EXTENSION OF MULTIPLIERS AND INJECTIVE HILBERT MODULES

LIN HUAXIN*

Abstract

The author studies the problem whether a multiplier of a hereditary C^* -subalgebra B of a C^* -algebra A can be extended to a multiplier of A. One related problem is the Hahn-Banach extension theorem for Hilbert modules over C^* -algebras. It is shown that every self-dual Hilbert module over W^* -algebra or an injective C^* -algebra is injective.

Keywords Multiplier, Injective Hilbert modules, C*-algebra 1991 MR Subject Classification 46L05

§0. Introduction

Let A be a C^* -algebra, B its hereditary C^* -subalgebra and x a multiplier of B. A natural question is whether x has a norm preserving extension to a multiplier of A. It is a noncommutative analogue of the following: Let X be a locally compact Hausdorff space, 0 an open subset of x and f a bounded continuous function on 0, can f be extended (normpreservingly) to a bounded continuous function on x? There is another non-commutative version of this problem: If B is a hereditary C^* -subalgebra of A and x is a left multiplier of B, can x be extended (norm-preservingly) to a left multiplier of A?

In the first section we study these problems. It turns out that the first problem is related to the problem whether a bounded A-module map from a right ideal R to A can be extended (norm-preservingly) to a bounded A-module map from A to A? A further problem is whether the Hahn-Banach extension theorem holds for Hilbert A-module: if Y is a Hilbert A-module, X a Hilbert A-submodule of Y and φ a bounded A-module map from X to A, is there an A-module map $\tilde{\varphi}$ from Y to A such that

 $\|\tilde{\varphi}\| = \|\varphi\|$ and $\tilde{\varphi}|_x = \varphi$?

As in homology theory, the notion of injectivity was introduced in category whose objects are Banach modules over a (unital) Banach algebra and whose morphisms are contractive module maps, and the existence and uniqueness of injective envelope of a Banach module was proved by M. Hamana^[7]. M. Hamana^[7, Proposition 2] and M. Takesaki^[17] also showed that the only unital C^* -algebras that are injective as injective Banach modules over itself are commutative AW^* -algebras. In section 2, we shall study the corresponding problems for Hilbert modules over C^* -algebras. We show that self-dual Hilbert modules over W^* -algebras and injective C^* -algebras are injective. Therefore the Hahn-Banach extension theorem holds

*Department of Mathematics, East China Normal University, Shanghai 200062, China.

Manuscript received September 3, 1989.

for those Hilbert modules. We also show that the only injective Hilbert modules over a W^* algebra are self-dual Hilbert modules. Existence and uniqueness of injective envelopes of Hilbert modules over a W^* -algebra is established at the end of the paper. It is interesting to know that Hilbert modules over non- AW^* -algebras may not have injective envelopes. Applications of these extension theorems can be found in [11].

We shall denote by A^{**} the enveloping W^* -algebra of C^* -algebra A, M(A) the multiplier algebra, the set

 $\{x \text{ in } A^{**} : xa, ax \text{ in } A \text{ for } a \text{ in } A\},\$

LM(A) the left multipliers, the set

 $\{x \text{ in } A^{**} : xa \text{ in } A \text{ for } ain A\}$

and QM(A) the set

 $\{x \text{ in } A^{**}: axb \text{ in } A \text{ for } a, b \text{ in } A\}.$

§1. MAW*-Algebras and Self-Injective C*- Algebras

Let A be a C^* -algebra. We consider the following extension properties:

(1) For every hereditary C*-subalgebra B of A and x in M(B) there is a y in M(A) such that yb = xb, by = bx for all b in B and ||x|| = ||y||.

(2) For every hereditary C^{*}-subalgebra B of A and x in LM(B) there is a y in LM(A) such that yb = xb for all b in B and ||x|| = ||y||.

Definition 1.1. Let R be a closed right ideal of A. A linear map if $\varphi : R \to A$ is called a module map $\varphi(ra) = \varphi(r)a$ for all a in A.

