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EXTENSION OF MULTIPLIERS AND
INJECTIVE HILBERT MODULES
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Abstract

The author studies the problem whether a multiplier of a hereditary C*-subalgebra B of a
C*-algebra A can be extended to a multiplier of A. One related problem is the Hahn-Banach
extension theorem for Hilbert modules over C*-algebras. It is shown that every self-dual Hilbert
module over W*-algebra or an injective C*-algebra is injective.
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§0. Introduction

Let Abea C*-algebra!, B its hereditary C*-subalgebra and z a multiplier of B. A natural
question is whether z has a norm preserving extension to a multiplier of A. It is a non-
commutative analogue of the following: Let X be a locally compact Hausdorff space, 0 an
open subset of 2z and f a bounded continuous function on 0, can f be extended (norm-
preservingly) to a bounded continuous function on # ? There is another non-commutative
version of this problem: If B is a hereditary C*-subalgebra of A and z is a left multiplier of
B, can x be extended (norm-preservingly) to a left multiplier of A?

In the first section we study these problems. It turns out that the first problem is related
to the problem whether a bounded A-module map from a right ideal R to A can be extended
(norm-preservingly) to a bounded A-module map from A to A? A further problem is whether
the Hahn-Banach extension theorem holds for Hilbert A-module: if Y is a Hilbert A-module,
X a Hilbert A-submodule of Y and ¢ a bounded A-module map from X to A, is there an
A-module map @ from Y to A such that

ol = llell and @l = ¢?

As in homology theory, the notion of injectivity was introduced in category whose objects
are Banach modules over a (unital) Banach algebra and whose morphisms are contractive
module maps, and the existence and .uniqueness of injective envelope of a Banach module
was proved by M. Hamanal”). M. Hamanal"» Propesition 2| an4 M, Takesakil'’! also showed
that the only unital C*-algebras that are injective as injective Banach m‘ddules over itself
are commutative AW*-algebras. In section 2, we shall study the corresponding problems for
Hilbert modules over C*-algebras. We show that self-dual Hilbert modules over W*-algebras
and injective C*-algebras are injective. Therefore the Hahn-Banach extension theorem holds
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for those Hilbert modules. We also show that the only injective Hilbert modules over a W*-
algebra are self-dual Hilbert modules.. Existence and uniqueness of injective envelopes of
Hilbert modules over a W*-algebra, is established at the end of the paper. It is interesting
to know that Hilbert modules over non—AW* algebras may not have injective envelopes.
Applications of these extension thecrems can be found in [11].

We shall denote by A** the enveloping W*-algebra of C*-algebra A, M(A) the multiplier -
algebra, the set

_ {z in A* : za, ez in A for a in A},
LM/(A) the left multipliers, the set
A . , {z in A*™ : za in A for ain A}
and QM (A) the set
{z in A*™ :azb in Afor a, bin A}

§1. MAW*-Algebras and Self-Injective C*- Algebras

Let A be a C*-algebra. We consider the folloWing extension properties:

(1) For every hereditary C*-subalgebra B of A and z in M(B) there is a y in M(A) such
that yb = xb,by = bz for all b in B and ||z| = ||y||-

- (2) For every hereditary C*-subalgebra B of A and = in LM(B) there is a y in LM(A)
such that yb = xb for all bin B and ||z|| = ||y||- ' :

'Definition ‘1.1, Let R be a closed right ideal of A. A linear map if ¢ : R — A is called
a module map p(ra) = p(r)a for all a in A. '

We have the third extesion property: ' : .

(3)' For évery closed right ideal R of A and a bounded module map ¢ : R — A there is a
module map @ : A — A such that-@(r) = o(r) for all r in'R and ||@|| = [|¢]|-

Definition'1.2. A C*-algebra A is called an M AW *-algebra if M(A) is an AW *-algebra.

Example 1.1. An abelian C*-algebra A = Cy(X) is an M AW *-algebra if and only if X
is-an extremally disconnected space.

Theorem 1.1 A C*-algebra is MAW*-algebra A if and only if it has the extension
property (1).

