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DISTORTION THEOREM FOR BIHOLOMORPHIC
MAPPINGS IN TRANSITIVE DOMAINS (III)
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Abstract

The distortion theorem for biholomorphic convex mappings in bounded symmetric domains
are considered. Especially the distortion theorem for biholomorphic convex mappings in clas-
sical domain of type IV and two exceptional domains are given.
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§1. Introduction

Let M C C™ be a transitive domain, bounded or unbounded, m be a point in M. Let G
be a Lie group consisting of some holomorphic auﬁomorphisms of M and acting transitively
on M, K be an isotropy group of G which leaves m fixed. Then M is a realization of G/K.

Let g € G, 9, denote the holomorphic automorphism corresponding to g, and Jy, (z) be
the Jacobian of ¢, at point z € M. If M is unbounded, we must assume |det Jy, (m)| =

-1 for all £ in K. We denote by v, a holomorphic automorphism of M which maps

z € M tom e M. Set Kp(z,2) = cdet Jy,(z)det Jy, (2) with ¢ being constant and
K (2, 2) is the Bergman kernel function for certain constant when M is bounded. Denote
K (m,m)~1 a—z;KM(z,E)I by G,

Suppose f is a biholomorzf;-h?c mapping of M into C™. Then we can use Kp(z, %), Cp and
the coefficients of the expansion of f to express the det J¢(z). This is a result of Gong and
Zheng!t]. ' '

Let M C C™ be a bounded symmetric domain. Then G is a semisimple, connected,
noncompact Lie group with finite center, and K is a maximal compact subgroup of G. Let
G be the Lie algebra of G, K is the maximal compact subalgebra of G which corresponds to
K. Then G has the Cartan decomposition G = IC 4+ P. Suppose % is the maximal Abelian
subspace in P, and A is the analytic subgroup in G corresponding to 2 in G. Then G has
Iwasawa decomposition G = KAN.

We can choose a basis of A, Xi, -+ ,X,, where ¢ = dim = rankG/K, and for any
X € U, there exists a unique decomposition X = z1X; + -+ -2,X,. If { is the mapping
which realizes G/K onto M. For évery z € M, there exist X € 2 and k € K, such that

2 = &(ka- 0) = (¢ exp Ad(k)X - O)
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where O = eK is the identity coset in G/K. For g € G, we have ,(2) = £(g™1ka - O). Let
Pg = Pg-1. '

Moreover if £ satisfies the following condii:ions:

1) A =€(exp X - O) = (tanh®y,: -« ,tanhz4,0,-- - ,0);

2) z = ¢(exp Ad(k)X - O) = Ak;

3k — &' is the unitary representation of K; _

4) ¢ is the holomorphic diffeomorphism of G/K onto M;

then we say M is the canonical realization of G/K, or M is the canonical form of bounded
symmetric domain, or M is the Harish-Chandra realization of G /K.

Obviously, if bounded symmetric domains M and N are holomorphically equivalent to
each other, then M and N are two different realizations of the same G/K. Any bounded
symmetric domain is holomorphically equivalent to a canonical form of a bounded symmetric
 domain. : '

The holomorphic mapping f which maps M into C™ is normalized if f(m) = 0 and
Jg(m) = I, where I is the identity matrix, i.e., :

f(z) = z—m+.2di,j(zifmi)(zj —m;) 4 (1.1)
1,5
- where di,] (dE;), : ’d»E;L))a = (ml’ cre ’mn)-, z = (zla o ;zn)-

A family S of normalized holomorphic mappings of M into C™ is called an A-invariant
fmaily if the following condition is satisfied: the composition of any f(z) € § with any
holomorphic automorphism of M, after normalization, remains a holomorphic mapping in
S. '

'.In' [1], we proved

Theorem 1.1. Suppose M C C™ is a bounded symmetric domain which contains the
origin, and it is the canonical realization of Hermite symmetric space G/K. Suppose f is
a normalized biholomorphic mapping which maps M into C™, f € S and S is a normalized
A-invariant family. Let

L
=¢t(exp Ad(k)X-0) €M, . X =) z;X;, m=0.

j=1
Then
, . .
1og det J¢(2) _ c(s) Z log 14 1+ |tanhz,| | (1.2)
\/KM (2,2) /KM(O 0) ot T [tanhz,|
where

C(8) = sup { S kad®|, feSi=1, gk = (ki) € Un} . (1.3)
1,
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Inequality (12) implies the following distortion theorem
' c(s
Kum(2,2) ﬁ 1 — |tanh z,| ®)
V EKn(0,0) \ ) 1+ [tanhzy|

a(s)
K (2, 2) 1+ ltanh:vpl
<|detJ < ==——== l | — . (1.
<Mdet T (=) <4 R (0,0) (,,:1 1— [tanhz,| (14)

In [2], we gave the estimates of the upper and lower bounds of C(S) for the family S of
normalized biholomorphic convex mappings on the classical domains of types I, II and III.
In this paper, we will discuss the bounds of C(S) for family S of normalized biholomorphic
convex mappings on bounded symmetric domains. We will especially give the estimates of
C(S) for which the domains are classical domain of type IV and two exceptional domains.
We will make a conjecture about the precise value of C(S) for the bounded symmetric
domains which include the conj'ectures we made for the classical domains of types I, II and
IIT at [1]. If the conjecture is true, then we can only use the Bergman kernel function of M
to express the estimates of |det J¢(2)|.

§2. Holomorphically Equivalent Bounded Symmetric Domains

Lemma 2.1. Assumption as Theorem 1.1, then the C(S’) defined by (1.3) is the smallest
positive number which makes (1.2) and (1.4) hold.