We have the third extesion property:

(3) For every closed right ideal R of A and a bounded module map $\varphi : R \to A$ there is a module map $\tilde{\varphi} : A \to A$ such that $\tilde{\varphi}(r) = \varphi(r)$ for all r in R and $\|\tilde{\varphi}\| = \|\varphi\|$.

Definition 1.2. A C^{*}-algebra A is called an MAW^{*}-algebra if M(A) is an AW^{*}-algebra. **Example 1.1.** An abelian C^{*}-algebra $A = C_0(X)$ is an MAW^{*}-algebra if and only if X is an extremally disconnected space.

Theorem 1.1 A C^* -algebra is MAW^* -algebra A if and only if it has the extension property (1).

Proof. We first assume that A is an AW^* -algebra. Suppose that $x \in M(B)_{s.a}$ and $||x|| \leq 1$. Define $r_n = (1/2)(2/3)^n$. Then $||x|| \leq 3r_1$. Inductively, given x_n in $M(B)_{s.a}$ with $||x_n|| \leq 3r_n$, define

$$p_n = E_{(-\infty, -r_n)}(x_n), \quad p'_n p' = E_{(-\infty, -r_n]}(x_n),$$
$$q'_n = E_{[r_n, \infty)}(x_n), \quad q_n = E_{(r_n, \infty)}(x_n)$$

(the spectral projections corresponding to the sets $(-\infty, -r_n)$, $(-\infty, -r_n]$, $[r_n, \infty)$ and (r_n, ∞) respectively). Then p_n and q_n are open projections of A; p'_n and q'_n are closed projections of A. Let B_n, C_n, B_n and C_n be the hereditary C^* -subalgebras of A corresponding to $p_n, q_n, 1 - q'_n$ and $1 - p'_n$ respectively. Suppose that R_n is the right ideal of right annihilators of C_n . Then $R_n = e_n A$, where e_n is a projection in A (see [9, Theorem 2.3]). Clearly,

$$p_{n+1} \ge p'_n \ge e_n \ge p_n.$$

$$g_n = r_n e_n - r_n f_n$$
, then $||g_n|| \leq r_n$.

We now define $x_{n+1} = x_n - g_n$. Suppose that $B = pA^{**}p \cap A$, where p is an open projection; then

$$g_n \leq e_n + f_n \leq p_{n+1} + q_{n+1} \leq p.$$

Hence x_{n+1} is in $M(B)_{s.a.}$ and $||x_{n+1}|| \le 2r_n = 3r_{n+1}$. This completes the induction step. Now put

$$y=\sum_{1\leq n<\infty}g_n.$$

Then $||y|| \leq 1$ and $y \in A$. For every b in B.

$$(\sum_{1 \le i \le n} g_i)b = \sum_{1 \le i \le n} (x_i - x_{i+1})b = (x_1 - x_{n+1})b.$$

Since $||x_{n+1}|| \to 0$, yb = xb for every b in B.

If A is an MAW^* -algebra, then M(A) is an AW^* -algebra. If B is a hereditary C^* -subalgebra of A then B is a hereditary C^* -subalgebra of M(A). So the conclusion follows from what we have just proved.

Now we suppose that A has the extension property (1). Assume that B is a hereditary C^* -subalgebras of M(A), $B = pM(A)^{**}p \cap M(A)$. Set

$$B^{\perp} = \{ x \in M(A) : xB = Bx = 0 \}.$$

Then

$$B^{\perp} = qM(A)^{**}q \cap M(A)$$

for some open projection q of M(A).