Proof. We first assume that A is an AW *-algebra. Suppose that z € M (B)s o and
lzl| < 1. Define 7, = (1/2)(2/3)™. Then ||z|| < 3ry. Inductively, given z,, in M(B), ,. with
Il < 3rn, define |

y2 =E(—oo,-'—'rn)(;c’n)7 p;bp' = E(—oo;—rn](wn),

@ =Efr,,00)(Zn)y  Gn= E(r,,,00)(%n)
(the ‘spectral'proje‘ctions corresponding to the sets (—oo, —7y), (—00,~"ys], [r,00) and
(75, 00) res'pectively) Then p, and g, are open projections of A; p!, and ¢/, are closed
projections of A. Let B, Cy, B, and C,, be the hereditary C*-subalgebras of A correspond-
ing to pn,qn,1 — ¢/, and 1 — p!, respectively. Suppose that R, is the right ideal of right
annihilators of C,,. Then R,, = e,A, where e, is a projection in A (see [9, Theorem 2.3]).
Clearly,

Pn+1 2 p:—,, Z én 2 pn-.
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Similarly there is a projection f, in A such that g,+1 > ¢}, > fn = gn. Accordingly, define
On = Tpép — Tnfn, then "gn” < T
We now define Zpil = Zn — gn. Suppose that B = pA**pN A, where p is an open
projection; then
gn < €n + fn < Pn+i + Qnt1 <p.
Hence z,, 11 is in M(B),.,. and ||€,+1]| < 27y, = 37,41. This completes the induction step.
> o
1<n<oo
Then |[y|| <1 and y € A. For every b in B.

(D g)b= D (zi—mip)b= (w1 ~ Tut1)b.

Now put

1<i<n  1<i<n
Since ||2,+1]| = 0, yb = xb for every b in B.

If Ais an MAW*-algebra, then M(A) is an AW*-algebra If B is a hereditary C*-
subalgebra of A then B is a heredltary C*-subalgebra of M(A). So the conclusion follows
from what we have just proved.

Now we suppose that A has the extension property (1). Assume that B is a hered%ﬁary
C*-subalgebras of M(A4), B =pM(A)*pn M(A). Set

‘ L = {x € M(A):xB = Bz = 0}.
Then | v
B+ = gM(A)"qn M(4)
for some open projection q of M(A).

Clearly p L q. Let 7 be the universal representation of A. Then 7 acting on M(A) is
faithful. Thus there are open projections (of A) p1 and ¢; such that m(p:) = m(p) and
7(q1) = 7(q). Moreover p; L ¢;. Set B; = ptA**p;NA and C; = ¢ A**q1 N A. Then B; +C)
is a hereditary C*-subalgebra of A and p1,q1 € M(B; + C1). Therefore there is a u in M(A)
such that ud = p1d and du = dp, for all d in B; + Ci, and u = 1. It follows that

upy =p1u=p1, ug = qu=0.

Thus u € (B+)* and u is a unit for B. It follows from the proof of [15, Proposition 1] that
M(A) is an AW *-algebra.

Definition 1.3. A C*-algebra A with the extension property (3) is called a self-injective
C*-algebra. : ‘

Proposition 1.1. An abelian C*-algebra A is self-injective if and only if A = C(X) for
some extremally disconnected space.

Proof. (See [5,16.6])

Proposition 1.2. E’uery'W*—algebm 1s self-injective.

Proof. See Theorem 2.2.

Definition 1.4. Let R be a closed ideal of A and p be the correspondmg open projection
of A in A**. Set

LM(R,A)={z in A*™ :xr € A for all r € R and zp = z}.
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For z € LM(R, A), define ¢(r) = zr for r in R. Then ¢ is a bounded module map from
R into A and ||¢|| = ||z||- As {14, 3.12.3], we can show that for every bounded module map
@ from R to A there is a unique z in LM(R, A} such that ¢(r) = zr for all r in R and
lell = llll. .

Proposition 1.3. Every closed ideal of a self-injective C*-algebra is self-injective and
every closed ideal of an M AW™-algebra is an M AW *-algebra.