Proof. In [1] section 4, we already proved that when M is the canonical realization of
G/K, then the equality

2,2 tanh z
log det J¢(2) = log”K EO ) +2/ Z - ztanﬁzm kad(’)(p)dp (2.1)
P g

holds, where d(J ) was defined at Theorem 1 of [1], % = (ki;) € U,,. Since d(J )(0) d(;:), we
may take |2 sufﬁc1ently small so that

kazd("') (p) = Zk d(J) +o(1).
1,4

Letd= (), dg), ,Edgj)), kp = (kp1, -+ , k). Wecan expressdas (y1,- - ,9q, 0, ,0)%
J J
where 33, ,y, are real numbers and k € U,.

By the definition (1.3) of C(S5), for any preassigned small number € > 0, there exists a
E kpoz d(J)

1,

holomorphic mapping f(2) and po, 1 < po < ¢, such that = C(S) — ¢, where

d,(;j:) are the coefficients of the expansion of f(z) at (1..1).

It is possible to choose a z such that z = £(exp Ad(k)X - O) where the unitary represen-
tation of k is k'. Then

kazd(J) kd,'—kk(yl’ ",yq’o,"'v’o,)l=yp’ 1SPSQ:
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and (2.1) becomes

Kum(2,2) 1 /1 yptanhx
log det J¢(z) =1 e —2 2 4
gdet J¢(z) =log > 21: | T ranh’n,

q a1
tanhz
+2E /—L— 1)dp.
T~ Jo 1~ Ztanhwo()p

It is also possible to choose a z such that ypotanh wpo >0 and m] = 0 when j # po. Then
the previous equality becomes

KM(‘z Z)
Kn(0,0)

1+ |tanh 2|

log det Jy(z) = log T~ franh o]
Po

+ (I4po | + 0(1)) lo

Kp(z,2) 2 1+ [tanh zp, |
= log 4 [ =M\ %) S hmer /11
Og KM(0,0) + (lypoll—l_ 0(1))Igllog 1— |ta,nh':1:p0|

KM(z Z) : 1+ lta'nh m170[

= log Rar (0.0 )+(C'(S)——e+o(1))21 T

Since ¢ is any preassigned small number, the right hand side of (1.4) cannot be improved.
Similarly, it is also possible to choose a 2z such that y tanhz,, < 0 and z; = 0 when
J # po. Hence for any preassigned small number ¢, we can choose a z such that

Kpn(z,2) 1 — |tanh 2, |

. . q
et 1,2 = o8 e o0y + (O~ o) o8 ey

It means the left hand side of (1.4) cannot be improved. Combining these two results, we
prove that C(S) is the smallest positive number such that (1.2) holds.
Lemma 2.2. If f(z) is a normalized holomorphic mappzng (1.1) which is defined on M,
[ det J¢(z)]
t
R e e G
- Proof. Suppose H is the biholomorphic mapping which maps M onto N. Since f is a

normalized holomorphic mapping on M, the mapping h = Jg(m) o fo H™! is a normalized

s a biholomorphic invariant.

holomorphic mapping on N. Then

det Jy,(w) = det Jgr(m) det J4(2) det Jg-1(w). (2.2)
Since N = H(M), we have | ,
Kn(w, @) = K (2, 2)| det -1 (w)[?, (2:3)
Kn(#, W) = Kag(m, )| det Jg-1 (m)[? = Kaz(m, 7)| det Jgr(m)| = (2.4)
where H(m) = m. By (2.3), (2.4), we get | .
\/ e = \/ et et Ty ()l it o). (2.5)

By (2.2), (2.5), we obtain

Kn(w, @) |Kp(m,m)
\/KN(T%,;%_) Kt (2. 7) | det J¢(2)| = | det Jn(w)],
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i.e., . o o :
| det J¢(2)| o | det Ji(w)|

VEGD Ko@) [, m) /K 7).

From Lemmas 1 and 2, we immediately get .

Lemma 2.3. If M, N are holomorphically equivalent to each other, C(Sym) and C(Sn)
are the smallest numbers such that (1.4) holds on M and N respectively, then C(Sp) =
C(Sn). In particular, when M and N are holomorphically equivalent to each other and M
is the canonical realization of G/K, then C(Sy) = C(Sn).

Based upon these lemmas, the estimates of C(S) will be given. As a simple application,

we have
Theorem 2.1. If M is a bounded symmetric domain which is the canonical realization
of G/K, and S is the family of normalzzed bzholomorphzc convex mappmgs on M, then

C’(S’) <2n-1.

- Proof. Since M is the canonical realization, any point z = (21, ,2,) € M can be ex-
pressed as (Mg, ,Aq,0,- - ,0)k where |A\1| < 1,---,|A¢| < 1,k € Uy. Since M is bounded,
there exist Tq41,:** ,Tn, Such that |rg412¢41| < 1,:-+, |rnzn| < 1 hold for all z € M. The lin-

- 1 0
ear transformation w = zA transforms M to N where A = Tob1
g
0 ..
\ o

If Spr and Sy are families of normalized biholomorphic convex mappings on M and N
respectively, then C(Syr) = C(Sn) by Lemma 2.3. But w = (wy,--,w,) € N has the
property: {w;e; € N} forms a unit disc, j = 1,---,n, where ¢; denotes the n-dimensional
vector for which each entry is zero except that the j-th entry is one. N is convex since M
is convex. Using the method which we used at the Lemma 3 of [2], we get ]dg;cn)l < 2, where
dg.;e") are the coefficients of the expansion (1.1) of the mapping in Sy. By the Lemma 2 of
(2], we get C(Sn) < 2n — 1. We prove Theorem 2.1 by C(Sn) = C(Sum).