Clearly $p \perp q$. Let π be the universal representation of A. Then π acting on M(A) is faithful. Thus there are open projections (of A) p_1 and q_1 such that $\pi(p_1) = \pi(p)$ and $\pi(q_1) = \pi(q)$. Moreover $p_1 \perp q_1$. Set $B_i = p_1 A^{**} p_1 \cap A$ and $C_1 = q_1 A^{**} q_1 \cap A$. Then $B_1 + C_1$ is a hereditary C^* -subalgebra of A and $p_1, q_1 \in M(B_1 + C_1)$. Therefore there is a u in M(A) such that $ud = p_1d$ and $du = dp_1$ for all d in $B_1 + C_1$, and u = 1. It follows that

$$up_1 = p_1u = p_1, \ uq_1 = q_1u = 0.$$

Thus $u \in (B^{\perp})^{\perp}$ and u is a unit for B. It follows from the proof of [15, Proposition 1] that M(A) is an AW^* -algebra.

Definition 1.3. A C^{*}-algebra A with the extension property (3) is called a self-injective C^* -algebra.

Proposition 1.1. An abelian C^* -algebra A is self-injective if and only if A = C(X) for some extremally disconnected space.

Proof. (See [5, 16.6])

Proposition 1.2. Every W^{*}-algebra is self-injective.

Proof. See Theorem 2.2.

Definition 1.4. Let R be a closed ideal of A and p be the corresponding open projection of A in A^{**} . Set

 $LM(R,A) = \{x \text{ in } A^{**} : xr \in A \text{ for all } r \in R \text{ and } xp = x\}.$

For $x \in LM(R, A)$, define $\varphi(r) = xr$ for r in R. Then φ is a bounded module map from R into A and $\|\varphi\| = \|x\|$. As [14, 3.12.3], we can show that for every bounded module map φ from R to A there is a unique x in LM(R, A) such that $\varphi(r) = xr$ for all r in R and $\|\varphi\| = \|x\|$.

Proposition 1.3. Every closed ideal of a self-injective C^* -algebra is self-injective and every closed ideal of an MAW^* -algebra is an MAW^* -algebra.

Proof. Let I be a closed ideal of a self-injective C^* -algebra A and R is a closed right ideal of I. Suppose that x is in $LM(R, I) \subset LM(R, A)$. Then there is y in LM(A, A) = LM(A) such that ||y|| = ||x|| and yr = xr for all r in R. Let z be the central open projection corresponding to I. Then, clearly, $LM(A)z \subset LM(I) = LM(I, I)$. So $yz \in LM(I)$ and yzb = xb for all b in B.

The second statement follows from Theorem 1.1 and the above argument.

Theorem 1.2. Every self-injective C^* -algebra has the extension property (2). Every unital C^* -algebra with extension property (2) has extension property (1) and consequently is an AW^* -algebra.

Proof. Suppose that A is a self-injective C^* -algebra and $B = pA^{**}p \cap A$, where p is an open projection. Set $R = pA^{**} \cap A$. Let x be in $LM(B) \subset LM(R, A)$. Then there is a y in LM(A, A) = LM(A) such that yr = xr for all r in R and ||x|| = ||y||.

Therefore yb = xb for all b in B. So A has the extension property (2).

Now suppose that A is a unital C^* -algebra with the extension property (2). Let B and C be two orthogonal hereditary C^* -subalgebras of A. Suppose that p is the open projection of A corresponding to B. Then p is in LM(B+C). There is an e in M(A) + A such that ed = pd for all d in B + C. It follows from [15, Proposition 1.] that A is an AM^* -algebra.

Remark 1.1. Recall that a C^* -algebra A is called an injective C^* -algebra if given any self-adjoint linear subspace S, containing the unit, of a C^* -algebra B, any completely positive linear map of S into A extends to a completely positive linear map of B into A.

Theorem 1.3. Every injective C*-algebra is self-injective.

Proof. Suppose that A is an injective C^* -algebra, R is a closed right ideal of A and φ is a bounded A-module map from R to A. It follows from [17, Proposition 2.8] that φ is completely bounded. By [17, 2.5.], both A and R are matricial normed right A-modules. Then from [17, Theorem 4.1] (It works for right A-modules.), we conclude that there is a bounded A-module map $\tilde{\varphi} : A \to A$ which extends φ with the same norm.