Proof. Let I be a closed ideal of a self-injective C*-algebra A and R is a closed right ideal
of I. Suppose that  is in LM(R,I) C LM(R, A). Then there is y in LM(A, A) = LM(A)
such that ||y|| = |lz|| and yr = @r for all  in R. Let 2 be the central open projection
corresponding to I. Then , clearly, LM(A)z C LM (I ) = LM(1,I). So yz € LM(I) and
yzb = b for all b in B. |

The second statement follows from Theorem 1.1 and the above argument.

Theorem 1.2. Every self-injective C*-algebra has the extension property (2). Ewvery
unital C*-algebra with eztension property (2) has extension property (1) and consequentely
is an AW*-algebra. :

Proof. Suppose that A is a self-injective C*-algebra and B = pA**p N A, where p is an
open projection. Set R = pA** N A. Let = be in LM (B) C LM(R, A). Then there is a y in
LM(A, A) = LM(A) such that yr = zr for all 7 in R and |z|| = ||y||.
~ Therefore yb = zb for all b in B. So A has the extension property (2).

Now suppose that A is a unital C*-algebra with the extension property (2). Let B and
C be two orthogonal hereditary C*-subalgebras of A. Suppose that p is the open projection
of A corresponding to B. Then p is in LM(B + C). There is an e in M(A) + A such that
ed =pd for all d in B + C. It follows from [15, Proposition 1.] that A is an AM*-algebra.

Remark 1.1. Recall that a C*-algebra A is called an injective C*-algebra if given any
self-adjoint linear subspace S, containing the unit, of a C*-algebra B, any completely positive
linear map of S into A extends to a completely positive linear map of B into A.

Theorem 1.3. Every injective C*-algebra is self-injective.

Proof. Suppose that A is an injective C*-algebra, R is a closed right ideal of A and
¢ is a bounded A-module map from R to A. It follows from [17, Proposition 2.8] that ¢ is
completely bounded. By [17, 2.5;], both A and R are matricial normed right A-modules.
Then from [17, Theorem 4.1] (It works for right A-modules.), we conclude that there is a
bounded A-module map ¢ : A — A which extends ¢ with the same norm. |

Remark 1.2. It follows from [8, Theorem 4.1] that every C*-algebra has a unique
injective envelope. Therefore every C*-algebra can be essentially embedded into a self-
injective C*-algebra. However, since there are W*-algebras that are not injective, a C*-
algebra may be essentially embedded into non-isomorphic self-injective C*-algebras.

§2. Injective Hilbert Modules

It is known (see [7] and [17]) that the only unital C*-algebras that are injective as Banach
A-modules over themselves are commutative AW *-algebras. As M. Hamana pointed out(”]
that for a C*-algebra, the category of Banach A-modules and contractive module maps is
too large. It is then natural to consider Hilbert A-modules.
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Definition 2.1, Let A be a C*-algebra. A pre-Hilbert module over A is a right A-
module H equipped with an A-valued “inner product”, a function {-,-) : H x H — A, with
the following properties: :

(1) (-,-) is sesquilinear (we make the convention that the inner products are conjugate
linear in the first variable). '

(2) (z,z) > 0; if (z,z) =0, thenz =0. -

- (3) (z,ya) = (z,y)a for all a in A.

4) (y,z) = (z,y)* for allz and y in H.

For z in H, put ||z|| = ||{(, z)||}/2. This is a norm on H. If H is complete, H is called
a Hilbert module over A.

Remark 2.1. A C*-algebra A is itself a Hilbert A-module with (a,b) = a*b. More
generally, any (closed) right ideal of A4 is a Hilbert A-module. '

Remark 2.2. If H is a Hilbert module over A4, its A-dual, the bounded A-module maps
from H to A, is denoted by H#. Each h in H gives rise to a map h in H# defined by
h(y) = (h,y) for y in H. We call H self-dual if H = H# i.e., if every map in H# arises by
- taking A-valued inner product with some fixed h in H. If we define scalar multiplication on
H#* by

(AT)(R) = A7 (h)
for complex number A\, 7 in H# and h in H and add maps in H# pointwise, then H #
becomes a linear space. H* becomes a right A-module if we set
(r-a)(h) = a* - 7(h)
for 7 in H#, a in A and h in H. When A is a W*-algebra, H# is a Hilbert A-module
containing H as a closed (Hilbert) A-submodule (see 13] and {9]).