§3. Jacobian of Holdmorphic Automorphiém Mappings

On purpose to get the estimate of the lower bound of C(S), usually we try to find a
mapping in S, and find a value such that (1.4) holds. Of course we expect this mapping is
the extremal mapping. Now we take the mapping as F}, which we will define below. '

We start from the Lie group of holomorphic automorphisms. We denote the non-zero
roots (including multiplicity) of adjoint represéntations of A in Lie algebra G by

{iaj’j =q+ 1,"' 12n}
where a; are positive roots. Then the basis X;,--+ , X, of Aand Yy, +Y_4,, 5 = ¢+1,--- ,2n

form a basis of P, where Y, are the eigenvectors corresponding to the non-zero root +ay, ‘
and Yo; —Y_o;, j =q+1,---,2n form a part of the basis of K. The mapping

Exp: z — k(z)a(X) O



372 ' CHIN. ANN. OF MATH. : S Vol.14 Ser.B

is a diffeomorphism of an open set in 2n-dimensional Euclidean space to a condensed open
set in G/K, where = (21, -+ ,%ap), O is the identity coset in G/K,

2n q
k(z) = exp Z zj(Ye; — Y_o,), ‘a(X) = epoijJ

=g+l i=1

Let g e G, we evaluate Jy, (z) For any 2z = (zl, ., Zp) € M , We can expféSs z as
(Aryeee s Aq,O O)k where A; = tanha;, j = 1,---,q, k € Up. Let 2; = u; + tunyj.
Then u = (uy, - - - , u2n) gives the real coordinates of the point 2, and we have real orthogonal

matrix P(k) such that
('"lla e ,'u'2n) = (/\1’ te 7)‘q70, e ’O)P(k)

- For any k € K, the action of ¢ on M is just as a linear transformation action on M ,
and the absolute value of the determinant of the Jacobian is equal to one. So we only need
to consider the Jacobian Jj, of @q,, a1 € A. Let Fy, be the ‘normalization of ¢, . Letting
ay approach to the boundary b, we obtain a normalized biholomorphic mapping Fj. M is
convex since M is the canonical realization of G/K. ¢,, and F,, are convex_mappings;

which implies Fj} is a convex mapping.
2n

~ Let k(y)a(Y) - O = a1k(z)a(X) - O where y = (y1,-** ,¥20), k(y) = exp E+1 Yi(Yo; —
: ' j=q

g
Y_,;), a1(Y) =expY =exp Zlij,
J:

We take the local coordinates t = {t;,--- ,t2,} at a neighborhood of k(z)a(X) - O. The
points at the neighborhood of k(z)a(X) - O can be expressed as

{k()k(t)a(X +T)-0, T= thXj}.

o _ j=1 _
¢, acting on each point of this neighborhood, we get a neighborhood of k(y)a(Y) - O, its
local coordinates are {s = (81, -+ ,82,)}, the points in the neighborhood can be expressed
as

{k(y)k(s)a(Y + S) - O, S’ Zst}
j=1
We have the following diagram:
b k(w)lg(t)a(w-I-T) .0
s — k(y)k(s)a(Y +5)-0

= a®)h A(8),0, 0 R(BR()

| o
3

— s w=(n1(s),+ - ,Mg(8),0, - ,0)k(s)k(y)
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— u= (ulg e 1u2n) = (Al(t)a Tty Aq(t), o,--- ,O)P(k(t))P(k(m))

!

—— v = (v, ,V2n) = (7(8), "+ ,M(5), 05+ ,0)P(k(s))P(k(y))-
At this diagram, k(y)k(s)a(Y +5) - O = ak(z)k(t)a(X +T)- O, Aj(t) = tanh (z; +¢;),
- n(t) = tanh (y; + s;), Aj = tanhz; and 7; = tanhy;, j=1,--+,q.
Our goal is to evaluate I%H . Obviously,

3(”11;" "U2n) _ ‘a('wh"' 1wn) 2
‘ a('ulla"' a'u2n) ' a('317"' azn)

and

Do) _ Do) Do) (St ',uzn))"
3(“1,"' >'u'2n) ‘3(31’...',32,”)' 3(t1,... ,t2n) a(t-l’.'.. ’tzn)
' We try to evaluate these three Jacobians. At first we evaluate the last one.
Since U = (u1,++ ,Uzn) = (A (2), -+ , Ag(£),0,+ -+ ,0)P(k(t))P(k(z)), the value of % at
t=0is . : .
Oul Q) (g 0,1-32,0,-- ,OP(KE) = (1~ Mer P(k(e).
at"‘ t=0 .,atr t=0 -

When 1 < r < ¢ and e, is a 2n vector, each enti‘y is zero except that the r-th entry is 1.
The value of §% at t =0 is

Ou a(uy,---, U2n) b
= = R v en) = cor 0)— t))P .
5| el = O dg 0o O PKO)P(K()
But
0
—P(k(t =
oty (D), t=0 (atl K )) =0
-0
P Lew Yo e~V || = PO~ ¥)
S\ j=q+1 =0
We get
Ou
L =y, A0, 0)P(Yay — Y )P(k(2))
oty +=0
when g+ 1<1< 2n. Combmmg these results, we have
Ouy - ., Ougn '
8t1 ”,.’ 6t1 . I_Alv Oa Tttty 0, Oa ey 0
%y;l. . aa;u v v e “ee Y ve s Y e
q ’ L 0, 0, -+, 1=X2, 0, ---, 0 |P(k(z))
duy S P ’ ’ ’ ) ’ ’ .
3t:+1’ T Btgts !
duy Quan *
Otoy? ’ Otan

On the first matrix on the right hand side, the 1-th column vector is

(Al"" ’}‘qao"" ’O)P(Yax —Y—al)‘
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when ¢+ 1 <1< 2n. We have

O(uy, -+ ,u2n) a 2 :

Y7 A = 1= 23)A(A1,0 4 Aq) 3.1

8(t1, vos ’t2n) +=0 JI___II( J) ( 1 lI) ( )
Similarly,

a('vh tty ”2n) _

p——— = 1- A(ni,-+ ,7q), 3.2

31, 52m) loo ,1:11( m) (M, +7q) ( ‘ )

where A(Aq,- -+ ,Ag) is a function of Ay, , A
Now we try to evaluate ‘Z;" —p2n It o Since k(y)k(s)a(Y + S) - O = a1k(z)k(t)a(X +

T)-O, there exist k; € K, such that k(y)k(s)a(Y + S)k; = a1k(z)k(t)a(X +T). Taking the
adjoint representation on both sides, since the representation of a is diagonal and the real
representation of k is orthogonal, we have