Remark 1.2. It follows from [8, Theorem 4.1] that every C^* -algebra has a unique injective envelope. Therefore every C^* -algebra can be essentially embedded into a self-injective C^* -algebra. However, since there are W^* -algebras that are not injective, a C^* -algebra may be essentially embedded into non-isomorphic self-injective C^* -algebras.

§2. Injective Hilbert Modules

It is known (see [7] and [17]) that the only unital C^* -algebras that are injective as Banach *A*-modules over themselves are commutative AW^* -algebras. As M. Hamana pointed out^[7] that for a C^* -algebra, the category of Banach *A*-modules and contractive module maps is too large. It is then natural to consider Hilbert *A*-modules.

Definition 2.1^[13]. Let A be a C^{*}-algebra. A pre-Hilbert module over A is a right Amodule H equipped with an A-valued "inner product", a function $\langle \cdot, \cdot \rangle : H \times H \to A$, with the following properties:

(1) $\langle \cdot, \cdot \rangle$ is sesquilinear (we make the convention that the inner products are conjugate linear in the first variable).

(2) $\langle x, x \rangle \geq 0$; if $\langle x, x \rangle = 0$, then x = 0.

(3) $\langle x, ya \rangle = \langle x, y \rangle a$ for all a in A.

(4) $\langle y, x \rangle = \langle x, y \rangle^*$ for all x and y in H.

For x in H, put $||x|| = ||\langle x, x \rangle||^{1/2}$. This is a norm on H. If H is complete, H is called a Hilbert module over A.

Remark 2.1. A C^{*}-algebra A is itself a Hilbert A-module with $\langle a, b \rangle = a^*b$. More generally, any (closed) right ideal of A is a Hilbert A-module.

Remark 2.2. If H is a Hilbert module over A, its A-dual, the bounded A-module maps from H to A, is denoted by $H^{\#}$. Each h in H gives rise to a map h in $H^{\#}$ defined by $h(y) = \langle h, y \rangle$ for y in H. We call H self-dual if $H = H^{\#}$, i.e., if every map in $H^{\#}$ arises by taking A-valued inner product with some fixed h in H. If we define scalar multiplication on $H^{\#}$ by

$$(\lambda \tau)(h) = \lambda \tau(h)$$

for complex number λ, τ in $H^{\#}$ and h in H and add maps in $H^{\#}$ pointwise, then $H^{\#}$ becomes a linear space. $H^{\#}$ becomes a right A-module if we set

$$(\tau \cdot a)(h) = a^* \cdot \tau(h)$$

for τ in $H^{\#}$, a in A and h in H. When A is a W^{*}-algebra, $H^{\#}$ is a Hilbert A-module containing H as a closed (Hilbert) A-submodule (see [13] and [9]).

Remark 2.3. Let H be a Hilbert A-module and H_0 be a Hilbert A-submodule of H. We shall denote by H_0^{\perp} the Hilbert A-module $\{x \in H : \langle x, h \rangle = 0 \text{ for all } h \text{ in } H_0\}$.

Definition 2.2. Let A be a C^* -algebra. An A-module map i from Hilbert A-module H_1 to Hilbert A-module H_2 is called an embedding if $\langle i(x), i(y) \rangle = \langle x, y \rangle$ for all x and y in H_1 . An embedding is called an H-isometry if it is a bijection.

Lemma 2.1. Suppose that H is a Hilbert module over a C^* -algebra A and H_0 is a closed submodule of H. If H_0 is self-dual, then $H = H_0 + H_0^{\perp}$.

Proof. Define a module map $P: H \to H_0^{\#}(=H_0)$ by the following:

$$Ph(x) = \langle h, x \rangle$$
 for all x in H_0 .

The ||P|| = 1 and Ph = h for each h in H_0 .