Remark 2.3. Let H be a Hilbert A-module and Hy be a Hilbert A-submodule of H. We
“ shall denote by Hg- the Hilbert A-module {z € H : {z,h) = 0 for all h in Hy}.

Definition 2.2. Let A be a C*-algebra. An A-module map i from Hilbert A-module Hy
to Hilbert A-module Hy is called an embedding if (i(z),i(y)) = (z,y) for all z and y in H;.
An embedding is called an H-isometry if it is a bijection.

Lemma 2.1. Suppose that H is a Hilbert module over a C*-algebra A and Hy is a closed
submodule of H. If Hy is self-dual, then H = Hy + Hg-.

Proof. Define a module map P: H — H# (= Hp) by the following:

v Ph(z) = (h,z) forall z in Hj.
The ||P|| =1 and Ph=h for cach h in Ho.
For every z in Hy and h in H, {(1 — P)h,z) = 0; in particular {(1 — P)h, Ph) =
Therefore for every h in H,
h = (1~ P)h+ Ph,and (h,h) = (Ph,Ph) + ((1 - p)h,(1 —p)h).

Thus H = Ho + Hy.

Corollary 2.1(see [6, Proposition 1]). Suppose that H is any Hilbert module over a unital
C*-algebra and Hy is a submodule of H. If Hy is a direct summand of A™ for some integer
n, then H = Ho + Hy-. -
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Proof. It is clear that A™ is self-dual. Since Hy is a direct summand of a self-dual Hilbert
module, Hy itself is self-dual. '

Proposition 2.1. Let H be a Hilbert module over a W*-algebrd A and Hy o direct
summand of H. Then there is an embedding i from H# into H¥ such that i|p, = ig, and

H* = i(HY) +i(HF)* .

Proof. Let P be the A-module projection from H onto Ho. We can embed Hy into H#
by defining i(f)(z) = f(Pz) for all f in Hp and z in H. Define Q on H* by Qf(z) = f(Pz)
for all f in H# and z in H. Thus (Qf, ) = (f, Pz) for every f in H# and z in H. We have,
for every x in Hy,

: (1-Q)f,z) = (f,z) - (Qf,z) =0. .
For each (1 — Q)f, define an element h in (H¥)# = HF by h(z) = (1 ~ Q)f,z) for every
z in i(H¥). Since (1 — Q)f,z) = 0 for all z in Hy,h = 0. Hence ((1 — Q)f,z) = 0 for all z
in i(HT). |
Therefore (1 — Q)(H#)* - i(HY). Since Q(H) = i(HY), we conclude that
H* = i(HY) +i(HF)*.
Remark 2.4. Let H be a Hilbert module over a C*-algebra A, M,,(H) the space of n. x n

matrices over H and M, (A) the algebra of n X n matrices over A. Then M, (H) is an inner
product module over My (A). The inner product is defined by a formal matrix product:

(2, y)n = [Z(mkuaykv):l , for z,y, in Mp(H).
: k u,v
H is an L*-matricially normed A-module with respect to the family of norms ||z||, =
(z, x)|| /2, for x in M, (H) (see [17, 2.5.] and [12, 1.14]).

Let M(H, A**) denote the set of bounded A-module maps of H into A**. Then the A-
valued inner product on H can be extended to an A**-valued inner product on M(H, A**)
(see [13, 3.4]). By the above definition, (M (H, A**), {|| - ||»}) is an L*-matricially normed .
A**-module. Notice that H# is a subspace of M(H, A**).

Lemma 2.2. Let H be o Hilbert module over a unital C*-algebra A. Then H# together
with the family norms ||-|| s an L>®°-matricially normed (right) A-module(see [12, Definition
3.11]). |
Proof. As a subspace of (M(H,A*™), {||lI»}), (H*,{||l=}) is an L-matricially
normed space. For each n, if z € M,,(H#) and o € M,,(A), then

(za, zr), = o (2, Z)pox
and
lzlln =ll(zet, 20l = llo*(, @) ncd|*/2
<(lle*|lli¢z, 2)alllled) /2
<lizfinliel-

In particular, ||zall, < ||z|.||la| for all @ € M,(C). Therefore (H,{|| - ||.}) is an L°°-
matricially normed A-module.
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- Lemma 2.3. Let H be a Hilbert module over an injective C*-algebra A and 7 € H¥.
Then there is a bounded A-module map ¥ : H* — A which extends T with the same norm.