Aday Adk(z) Adk(t) Ad(a(X + T)2)(Adk(t)Y (Adk(z)) (Aday)’
=Adk(y) Adk(s) Ad(a(Y + 8)?)(Adk(s))' (Adk(y))'. (3.3)

We take the derivative with respect to ; on both sides of (3.3), and evaluate the value at
t = 0. Because Adexp X =Exp ad X, where Exp means the exponential of matrix, we have

d 8 |
B0 —Adk(s)| = 5 —Exp Z 8j0d(Yo; — Y_o;)
8=0 =a+l t=
2n
j=q+1 ! t=0
e} 9 9y 0
—Ad(a(Y + 5)%)| = Ad(a(Y)?) =—Ad(a(2s))
o t=0 oty t=0

= Ad(a(Y)z) Exp Z 2s;adX;;

= Ad(a(Y)?)ad (2 PR 33’

J-l

= 2Ad(a(Y)?) Z Bs_,

j=1

t=0
But (Adk(s))’ = (Adk(s))~! = Adk(—s). We take the derivative with respect to ¢; on the
right hand side of (3.3), the value at t =0 is '

2n
Bs,-

. ) 2n
Adk(y) Y oy ad(Ya, ~Y_o;)Ad(a(Y)?)(Adk(y)) - Adk(y) Ad(a(Y)?) )
j=q+1 J=q+1

st

t=0 t=0

q
38_7'

. !
5 adX;(Adk(y))'.

t=0

ad(Ya, — Yoo, )(Adk(y))' + Adk(y)Ad(a(Y)?)2
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We consider the left hand side of (3.3). Since

o ‘ a ..,
g AdEX + 1)) = Ad(a(0)’) 5;-Ada(2t)

=0 t==0

| q
= Ad(a(z)?) %Expz %; - adX;

t=0
— Ad(a(z)?)20dX;
= 2Ad(a(z)*)edX; f1<1<g;

0

= Adk(t)

o 2n
a1, = —Exp Z tjad(Yaj -Y_aj)

t=o Ol j=g+1 £=0
=ad(Yy, —Y_o) ifqg+1<1<2n;

the value of the derivative with respect to #; on the left hand side of (3.3) at t =0 is

Ada, - Adk(z) - 2Ad(a,(:c)2)adX; - (Adk(z))' (Ada,) £1<1<g;
Ada; - Adk(z) - ad(Yy, — Y_q,) - Ad(a(z)?)(Adk(x))' (Ada;)' — Ada, - Adk(z)-

Ad(a(z)?) - ad(Yoy — Yoy )(Adk(z))'(Aday) ifg+1<1< 2n.

Combining the previous equalities, we have

2n Os.
2

J=g+1

Adk(y) ad(Ya,; ~ Y—q,) - Ad(a(Y)?)

t=0
—Ad(a(Y)?) )

j=g+1,

q
35_7'

ot

9s;

oty a’d(Yaz - Y—aj) +Ad(a,(Y)2)2

t=0 t=0
Aday - Adk(z) - 24d(a(X)?)adX; - (Adk(z))'(Ada;), €1<1<gq;

={ Aday - Adk(z)[ad(Ya, — Yoo - Ad(a(2)?) — Ad(a(z)?)ad(Ye, — Y_o)]- (34)
(Adk(z))'(Aday), ifg+1<I<2n.

J=1

adX j} (Adk(y)Y

Letting t = 0 at (3.3), we get
Aday Adk(z) Ad(a(2)?)(Adk(z)) (Aday) = Adk(y)Ad(a(Y)?)(Adk(y))'.

Taking the inverse on both sides, we have

, | (Ada1) ™" (Adk(2)) Ad(a(z)"*)(Adk(z))'(Aday) ™" = Adk(y)Ad(a(Y)?)(Adk(y))'.

Multiplying the right hand side of the previous equality to the left hand side of (3.4), and
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the left hand side of the previous equality to the right hand side of (3.4), we get

2n .
Adk(y)Ad(a(Y)™?) Z as’ ad(Ya,; — Y_q,)Ad(a(Y)?)(Adk(y))' — Adk(y)
-—Q+1 +=0
2n q '
Y %i{ ad(Ys, — Y_o,) - (Adk(y))' + Adk(y) - 2 Zg—z adX;(Ad(k(y))’
F=etl = : 7=l =0

(Aday) ' Adk(z) - 2adX;(Adk(z)) (Adar)’, f1<1<g;
= { (Ada;)"Adk(z)Ad(a(x)"2)ad(Y,, - Y_a,)Ad(a,(:c)z)(Adk(w))'(Adal)'
— (Aday) ™' Adk(z) Ad(a(z))?ad(Ya, — Yo, )(Adk(z)) (Aday), if g +1 < 1 < 2435)
For any X € U, we have |
Ada~Y(X)ad¥,, Ada(z) = ad(e~**XY,,) = ad(e”*(®Y,,)
because [X, Yy;] = a;(X)Yq,; holds for all X € 2. Similarly
Ada~Y(X)adY_,, Ada(z) = ad(e®®Y_,,).

Therefore
e—2a¢(Y) _ eZal(Y)
5 ad(Yo, +Y_o,)
e—201(Y) 4 g2au(Y)
2
e—2a1(X) . e2a;(X)
2
e—2az(X) + e2a;(X)v

+ 5 ad(Yo, +Y_o,).

Ad(a(Y) ?)ad(Yo, - Y_o;)Ad(a(Y)?) =

ad(Yat + Y—at );

Ad(a(X)?)ad(Ya, - V-a,)Ad(a(X)?) = ad(Ya, +Y_0y)

Substituting this formula into (3.5), we have

2n

%

t
J=g+1 !