For every x in H_0 and h in H, $\langle (1-P)h, x \rangle = 0$; in particular $\langle (1-P)h, Ph \rangle = 0$. Therefore for every h in H,

$$h = (1 - P)h + Ph$$
, and $\langle h, h \rangle = \langle Ph, Ph \rangle + \langle (1 - p)h, (1 - p)h \rangle$.

Thus $H = H_0 + H_0^{\perp}$.

Corollary 2.1 (see [6, Proposition 1]). Suppose that H is any Hilbert module over a unital C^* -algebra and H_0 is a submodule of H. If H_0 is a direct summand of A^n for some integer n, then $H = H_0 + H_0^{\perp}$.

Proof. It is clear that A^n is self-dual. Since H_0 is a direct summand of a self-dual Hilbert module, H_0 itself is self-dual.

Proposition 2.1. Let H be a Hilbert module over a W^{*}-algebra A and H₀ a direct summand of H. Then there is an embedding i from $H_0^{\#}$ into $H^{\#}$ such that $i|_{H_0} = i_{H_0}$ and

$$H^{\#} = i(H_0^{\#}) + i(H_0^{\#})^{\perp}.$$

Proof. Let P be the A-module projection from H onto H_0 . We can embed H_0 into $H^{\#}$ by defining i(f)(x) = f(Px) for all f in H_0 and x in H. Define Q on $H^{\#}$ by Qf(x) = f(Px) for all f in $H^{\#}$ and x in H. Thus $\langle Qf, x \rangle = \langle f, Px \rangle$ for every f in $H^{\#}$ and x in H. We have, for every x in H_0 ,

$$\langle (1-Q)f,x\rangle = \langle f,x\rangle - \langle Qf,x\rangle = 0.$$

For each (1-Q)f, define an element h in $(H_0^{\#})^{\#} = H_0^{\#}$ by $h(x) = \langle (1-Q)f, x \rangle$ for every x in $i(H_0^{\#})$. Since $\langle (1-Q)f, x \rangle = 0$ for all x in $H_0, h = 0$. Hence $\langle (1-Q)f, x \rangle = 0$ for all x in $i(H_0^{\#})$.

Therefore
$$(1-Q)(H^{\#})^{\perp} \cdot i(H_0^{\#})$$
. Since $Q(H) = i(H_0^{\#})$, we conclude that
 $H^{\#} = i(H_0^{\#}) + i(H_0^{\#})^{\perp}$.

Remark 2.4. Let H be a Hilbert module over a C^* -algebra $A, M_n(H)$ the space of $n \times n$ matrices over H and $M_n(A)$ the algebra of $n \times n$ matrices over A. Then $M_n(H)$ is an inner product module over $M_n(A)$. The inner product is defined by a formal matrix product:

$$\langle x,y
angle_n = \left[\sum_k \langle x_{ku},y_{kv}
angle
ight]_{u,v}, \ for \ x,y, \ in \ M_n(H).$$

H is an L^{∞} -matricially normed *A*-module with respect to the family of norms $||x||_n = ||\langle x, x \rangle||^{1/2}$, for x in $M_n(H)$ (see [17, 2.5.] and [12, 1.14]).

Let $M(H, A^{**})$ denote the set of bounded A-module maps of H into A^{**} . Then the A-valued inner product on H can be extended to an A^{**} -valued inner product on $M(H, A^{**})$ (see [13, 3.4]). By the above definition, $(M(H, A^{**}), \{\|\cdot\|_n\})$ is an L^{∞} -matricially normed A^{**} -module. Notice that $H^{\#}$ is a subspace of $M(H, A^{**})$.

Lemma 2.2. Let H be a Hilbert module over a unital C^* -algebra A. Then $H^{\#}$ together with the family norms $\|\cdot\|_n$ is an L^{∞} -matricially normed (right) A-module(see [12, Definition 3.11]).