Proof. Let 7 be in H3. As in [17, Proposition 2.8}, 7 is completely bounded and ||7||s =
|I7]l. It follows from Lemma 2.2 and [12, Theorem 1.14] that (H#,{|| - ||»}) is a matricial
normed A-module in the sence of [17, Definition 2.2]. By [17, Theorem 4.1} (The theorem
works for right A-modules), there is a bounded A-module map 7 : H#¥ — A which extends
T with the same norm.

Definition 2.3. A Hilbert A-module H is said to be injective if it has the following
property: for every Hilbert A-module Y, a closed (Hilbert) submodule X andY and a bounded
A-module map T from X to H, there is an A-module map T fromY to H such that TI,c =T
and |T|| = ||T|. ~ -

Theorem 2.1. FEvery self-dual Hilbert module over a W*-algebra or over an injective
C*-algebra A is injective.

Proof. Let H be a self-dual Hilbert A-module. Suppose that Y is a Hilbert A-module, X
is a Hilbert A-submodule of Y and T is a bounded A-module map from X to H. For any h in
H define T*(h) in X# by T#(h)(z) = (h, T(z)) for all z in X. So ||T*(k)(z)|| < |T'(h)|||z||
for all z in X and h in H. Hence ||T*(R)|| < |T}|||R|. If A is a W*-algebra then, by [13, 3.2],
the A-valued inner product (-,-) extends to X#2X# in such a way as to make X# into a
self-dual Hilbert A-module. Thus T*(k) can be extended to an element in (X#)#(= X#)
with the same norm. If A is an injective C*-algebra, it follows from Lemma 2.3 that T*(h)
can be aslo extended to an element of (X#)# with the same norm. We use the same notation
T™* (:1;) for the extension. For every ¢ in X#, define an element T'(x,) in H# = H by

T(xo)(h) = T*(h)(xo) forall hin H.
Then '
1T (zo) (Bl = IT*(R)(wo)| < IT*(B)llzoll < ITIIIRIllzoll-

It is then easy to varify that T is an A-module map from X# to H such that f‘l g =Tand

1] = Tl

Define P : y € X# by (Py)(z) = (y,«) for all # in X. Clearly P is an A-module map,
|P|| =1 and Pz = z for all z in X. Then T(P) is an A-module map from Y to 4 such that
T(P) =T and |T(P)| = |T].

The following corollary is the Hahn-Banach extension theorem for Hilbert modules over
W*-algebras and injective C*-algebras. :

Corollary 2.2. Let H be a Hilbert module over-a W*-algebra A or an injective C*-
algebra. ‘Suppose that Hy is a closed submodule of H and ¢ is a bounded A-module map
from Hy to A. Then there is an A-module map @ from H to A such that

I8l = llell and @l =0
Proof. Since A is unital, A itself is a self-dual Hilbert A-module.
Definition 2.4. A C*-algebra A is called H -self-injective if A is an injective Hilbert
module over itself. '
Remark 2.5. From [15] commutative AW *-algebras are H-self-injective. By Corollary
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2.2 W*-algebras and injective C*-algebras are H-self-injective. An H-self-injective C*-
algebra is a self-injective C*-algebra, and hence, by Remark 2.1 an M AW *-algebra.

Theorem 2.2. Suppose that A is a W*-algebra. A Hilbert A-module H is injective if
and only if H is self-dual.

Proof. Suppose that H is injective. Since H is a closed submodule of H #, there is an
A-module map P from H#* into H such that Py = ig and ||P| = 1. Clearly, P2 = P and
(1 - P)*=1- P. Fix an element h in (1 — P)(H#), define an element.z" in (H#)# = H#
by h*(z) = (h,(1 — P)z) for every = in H¥. Then h"\(z) = 0 for all = in H, ie., k" = 0.
Since (1 — P)h = h, {(h,h) = (h, (1 = P)h) = h"(h) = 0. Therefore (1 — P)(H#) = {0}. So
H = H* and H is self-dule (see [13, 3.8]). _

Definition 2.5. Suppose that H is a Hilbert A-module. A Hilbert A-module Hy is
called an injective envelope of H if Hy is an injective Hilbert A-module, H is a (Hilbert)
A-submodule of Hy and there is no proper injective (Hilbert) A-submodule of Hy containing
H.