{e—2a1(Y) . e2a1(Y)

2 ad(Yo, +Y-ay)

Adk(y) {

t=0
(e-—az(Y) — e (Y) )2

0
+ 5 ad(Ye, — _a,}+2z 2

( 2(Aday) 1 Adk(z) - adX;(Adk(z)) (Aday)’, if 1 <l<gq;

—204(X) __ 20q(X) —a(X) _ pau(X))2
[e 5 ° ad(Yy, + Vog,) + (e . e ),

ang] (Adk(y))
!

(Ada,)' " Adk(z)
(3.6)

& ad(Yo, — Y_q, )] (Adk(a:))'(Adal)', if g+1<1<2n.

{X1,  Xgy Yo +Yaprr* » Yau, +Y 0y, Yisabasisof P, and {Yo . —Y 0,015+, Yay,
~Y_qa,,} is a part of a basis of K, P and K are invariant subspaces under the adjoint

representation of K in G. When we choose the basis of G as ‘above, the adjoint representation

matrix of £ € K on the column vector can be expressed as <k1 0 ), where k; is acting

0 ke
on P, and k, is acting on K.
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Let

B(Y) = diag [e_aq+1(y) + eaq+1(y)’ cee ’e_a2n(y) + eaz‘n(y)] ,

C(Y) = ding [e=er1 %) — goati®), .. g=oun¥) _ gous(¥)]

Taking the basis {X1,+ , Xg, Yo, 1, + Yoo 2 Yoo, + Yoagns Yager = Yoagrrs '+ s Yoy, —
Y_az.,++ } as coordinates, then the left hand side can be expressed as

(881 . 632n 88q+1 . 682n 0,“ ) ,0)
t=0

8t et oy 0 o

21, 0 0 0

0 iBY)C(Y) 0 0 (El(y) 0 )
0 0 ey o 0 Fka(y)/)’
0 0 0 I

g

Since a; € A, we have a; = expR, R = ) r;X; € ™. If @; is the adjoint representation
. : , j=1

matrix of ay 1, we have

. _ .
Ad(ay l)“d(Yag‘ —Y_o;)Aday =§(e—aj(R) - e (R))ad(Yag‘ +Y ;)

1
| + —2-(e"°"'(R) + e P®)ad(Y,, - Y_o;),
1, iR . o ' R
Ad(a7)ad(Ye, + Y_,)Aday =—2—(e"°"(R) + e ®)ad(¥Y,, +Y_,,)
+ §(e-cff(m — e M)ad(Yy, — Yoa,),
Ad(a7")adX;Aday =adX;.

Relative to the basis of G, we get

I, 0, 0, O

a=| 9 BB, 30®), 0
{ 0, 3C(R), 3B(R), 0

0, 0, 0, I

Then the right hand side of (3.6) can be expressed as
( 71;1 (.’E) 0 ~ .

2 ~ f1<i<g;

“("5 ) wrsise

Y (1. -2a(2) _ 204(x) 1/ @ o))’ k() 0.
(2 (e © )el+2(e ¢ ) a0 Fae)) ™

L ifq+1§l§2n.
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Combining all these results, we have

%’ ’ Qgﬁ&’ 8_3’5;‘.%7 ’ %gﬁn" 07 y 0)
bat—zln—’ 3 %21:.’ %‘%t—l’ ) %2-:.’ 07 ) 0 t=0
2I, 0 0 0\ _
0 FBY)C(Y) 0 o (kl(y) 0 )
0 0 C(Y)2 o 0 k()
0 0 0 I
B I, 0 0 0
_ (21, 0 0 0\ (ky(X) O 0 IB(R) iC(R) ©
_(0 3BX)C(X) FC(X)? 0)( 0 EZ(X)) 0o lcr) iB(R) o
0 0 0 I

From the previous equality we get

%"_L oo a_as_z:s. ‘
) t oI, 0 ~
(_a_s_;_ Q_zn.) (0 %B(Y)C(Y)) 1(v)
t=0 -

g ..., fe
=<2(-§q %B(X(;C(X))%l(x) (% %BO(R)) + (g .;_c(X)zE?(a:)%C(R)>’ (3.7)

where E(z) is the 2n — g square matrix which consists of the first 2n — gth rows and columns
of kg (.’B)
Taking determinants on both sides of the previous equality, we have

8(81, e ,3217.)
a(tl) v at2n) =0

=21ae(gB0C0) (B (@) + (3 pioyspimy)) (58)

28 det(-;-B(Y)C’(Y)) |

where D(X) = C(X)B(X)™!. After simplication, (3.8) becomes
_ det(3BEN)IO(X))
o dt(IBE)ICT))

a(317 te ;32n)
Oty -+ ,tan)

det(%B(R)) det(A(z,R)),  (39)

where

~ 0 0
A(z, R) = ki(z) + (0 D(m)E(w)D(R)> '

From (3.1), (3.2) and (3.9), we get
(a(uh teT 1'u'2n))—1
t='0 a(tl’ v '. )t2n) +=0

e l-n " det(3 B(X)3C(X))
_j1=111—A? Al 1) AT O M) R R T

(81, ,82m)
=0 a(th et )th)

_ a.(lvl’a ot a'U2n.)

O(v1,- -+ ,V2n) _
t=0 O(s1,* , 520)

a(uh v ,uZ'n)

- det(3 B(R)) det(A(s, R). - (3.10)

det §2 # 0, since ¢q, is a biholomorphic mapping and FEATEel| 0. (3.10) is a
continuous function on M. Let X — 0, the limiting values on both sides exist. The limiting
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value of right hand side is nonzero because the left hand side is nonzero. Therefore

lim det( ZC(X)A™ T A,y-+4 4 0)

_ g
is equal to a constant, and denote it by ¢o. Taking X =sD, D=")_ d,X},
j=1

lim —1——(6"""("1)) - e‘”‘(SD)) = —oy(D)
s—0 82

hold for any D € 9. But lim ltanh so; = o;. We have

lin(l) det(%C(sD))A"l(tanh sdy, -+ ,tanh sd,) = (—1)%"¢ H a;(D)A Y (d1, -+ ,dg)
j=q+1
for any D € .
We get the value of A(dy, - ,dy) = (—1)2" % H a;(D). Set
j=g+1
aj(z) = Ztanh zro;(X,).
r=1

We rewrite (3.10) as

vy, )| Ty l-m 1 &(Y) det(3B(X)- 1O(X)
Bug,  uan) t=0‘jI=Il —/\ﬁjllla,()() det(IB(Y) - LO(Y))

. det(%B(R)) dei(4(e, ).