Proof. As a subspace of $(M(H, A^{**}), \{\|\cdot\|_n\}), (H^{\#}, \{\|\cdot\|_n\})$ is an L^{∞} -matricially normed space. For each n, if $x \in M_n(H^{\#})$ and $\alpha \in M_n(A)$, then

$$\langle xlpha,xlpha
angle_n=lpha^*\langle x,x
angle_nlpha$$

and

$$\begin{aligned} \|x\|_{n} &= \|\langle x\alpha, x\alpha \rangle_{n}\|^{1/2} = \|\alpha^{*} \langle x, x \rangle_{n} \alpha\|^{1/2} \\ &\leq (\|\alpha^{*}\| \|\langle x, x \rangle_{n}\| \|\alpha\|)^{1/2} \\ &\leq \|x\|_{n} \|\alpha\|. \end{aligned}$$

In particular, $||x\alpha||_n \leq ||x||_n ||\alpha||$ for all $\alpha \in M_n(\mathbb{C})$. Therefore $(H, \{\|\cdot\|_n\})$ is an L^{∞} -matricially normed A-module.

Lemma 2.3. Let H be a Hilbert module over an injective C^* -algebra A and $\tau \in H^{\#}$. Then there is a bounded A-module map $\tilde{\tau}: H^{\#} \to A$ which extends τ with the same norm.

Proof. Let τ be in H^3 . As in [17, Proposition 2.8], τ is completely bounded and $||\tau||_{cb} = ||\tau||$. It follows from Lemma 2.2 and [12, Theorem 1.14] that $(H^{\#}, \{|| \cdot ||_n\})$ is a matricial normed A-module in the sence of [17, Definition 2.2]. By [17, Theorem 4.1] (The theorem works for right A-modules), there is a bounded A-module map $\tilde{\tau} : H^{\#} \to A$ which extends τ with the same norm.

Definition 2.3. A Hilbert A-module H is said to be injective if it has the following property: for every Hilbert A-module Y, a closed (Hilbert) submodule X and Y and a bounded A-module map T from X to H, there is an A-module map \tilde{T} from Y to H such that $\tilde{T}|_x = T$ and $\|\tilde{T}\| = \|T\|$.

Theorem 2.1. Every self-dual Hilbert module over a W^* -algebra or over an injective C^* -algebra A is injective.

Proof. Let *H* be a self-dual Hilbert *A*-module. Suppose that *Y* is a Hilbert *A*-module, *X* is a Hilbert *A*-submodule of *Y* and *T* is a bounded *A*-module map from *X* to *H*. For any *h* in *H* define $T^*(h)$ in $X^{\#}$ by $T^{\#}(h)(x) = \langle h, T(x) \rangle$ for all x in *X*. So $||T^*(h)(x)|| \le ||T(h)|| ||x||$ for all x in *X* and *h* in *H*. Hence $||T^*(h)|| \le ||T||||h||$. If *A* is a *W**-algebra then, by [13, 3.2], the *A*-valued inner product $\langle \cdot, \cdot \rangle$ extends to $X^{\#}xX^{\#}$ in such a way as to make $X^{\#}$ into a self-dual Hilbert *A*-module. Thus $T^*(h)$ can be extended to an element in $(X^{\#})^{\#}(=X^{\#})$ with the same norm. If *A* is an injective *C**-algebra, it follows from Lemma 2.3 that $T^*(h)$ can be aslo extended to an element of $(X^{\#})^{\#}$ with the same norm. We use the same notation $T^*(x)$ for the extension. For every x_0 in $X^{\#}$, define an element $\tilde{T}(x_0)$ in $H^{\#} = H$ by

$$ilde{U}(x_0)(h)=T^*(h)(x_0) \ \ ext{for all} \ \ h \ ext{in} \ \ H.$$

Then

$$\|\tilde{T}(x_0)(h)\| = \|T^*(h)(x_0)\| \le \|T^*(h)\| \|x_0\| \le \|T\| \|h\| \|x_0\|.$$

It is then easy to varify that \tilde{T} is an A-module map from $X^{\#}$ to H such that $\tilde{T}|_{H} = T$ and $\|\tilde{T}\| = \|T\|$.

