftu)(x,T).

Moreover, by introducing an auxiliary variable xq € R 1, we obtain 

eix°L\v(x)
d /  „ , d 2

(3.2)

(3.3)

- E l ^ + i E E * ^ - »
j'=l \  J k=1 m=l

9

X >
S,m=l

a
дж0

9ж0 J

(eixov(x)), v(x) € S(Rd).

Put

n = - ± ( £ : U ± ± W ™ £ ; ) * - * ( f y
d

dx0 '

(3.4)

(3.5)

Then, if we regard r i ,  T2 as two parameters, the operator Px is just one discussed in [1].
D efin ition  3.1. We call the operators P f  a family of the increment operators (with the 

variable xq ) associated to the operator L \.
(3.4) shows that

P{{eiX0v(x)) =  eiX0LTxv(x), v(x) e  S(Rd). , (3.6)

Combining (3.6) with (3.3) yields

(PZ(eiX0(Ftu)))(x,T) = eix°((FtLxu)(x,r)), u(x,t) e  S(Gd+2). (3.7)

From the operator Px , we can derive the nilpotent Lie group Gd+1 whose underlying 
manifold is R d+1 with coordinates (x0,x) =  (жо,Жг, • • • , xf)  and whose group law is given
by

(®o, x) -(y0,y )=  ( ж0 +  уо +  ^ а^ТтХкУз, x + у j . (3.8)
\  j ,k = lm = l  J

A base of the left invariant vector fields on the group Gd+1 is {Xq , X f , • • • , XJ}:

x r ~ —
0 dxo ’

II + \ t t ^ dxQ

(3.9)
'Гтп.Хк n ) 3 — 2, • • • , d.
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Let
1/2

IMIg, = ( INI2 + E  WX]wf + -£  WXTXiwf I , v, e cs°(ej+l),
\  3=0 j,k=1 /

and denote the completion of C0(G^+1) in the || • ||gt norm by GT.
Let

±*/i (r), ± t f 2(r), • • • , ±ifnT (r), f j  > 0
2

be the nonzero eigenvalues of the skew-symmetric matrix A(t) =  TmAmi repeated ac-
m—1

cording to multility. Then, fj  (r) are positive homogeneous of degree 1 in r  and continuous 
functions of t  in view of Theorem 6.1 of Chapter 2 in [7]. Moreover, the plane R2 is divided 
into 2m conic domains by the straight lines ci,c2, • • • ,cm passing the origin so tha t nT is a 
constant in every conic domain.

For given r  =  (ri, r2) E i22\{0}, put

В Д  =  | > а ,  +  1 Ш (), a e l ? ,
3=1

A • r  =  Л1 Г1 +  X2r2, A =  (Ai, A2 ) €(P2,

and let Лт be the subset of R  as follows:
' R, if nT =  0,

‘ Лт =  < {v E R : \v \>  Fo(r)}, if 0 <  2nT < d,

{v E R : \u\ = Fa (r), a E J ”T}, if 2nr  =  d.

D efin itio n  3.2. Let A E <T2. We say that the point A is an admissible point of the 
operator L \  if  A • r ^ AT for each r E i?2\{0}.

T h e o re m  3.1. The operator L \  given by (2.8) satisfies the subelliptic estimate

IMIo. <  С(||£л«11 +  IMI). «(*> t) e S(ad+2), (3.11)

if and only if A is admissible.
To prove Theorem 3.1, we need the following lemmas.
L em m a 3.3. For given r  E i?2\{0}, the increment operator P f given by (3.5) satisfies 

the estimate

IIHIo. <  C ( r ) ( | |P > | |  +  IMII), w s s ( a i+ ') ,  (3.12)

i f  and only if  A • г  ^  Лт .
P ro o f. We take the Fourier transform of vj(xq,x) in the variables (х0,х Пт + 1 , • • • , xg) 

and denote the dual variables by (Co, Ci>' ‘ ' , CreT, Vi> • • • , Vd-2nT)• By Plancherel’s theorem 
and a translation in the variables x±, ■ • • , хПт, (3.12) is equivalent to the following inequality 
for each (Co, v) € (Д\{0}) x R d~2n^:

71 т
Н 1 2 +  Е [ 1 Р М 1 2 +  ||(Сх , Л ( т ) ) ^ | | 2] +  (С2 +  £  „ J)IM Ia

j = 1 3=1

< c (t)(||(P ’-)c„»II2 + IMI2), « £ s o n , (3.13)
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where
1 d

Dj = ~i'dx'- ’ J =

(p \ h , v  =  Y h D j  +  ( c ® j / i (T ) )2] +  XmTm^ + w 2 -
j = l  m =  1

Using the unitary dilation of L2(Rn):

puv(x) =  pn/2v(px)
= pn/2v(pxi , --- ,pxn), p>  0,

we know that (3.13) is equivalent to
nT d—2nT

imi2+ £(ii£jwiia+ \\fafj(T))M2) + Ĵn i2
3=1 3 =1

< C (r) ||(P J)± i,T»||2. € S (JT ') . (3.14)

If пт Ф 0, according to the proof of Theorem 2.10 in [1], (3.14) holds for all p e  Rd~2nr 
if and only if Л • r  $ AT. If nT = 0, (3.13) actually is

■l +  Co2 +  E ,'jSC(T)(|(A-T)Co +  H 2|2 + l), (3.16)
3=1

(Co,v) € (R\{0}) x R d. We easily show that (3.15) holds for some constant C'(r) and all 
(Co, ti) £ (i?\{0}) x R d if and only if A • r  0  R. This completes the proof of the lemma.

L em m a 3.4. Let A be admissible. Then if  |r | =  1, there is a constant C independent of 
т such that

IMIo. < C(||P>II + N1). » e s ( G f 1'). (3.16)

P ro o f. According to Lemma 3.3 and its proof, we have (3.12), which is equivalent to 
(3.14). By the proof of Theorem 2.10 in [1], (3.14) is equivalent to

||<3T»|| +  (1 +  |i)|2)|H | <  C{T)\\(Qr +  |i)|2 ±  Л • i> | | ,  « € S ( n  (3.17)

7? G Rd 2n, where

QT = Y ^ Q Tj = X W  +  (® i/j00)2]-
j = l  3=1

Thus, it suffices to show that for the case |r | =  1 the constant C(r) in (3.17) may be chosen 
such th a t it is independent of r .

Let {(/>a (a;)} be the sequence of the Hermite’s functions on Rn. Then each v(x) € S(Rn) 
has a (unique) decomposition:

■у(ж) =  £  уафа(х), va complex numbers.

Define the unitary operators H T on L2(Rn) as follows:
1 /2

(HTv)(x) = Urn
3=1

ъ(л/Ыт)х  1 , • • • , y/fn{r)xn),
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r  € i?2\{0}; we then have

(HT)~1QT Н т фа(х) = Fa{T)<f>a{r)

and hence

(HT)~1QTH Tv(x) =  £  Ра(т)уафа(х).
a

Consequently, replacing v(x ) by H Tv(x) in (3.17), we obtain

+ J 2 F ^ (r )\v a \2 < C (T )^2 \F a( r )± X - r \2\va\2. (3.18)
Oi a  ot

Further, since A is admissible and f j  are continuous, it follows that

inf |Fa(r) ±  A • r |  =  d \ > 0 
* € I$ T 
M = i

and hence

1 +  ,  1 
|F «(r) ±  A • t \* ~  <PX

Thus, C(t ) = C\ is required in (3.17). If n 
since

+
2

=  C\ < oo.

r —0, (3.12) is actually equivalent to (3.15), and

inf |Im(A • r) | =  e\ >  0,
|r|=l

we have

i  +  £2 + E  vj i  +  £2 + X > j
J= i < _________ i = i

|(A • r ) f  +  Ы 2!2 +  1 _ e ^ 2 +  M 4 +  1

< 1 4— 2 — C\ < oo,
eA

which implies that (3.15) holds for C(t ) =  C\ independent of r ,  and so does (3.12) which 
yields (3.16).