Finally we have
Theorem 3.1. Suppose M C C™ is a bounded symmetric domain 'whzch contains the
origin, and it is the canonical realization of the Hermite symmetric space G/K. If z€M,

then z = £(exp Ad(k)X O) is the realization of G/K onto M where k € K, X = Z z; X; €

2, O = eK is the zdentzty coset in G/K. Ifay =expR€ A R= }: r;X; € U and ¢,

denotes the holomorphic automorphzsm correspondzng to ay, which maps z= (2, zn) to
w=(wy,  ,w,), where -

g
z=¢E(exp Ad(k(F)X -O0), k@) €K, X=) z;X;€,

§=1

q
w=¢(exp Ad(k(@)Y -0), k@ €K, Y=) y;¥;€e,

J=1
then
Bwy, -, wa) Py l-nf a,(Y> det(} B(X)3C(X))
‘3(z1,- y2p) JI—I1 ~—)\2 H a,(X) det B(Y)IC’(Y))
-det<§B<R))det(-2-A<m,R», | ()

where A\; = tanhz;, n; = tanhy;, j =1,: .. ,4q; {aJ,j =q+1, ' -,2n} are nonzero positive
roots of adjoint representation of A in G, i.e., [X,Yo,] = o; (X )Yo, holds for any X € 2,
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where Y, is the corresponding eigenvector of nonzero positive root a;,

B(X) = ‘dz'ag [e""‘qﬂ(x) + eaq‘+1(x), e, e-dzn(x) + eazn(x)} ,
C(X) = dz'ag [e—a9+1(x) — eaq+1(x), ‘e ,e".aZn(X) — e_azn(X)]_

~ T (e 0 0
and A(%,R) = k(%) + (0 D(z)E(Z)D(R)

matriz which consists of the first 2n — qth rows and columns of the matriz k2 (@), k@) =

) D(X) = C(X)B(X)™!, E(z) is a2n—gq

<k1(()w) Z ((]':E)) is the adjoint representation matriz of k(.'z:) €EKinG; T=(Tgt1,"** ,T2n),
2 , , \

':1;: (yq+1, i ’y2n)

§4. Bergman Kernel Function and the Jacobian of F,

If z=¢(ka- O), where k € K, a € A, O = eK is the identity coset in G/K, then
Ku(z,2) |

KM(O, 0) .

Taking =0, R=—-X,Y =R+ X =0in (3.11), we have

Ku(2,2) -
Kﬁ(o 0) ]1;11 ,\31_111 a](x)( 1)? dt( B(X) C(X))

= | det Jy,, (§(ka - O))[? = | det Iy, (E(a- O))P*.

- det(5 B(X)) det(A( ~X)).

Obviously,

det(A(0, ~X) = det (I - (g b &)_2)) = det(I - D(X)?) = det(%p(_z:))-?;

For any point z = £(ka(X) - O) € M, we can choose k, X such that a;(X) > 0, j =
g+1,:---,2n. Then we have . ’

Kn(2,%) 1)2n—q
T (00) ~ 3G 0<X>H1 ¥ H

J j=q+1 %
H H e (X) _ g—a;(X) ' (4 1)
.7—1 J j=g¢+1 25(X) |
But ' . |
» q q Lo (Xk)
| R A
eag(x) = exp (ZwkaJ(Xk)) = H (1 —~ Ak)
- \k=1 j=1 ¢
since | |
14 :
20; _ — )\j-’ a,-(X) = H .'Bkaj(Xk).

@m0 g ‘_ A P(Xk.) '
Hence ] e%(X) = T] (%f) Where 20 = Z a;. Thus
j=gq+1 : k=1 j=q+1

Ku(z%) ¢ (1+Ak)f*<xk'>—1 ﬁ 1o e 00 fro_gynes ‘
= - ) — e = (1 - /\k) k . (4.2)
K1(0,0) kl;ll (1 — Ag)e(Xr)1 jmat1 a;(X) -

k=1
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Theorem 4.1. The Bergman kernel function of M :can be. empressed as (4.1) or (4.2),
where by, = ma.x{p(oXk),a € W}, W is the Weyl group of G/K.:,
Let X — 0 at (3.11). Then

'a(wl,'” awn)

81, 2) ~Tfe- 0 a:(é)/det( c<R>>

z=0 j=1 = j=g+1 |

q
where R = ) 7;X; € %, 6; = tanh7;, j =1,--- ,q. If F, is the normalization of ¢,, then
j=1

o -mE)
e O =l Tz ma-mm@
b3 BI)IC(0)3BRISC(R)
dH(§B(V)10(Y))

det(A(Z, R))

By Theorem 3.1,
| Ku(z2) Ku(6,0) det(3B(X)1B(R))

ldet JF., (z)l K1£(0,0) KM(U,W) det(%B(‘Y))

det(A(Z, R)),
where :
| 6 =¢(ka(R) - 0), n=E(ka(Y)-O).
Let a; = a1(R) approach to infinity along the geodesic exp tRy. 0 = £ (ka( )-0) = &(ka; -

0O) tends to a point b on the characteristic boundary of M- if and only if H loj (Ro)| # 0:
: j=gq+1
In particular, we can take Ro such that o;(Ro) < 0, and then letting R = tRo, t — oo we

get a point b at the characteristic manifold of M. The mappings F, — Fj, and

2 _ Ku(2,2) . Ku(6,0) .  det(3B(x)3B(tRo))
R = 3 710,0) 6% Kar(n,7) o det(2B(Y)
In particular, we take z = § (a(X ) - O). Then

A(ﬁ,R)——fI+<g' D(X;)D(R)); : ‘ .