At this point one may expect that every Hilbert module over a unital C*-algebra has an
injective envelope. Unfortunately, this is not true. Since unital H-self-injective C*-algebras

“are at least AW*-algebras (Remark 2.5), we see from Theorem 2.3 that Hilbert modules
over non-AW*-algebras may not have injective envelopes. '

Theorem 2.3. " Suppose that A is a unital C*-algebra but not H -self-injective. Then any
Hilbert A-module containing A has no injective envelope. In fact such A-modules cannot be
embedded. into injective A-modules.

Proof. Suppose that H is a Hilbert A-module containing A and a closed A-submodule
of an injective Hilbert A-module H;. Then by Lemma 2.1, Hy = A+ AL, Let X be a closed
(Hilbert ) A-submodule of a Hilbert A-module Y and ¢ be a bounded A-module map from
X to A. So ¢ is a bounded A-module map from Hilbert A-module X to Hy. Let ¢ be a
norm preserving extension of ¢ to y and P be the A-module projection from H; to A. Then
P(p) is a norm preserving extension of ¢ from Y to A such that

P(@)l = ¢ and |P(@)]| = llell-

So Ais H -self-injective, a contradiction.

Theorem 2.4. FEvery Hilbert module over a W* algebra A has a unique (up to H-
isometrics) injective envelope. ,
Proof. We shall show that H# is the injective envelope. If H C Y C H* and Y is
injective, then, by 3.17, Y is self-dual. Hence, by Lemma 2.1, Y is a direct summand of
H# ie, H* =Y + Y. Since forevery y in Y, (y,z) =0forzin HCY, Y+ = {0}. So

Y + H¥.

If z is another injective envelope of H, then by Theorem 2.2 X must be self-dual. Define
an A-module map 7 from z to H# by r(z)(h) = (z, h). Then |r|| = 1. Since X is injective,
there is a norm preserving A-module map i from H# to X such that i|z = iz. We denote
i(r) by ®. Then ||®|| = 1. Let ‘

‘ Xo={z € X:¥(z)=1c}.
- Then Xy O H. Moreover Xj is a closed A-module.
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We claim that X is injective. Suppose that N C M are two Hilbert A-modules and ¢ is
a bounded A-module map from N to X,. Since X is injective, there is an A-module map ¢
from M to X such that '

@l = ¢ and ||@]| = llgll.
Then

9(@)l= = ¢ and ||2(B)]] = [lll-
Therefore Xy = X, i.e., ® is the identity map and hence r is an isometry from X into H#.
If b is in r(X)#, since X is self-dual, (r*(k),z) = h(r(z)) for all z in 7(X). On the other
hand, by Corollary 2.2 there is an k" in (H#)# = H# such that h(r(z)) = (h",r(z)) for all
z in X. Now |

| (r(r* (W), 2) = (r*(k), 2) = h(r(@)) = h(z) = (k",z) |
for all = ip H. So r(r*f) = . Thus (h",y) = (r(r*(h)),y) for all y in H*. In particular,

(r(r*(h)), r(z)) = (h",7(x)) o
for all 2 in X. Therefore 7(X) is self-dual. As in the first part of the proof, 7(X) = H¥#,
Therefore h" = h. Hence for each z in H #, by [11, 3.4],

(r*(h),r*(z)) = (r(r*(h)), z) = (h, ).
So r is an H-isometry. .

Remark 2.6, AW™*-algebras, injective C*-algebras, monotone complete C*-algebras,
unital self-injective C*-algebras, unital H-self-injective C*-algebras are all, in some senses,
generalizations of commutative C*-algebras C(X) with X being stonean spaces. It is desir-
able to clarify the relationship between them. Here are some questions:

1) Is every self-injective C*-algebra H-self-injective?

2) Is every unital self-injective C*-algebra monotone complete?

Acknowledgment. The author would like to thank Professor C.A.Akemann for some
useful discussions. '
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