P ro o f  o f T h eo rem  3.1. We first prove the necessity. Suppose that (3.11) holds. Then 
by Lemma 3.3, it suffices to show that for each r  £ i?2\{0} there is a constant C(r) such 
tha t (3.12) holds.

By virtue of Lemma 3.2, (3.11) is equivalent to

M l2 +  E  l l* H l2 +  E  I M 2 s  C (\\L ,u f  +  ||*||*), « € S(Gd+2). (3.19)
j—1 m=l

Taking the Fourier transformation of u(x, t ) in the variable t  and denoting the dual variable 
by t ' =  (t(, Tg), from Plancherel’s theorem we know that (3.19) is equivalent to the following 
inequality for every r ' £ i?2\{0}:

(1 +  |т'|2)||»Р +  E  ll(̂ i,)2»l|2 < +  Ml2), V S 5 (Я“),
3=1 (3.20)
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where

%  =  \  S  Ё  a i h ‘)тшх к, i  =  1 ,2 ,-  • - , d,

d 2

dxs ' 2 fc=l m=1

i = i

By the argument as above, (3.12) is equivalent to

(1 +  T„2)M |2 +  E  l l ( * T ) 2»l|2 <  С (т ) ( ||£ Г „ ||2 +  ||«||a), о S S ( t f ) ,  (3.21)
i = i

To € Л\{0}. For given то G P\{0} and т  € i?2\{0}, taking r ' = tqt in (3.20) we get

( i  +  4 |Tp)W l2 +  E  ll*T«>ll2 < С ( | |£ Г » ||2 + |M|3), « e  SO ?).
3=1

Hence, when |t | > 1, (3.21) holds for C(t ) =  C; while for |t | < 1, we have

M 2 i ( i + T 02 ) i i ! > f + E  Н ( * Г ) 2 «>112 ] <  a + ’ o W > ) i i * n a + E  и  ( * T ) 2 < - i i 2
i = i  j = i

< С (||£ Г » И 2 +  Ibll2). v s S i R 1),
which implies that (3.21) holds for C (r) =  To sum up, for each т  G P 2\{0} there is a 
constant

C, if \t \ > 1,
C(t ) =

r-jo, if 0 < |t | <  1,
к |r

such that (3.21) holds. So A is admissible.
Conversely, suppose that A is admissible. Then there is a constant C independent of т 

such that (3.21) holds for all To € P \{0}, i.e.,

(1 + ’o)H2 + E  И(*Г)2о||2 < + |M|3), » e Si#), (3.21’)
3=1

if |t | =  1. For given t ' G i?2\{0}, (3.20) follows by taking |т0| =  \t '\ and т =  t ' / tq in 
(3.21’).

§4. The Inverse and Hypoellipticity of the Operator L\
Let the space 5°° be defined by Definition 3.7 of [1]. Then Proposition 3.9 of [1] shows 

the pseudo-differential operator Q with the symbol q(x,£) G S°° maps S(V) into C°°(V).
By Proposition 3.21 in [1], we note tha t the symbol <r(Q^)(xo,x, £oj£) of the left inverse 

Q \ (if it exists) for the operator P f  is independent of Xq. So, we may denote it by 9д(ж,Со,0- 
T h eo rem  4.1. Suppose that for each т G P 2\{0} the increment operator P f given by

(3.5) has a two-sided inverse Q \ with the symbol q^(x,£o,£). Then the operator L \ given by 
(2.8) has a two-sided inverse M \ with the symbol

<r(Mx)(x,t,Z,T) = ql( ® ,1,0-

The proof of Theorem 4.1 needs the aid of the following lemma.
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L em m a 4.1 . For given r  G jR2\{0}, suppose that the operator P{ has a two-sided inverse 
Q\ with the symbol ?I(®,£o >£)• Then the operator L \  given by (3.2) has a two-sided inverse 
Мд with the symbol

Proof. Since Q \- P{ = Id which implies that

Q l • P^{eix°v(x)) =  eix°v(x), v(x) € S(Rd),

we have

е“ » ф )  =  J

=  е<*»У е « й ( М . О £ Й т ,  «(*) 6 « ( « V

and hence J eix*<ll(x, =  «(ж), v(x) e  5(i2d).