Because D(R) — I when R = tRo, t — +00; we have

n gemay(X)

: ~ 0 0 e
tl_l_’xgo det(A(Z,tRy)) = det (I + (0 D(X))) =det(I + D(X)) = jl_g_l ey prpemT ok

Moreover,

2n ' "
1 1 1 1 (e_a.i(x) + eaj(X))(e“aJ'(tRO) + ea.‘i(tRD))

det(5 B(X)5 B(tRo))det " (5 B(Y)) = .l__L 2(e—a1(X+tRo) | gy (X+Ro))

=q

since Y = X + tRy. The right hand side of the prev10us equality is H ?ai(—}(—ﬁ
j=q+1
when t — +o00. Finally, we have

T (2)] = \/ e i \/ - @)
, when z = £(a(X) - O).

Theorem 4.2. Assumptions as . Theorem 3. 1, then (4.3) holds where 6 = £ (ka,( ) O)
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§5. Distortion Theorem for Biholomorphic Convex:
- Mappings in Classical Domain of Type IV

We can use Theorem 4.2 to evaluate the lower bound of C(S) in classical domain of type
Iv. ,
If Ryv is the classical domain of type IV which is defined as

1+ jww'|? - 20w >0, 1-|ww'|>0,

where w = (wy, - ,w,) € C"™. The linear transformation z = wP, where P, =

1 —3 :
(i 1 0 transforms Ry onto M , Where
0 V2A

M = {z=¢e®(\;,22,0, .- ,00k € C",k = P;'T'Py, T € 80(n),|\|<1,|A <1},

and it is tho canonical realization of Ryy.
The Bergman kernel function Kyv(w,®) of Ryv is
71 1
V(Rwv) 1+ |ww'|? - 2ww')”
where w = zPy = (A1, A3,0,- - , O)Po-lr =¥ (Mtihe £(); - i)),0,---,0) T, ie.,
' 1 1

(V(Ryv) is the volume of Ryy),

Kl ) = vy T=xra = (54)
Because the dlﬂ'erence between Kyy(w, W) and Kiv(z, Z) is only a constant, we have
g, KM(O 0 )'n. 1 U )n) )
Ku(m®) (1 02)”(1 - 63"
Since nj, = —%g—, we get. ‘ _
Lot (-n)(n) _ (L= A)A-6)a+A)1+6) | 1-¥
1-— 92 11— '02 (1 . 02)‘(1 + A .9.)2 (1 + A .0j)2 :
The right hand side approaches (L4 X;)(1 = X;)! when 6; — 1. We obtain
K (6,0) ((1+A1)(1+)\2)>
lim = . 5.2
g Kaeln, 1)~ \@= )T a) (5.2

_Tm 1.1, (5 1), Theorem 4.2 and (5.2), we have
Theorem 5.1. Let S be the family of normalized holomorphic conver mappings in RIV

whzch map Ry into C™. If f € S, then

Sy \

‘\ i &v 2 n
A = 9 i H (1 J AJ.)C4(S)-— H (1 + )‘j)c«t(s)_’z‘
.\ it - < [ det J5(2)] < =2 : (5.3)
H (1 +:25)0+3 T Ha- e |
i d—v j=1

where z = ' (fd2, ’(Al

.7gtgﬁes {3
\o- o

Ag)J‘\, ,0) P,P € SO(n), 1 > /\1 > Ay > 0, and C4(S)

"i .';“;;,‘1 '

n 2 C(S) <. (5.4)
Qg.l &%e) cg};clu%ons in the theorem are prpved exqut the right hand side inequality of

(5.4)

BRSNS Y
e’ can “prove it as follows



No.3 Zheng, X. A. & Gong, S. DISTORTION THEOREM FOR BIHOLOMORPHIC MAPPINGS (III) 383

Let f € 5, f(2) = 2+ 3 dijziz; + - --. Then F(z) = 2(f(2) + f(—2)) belongs to the

image of Ryy under f(z). L’ejzt #(z) = f~Y(F(z)). Then ¢ is a holomorphic mapping which

maps M into M. Obviously, ' '
¢(2) = Zdi,jzizj +
i

and ¢(ze; + zje;) = 2d;j2;2; + ++-, when i # j. Take z = z;e; + zje; such that z =
e*(2,0,--+,0)T, T' € SO(n). It is always possible because we just take A\; = Ay = X in the
expression of z. There exists 6 such that z = e’ cos fe; + Ae? sin fe;. Then ¢(z;e; +zje;) =
2d;; A2 cos @sin fe®® + ... Multiplying it by e~2* and integrating from 0 to m, we get

= 02” b(zie; + ziej)e 2’tolt = d;;\*sin20 € Ryy. Taking 6 = 7, we have |/\2d(k)| < 1.
Lettmg A — 1, we get Id( )l < 1 when i # j. Similarly, we can prove ld l < 1. We get the
right hand side inequality of (5 4) by the definition of C,(S).

Conjecture 5.1. C4(S) = %, the convez mapping Fy(2) which we construct at Section 4

is an extremal mapping.

If the conjecture is true then (5.3) becomes

H(1+)\)_“<|detJf f[1-

j=1

§6. Distortion Theorem for Holomorphic Convex
Mappings in Exceptional Classical Domains

Now we consider two exceptional classical domains. Let Ry C C8 be the canonical real-
ized exceptional classical domain in C' and Ry; C C?7 be the canonical realized exceptional
- classical domain in C?7; let Kv(2,%) and Kvi(z, Z) be the Bergman kernel functions of Ry
and Ryj respectively.