We note tha t the above calculations are formal in the usual sense since егж°г;(ж) £  S(G f+1), 
but it holds in the distribution sense or the above equality follows from calculating the left 
side of the equality

Q l • Px(eiXo~sx2/2v{x)) = eix°~ex2/2v(x) (e > 0) 

and letting e —> 0. So we may think that the above calculation is reasonable. We denote 
the pseudodifferential operator with the symbol q\{x, 1,£) by MJ, where r  is a parameter. 
Then above equality shows that

M l- L \  = Id.

Thus

M l = (L I)"1

and

v (M l)(x ,£ )= q l(x ,1 ,0 -
P roof o f  T h e o re m  4.1. According to Lemma 4.1, the operator L \  has a two-sided 

inverse Мд with the symbol ?д(ж, 1, £). Let

v{x,r) = (Ftu)(x,T)

=  J e~ltTu(x,t)dt, u{x,t) e S(Gd+2).

Then

L I • Мд«(ж,т) =  v(x , t ).

Taking the inverse Fourier transformation for the above equality in the variable r , we thus 
get from (3.3)

(La • (Fr lMlv))(x,t) =  u(x,t). (4.1)
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Since

(F -'(M Zv))(x,t) = J eitT J <**ql(x,l,()(F.v)((,T)a&r

= J  ()&((,тУ&г,
by writing the pseudodifFerential operator with the symbol q\(x, 1,£) as M \, where r  is the 
dual variable, we obtain

(F~1(MJLv))(x,t) = (M \u)(x,t)

(Ft (Mxu))(x ,r) = {MUFtu ))(x ,r)t u (x ,t) € S(Gd+2). 

Combining (4.2) with (4.1) then yields

L \  • M \ =  Id-

Similarly, with the aid of M f  • L \ — Id and (4.2), we also obtain

MA - L x = I d.

Thus

MA =  (L x )-1

and

(4.2)

<r(MA) ( a ,t , f , r )  =  9j(®, l , f ) .
which imphes the theorem.

Next, we shall give an explict expression of the symbol for the inverse operator.
Let Na{t) denote the square root of the matrix (A*(r)A(r)), where A* (r) denotes the

formal transfer of A(r). Then the matrix NA(T) is symmetric and has nonzero eigenvalues
fj(r), j  =  1,2,••• ,2nT, where f j (r ) ’s are the nonzero eigenvalues of the matrix A(t ) — 

2
J2 TmAm and f nr+j(r )  =  fj(r ) , j  = 1,2, ••• ,n T. We appoint that fj(r )  = 0 for 2 nT <

m = 1
j  < d and write

d
detch(iVA(r )s) =  U  ch (/j(r)s ) , 

j=i

,  th(JVJ(T)«);  f  __ _  th (fj(r)s)

ft« r )  ^  U  A M

R em ark  4.1. For any matrix N, — is defined by

N  з
Lem m a 4.2(cf. Theorem 6.16 in [1]). Let A EW2. ThenifX -т  ̂Лт for given т E -R2\{0}; 

the operator P f  has a two-sided, inverse Q \ with the symbol

°(Q \)(X,Z о ,0  = яШо,(Гт(х ,£ о ,0 \

where crJ(ai,£o>£) =  a(i~1X j)  with X j  given by (3.9), and the.function gA(£o>£) defined
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as follows:
p+oo

« ! ( & . « =  /
Jo

if |(A • т )л | <  Fq(t ) and пт фО, where

G T (€o,$,s) =  [detch(ArA(T)|^0|s)]_1/2 - exp 

I fn T = 0,

(4.3)

n a{t) i&I

qT(Zo ,0  =

- l

j -1
For those A not satisfying |(A • r ) R| <  Fq(t), we can obtain o>£) fr°m (4.3) by an 

analytic extension, changing the contour of the integral (4.3) if 0 <  2nT < d or repeating 
integration by part in (4.3) if 2nT =  d.