By Theorems 1.1, 2.1 and 4.2, we have

Theorem 6.1. If S is the family of normalized biholomorphic convexr mappings on Rv
which map Ry into C18, and f € S, then N

Cs(8)
Kv(2,2) H 1 — |tanh ;|
KV(O 0) 1 + [tanh x|
Kv(z,2) ﬁ 1+ [tanh;|
Kv(0,0) \ ;- 1~ [tanha;|

Cs(8)

<|det J¢(2)| < (6.1)
and

1) C5(S) < 31,
C5(9)

= 2
K+ (6,0 +|tanh ;|
2) lim \/ F28 < (r_l —I——h—ﬁ) :

) ) Cs:(S')‘
3) lim M > (I?I 1-—|tanha:z~|.) )

gp V Bv(nm) = i 1+[tanh ;|
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where
0 = ¢(kia(R) - O) = (61,65,0,--- ,0)k; € Ry,R =Y _r;X;,0; = tanhry,
i=1 ‘
n= E(k2a’(Y) ' O) = (771,772)0, e O)k2 € RV’Y Zyj gy = ta'nhyj,
. . j=1
= ¢(k3a(X) - 0) = (M1, 23,0, - 0)k3 € RV,X Zw,x,,,\ = tanhm,,
and .
Nt
n:’_].‘l'Ajgj, J_1’2)

b is a point in characteristic boundary of Ry .
' Conjecture 6.1. The mapping F, which we construct at Section 4 is an extremal
mapping of (6.1). ‘ ' '
Similarly, we have
Theorem 6.2. If S is the family of normalized biholomorphic conver mappings in Ryy
which map Ry into C?7, and f € S, then

3 Ce(S)
KVI(Z,Z) H 1- Itanh:vjl
KVI(O, 0) \joi 14 |tanha:j-| g

A , Ce(S)
Kvi(z,2) [y 1+ |tanha;|
<|detJ o
| et J5(2)] < Kv1(0,0) i 1 — |tanh ;] . (6.2)

and
1) Cs(S) < 53,

' Cs(S)
2) hm Kvi(6, 0! (1—[ 1+]1;anh:z:z

Kvi(n,i) = 1—|tanhx;| ) ’
. Cs(S)
; Kvi(6, 9) 1—|tanhz;|
3) élf}, Kvx("?ﬂ?) H 1+|tanh = | ’

where

: 3
8 = ¢(k1a(R) - O) = (61,02,63,0,- -+ ,0)k1 € Ryr, R=")_7;X;,0; = tanhr;,

J=1

n= £(k2a(Y) . O) : (771)7]27 773’0’ vt | 0)k2 € RVI)Y Zy_‘l iy = ta’nhyja

3
= £(ksa(X) - 0) = (M1, A2, 23,0, -+ ,0)ks € Ry, X = ) 2;X;,\; = tanha;,
: j=1
" and
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b is a point in characteristic boundary of Ryy.

Conjecture 6.2. The mapping Fy, which we construct at Section 4 is an extremal mapping
of (6.2).

From the process of the proof of Theorem 1.1, we can get a more precise form of the
theorem. '

Theorem 6.3. Assumptions as Theorem 1.1, then

Kum(z,2) ﬁ (1 — |tanh x,, |)C”(S)

Kum(0, 0) 1+ |tanh z,)
Ku(z2) & [ 1+ |tanhz,) % (8)
< < .
‘_|det Tr@)l <. K(0,0) 1____:[ <1 — |tanh 2| ‘ (6.3)

holds where C,(S) = sup{| ng-)Lf € S}.
3

Let A; = tanhz;, j =1,-+-,q. For A; é, + MNey € M,1 < 3,1 < g, if there exists k € K,
such that (Aje; + Aiey)k = Ale, + Ajer, then C;(S) = Ci(S), and the estimation formula
(1.4) cannot improve. '

If S is the family of normalized biholomorphic mappings, then

¢ e Col(8) T 4 NG
H (1 |tanhmp.|) < lm Ku(9,0) < H (1+ |tanhmj|) g
J j=1

1 \1+ [tanhzy| 65 \| Kar(n,7) 1~ |tanhz;]|
where |
_ _ o .
0 = £(ka(R) - O) = (81, ,0g,0,--- ,0)k, R = Y r;X;,0; = tanhr;,
=1
n= E(ka(Y) * O) = (7’1’ e ,"71170)' v 10)k1Y = Zijjanj = ta'nhyj’
i=1
and '
Aj +9j .
R S A — 1, RN &
T= T Ne; ! 7

b is a point in the characteristic boundary of M.

Finally, we make a conJecture for the distortion theorem in bounded symmetnc domains
as follows.

Conjecture. Let M C C™ be a bounded symmetric domain which contains the origin. It
is the canonical realization of Hermite symmetric space G/K. S is the family of normalized
biholomorphic convexr mappings which map M into C™. Ky(z,2) is the Bergman kernel
Sfunction of M. For any z € M, z can be expressed as

= £(ka(X) - 0) = E(exp Ad(K)X - 0) = (M1, -+, 2,0, ,O)F,
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q ' :
where X = Y, x;X;, A\; =tanhz;. If f € S, then
i=1

M lim __EM_(O__@_)__ :
Kun(0,0) 61,7 ,6,~~1 \|. Kpr(n(D), 77(1) .
KM(z z KM(oa g) ' |
< e .
Sldet J(z)] < =\ Eu(0,0) o 001 || Kac0®,7®)° (64

q . .
0 = &(ka(R) - O) = (61, ,04,0,-+- ,0)k € M,R="Y "r;X;,0; = tanhr;,

j=1

n® #ﬁ(kza(lﬁ) 0) = (77(1) - ,n®,0,--- 00k € M,

where

Zyj(l)X,,njl) = tanh y(l) 1=1,2,

o= 2l +8 e Ml +8; oy,
T 1-qNle T L Al6 C

The estimation (6.4) is precise, the mapping F(2z) which we construct at section 4 is an
extremal mapping. Fj(z) makes the equality of (6.4) hold.

If M is the unit disc, the conjecture is true.

If M is the ball, the conjecture coincides with the conjectﬁre at [3].

If M is a classical domain, the con_]ecture comc1des with the conjectures at [2] and at
section 5 of this paper.

If the conjecture is true, then the distortion of normalized biholomorphic convex mappings
can be expressed by Bergman kernel function only. '
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