Combining Lemma 4.2 with Theorem 4.1, we can obtain
Theorem . 4.2 . Let A €(T2. Then if  A € A, the operator Lx has a two-sided (pseudodif­

ferential) inverse M \ with the symbol

where a =  (oi, • • • ,a f) and Cj(x, t , £ ,r )  =  o(i~1X j) with X j given by (2.2). The function 
тх(£,т) is defined as follows:

p+oo
m x { t,r )=  e-(A-r)s. G(£,r,s)ds 

Jo
if  |(A • t )r \ < Fo(t ), where

th(NA(T)s )

(4.4)

G {i,T,s) = [detch(iVA(T)s)] 1/2 - exp -  < N,Mr)
- U >

I f  nT = 0, then m A((, r )  =  (A • r  +  £  £2) \
j=i

The desirable m ^ ((,r)  can be obtained from (4.4) by the analytic extension mentioned 
in Lemma 4.2.

P ro o f . The case nT =  0 follows from letting fj{r) —» 0 in (4.4).
Define the operator M \ by

Mxu(x, t) =  J e*<^+'T)<r(Mx)(x, t ,{ , т)Щ , rja^fr. (4.5)

Then, since (г(Мл)(ж,г,£,т) =  m\(<r(x,t,£, T),T) and т л (£ ,т )  .is G-homogeneous of degree 
- 2  in (£,t ), we know that, for any compact set К  C R d+2, cr(M \)(x,t,£,r) satisfies the 
following estimate |<г(Мх)(гМ,£,т)| <  Co(K)(l +  |(£, r ) |)~ 2 and hence (4.5) is well defined. 
Furthermore, for any a  =  (0ix,O-t) £ i++2 we have.

^,t(M x)(x,t,^T)  =  d«tmx{(x,t,Z,r),T)

. E
|a (fc)|=aa!,fc

.ск̂1) 4---- l-a 0̂̂
d, /  ̂  2

™аИ М , £ , т) , 'г) • J ]  ( ^ ^  4 Г )т™ Ь ’
j,k—l \  m=l
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Note tha t 5 “(1>+1+“<а,)тл (^ ,т )  is G-homogeneous of degree —2 — |a x| in (£ ,r), we get for 
any a = (ax,a t ) G I++2 and any compact set К  C R d+2

\d“t<T(Mx)(xM,r)\ < Ca(K )( l +

= Са(К)(1 + \(Ц,т)\)-\

which implies that the integral

J еЧ *+ *)ря, М М х){х М ,т Ш ,т У & г

converges. Consequently, for any a  G I++2 we get

a ;,(M xu)(x,t) =  J ̂ , , [ е‘« + ‘т><7'(Мл)(а;,! ,{ .т ) ] - й « ,т д е т .

This shows th a t M \ maps S(Gd+2) to C°°(Gd+2). Also, Theorem 4.1 and Lemma 4.2 imply 
that M \ =  (Хд)-1 if Л is admissible. We thus have proved the theorem.

C oro lla ry  4.1. Let A G CP2 and suppose that A is admissible. Then operator L \ is globally 
solvable, that is, for any f(x ,t )  G C°°(Gd+2) there is u (x ,t) G C°°(Gd+2) such that

L \u (x ,t)  = f(x ,t) .

C oro lla ry  4.2. The operator Lx is hypoelliptic when X is admissible.
R em ark . The main results of this paper have been extended to  the case of G”1+re2 by 

the same idea given here (see [17]).
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