Define $P: y \in X^{\#}$ by $(Py)(x) = \langle y, x \rangle$ for all x in X. Clearly P is an A-module map, ||P|| = 1 and Px = x for all x in X. Then $\tilde{T}(P)$ is an A-module map from Y to A such that

$$|\tilde{T}(P)|_x = T$$
 and $||\tilde{T}(P)|| = ||T||.$

The following corollary is the Hahn-Banach extension theorem for Hilbert modules over W^* -algebras and injective C^* -algebras.

Corollary 2.2. Let H be a Hilbert module over a W^* -algebra A or an injective C^* algebra. Suppose that H_0 is a closed submodule of H and φ is a bounded A-module map from H_0 to A. Then there is an A-module map $\tilde{\varphi}$ from H to A such that

$$\|\tilde{\varphi}\| = \|\varphi\|$$
 and $\tilde{\varphi}|_{h_0} = \varphi$.

Proof. Since A is unital, A itself is a self-dual Hilbert A-module.

Definition 2.4. A C^* -algebra A is called H-self-injective if A is an injective Hilbert module over itself.

Remark 2.5. From [15] commutative AW^* -algebras are H-self-injective. By Corollary

2.2 W^* -algebras and injective C^* -algebras are H-self-injective. An H-self-injective C^* -algebra is a self-injective C^* -algebra, and hence, by Remark 2.1 an MAW^* -algebra.

Theorem 2.2. Suppose that A is a W^* -algebra. A Hilbert A-module H is injective if and only if H is self-dual.

Proof. Suppose that H is injective. Since H is a closed submodule of $H^{\#}$, there is an A-module map P from $H^{\#}$ into H such that $P_H = i_H$ and ||P|| = 1. Clearly, $P^2 = P$ and $(1-P)^2 = 1-P$. Fix an element h in $(1-P)(H^{\#})$, define an element h^{\wedge} in $(H^{\#})^{\#} = H^{\#}$ by $h^{\wedge}(x) = \langle h, (1-P)x \rangle$ for every x in $H^{\#}$. Then $h^{\wedge}(x) = 0$ for all x in H, i.e., $h^{\wedge} = 0$. Since (1-P)h = h, $\langle h, h \rangle = \langle h, (1-P)h \rangle = h^{\wedge}(h) = 0$. Therefore $(1-P)(H^{\#}) = \{0\}$. So $H = H^{\#}$ and H is self-dule (see [13, 3.8]).

Definition 2.5. Suppose that H is a Hilbert A-module. A Hilbert A-module H_1 is called an injective envelope of H if H_1 is an injective Hilbert A-module, H is a (Hilbert) A-submodule of H_1 and there is no proper injective (Hilbert) A-submodule of H_1 containing H.

At this point one may expect that every Hilbert module over a unital C^* -algebra has an injective envelope. Unfortunately, this is not true. Since unital *H*-self-injective C^* -algebras are at least AW^* -algebras (Remark 2.5), we see from Theorem 2.3 that Hilbert modules over non- AW^* -algebras may not have injective envelopes.

Theorem 2.3. Suppose that A is a unital C^* -algebra but not H-self-injective. Then any Hilbert A-module containing A has no injective envelope. In fact such A-modules cannot be embedded into injective A-modules.

Proof. Suppose that H is a Hilbert A-module containing A and a closed A-submodule of an injective Hilbert A-module H_1 . Then by Lemma 2.1, $H_1 = A + A^{\perp}$. Let X be a closed (Hilbert) A-submodule of a Hilbert A-module Y and φ be a bounded A-module map from X to A. So φ is a bounded A-module map from Hilbert A-module X to H_1 . Let $\tilde{\varphi}$ be a norm preserving extension of φ to y and P be the A-module projection from H_1 to A. Then $P(\tilde{\varphi})$ is a norm preserving extension of φ from Y to A such that

$$P(\tilde{\varphi})|_x = \varphi \text{ and } ||P(\tilde{\varphi})|| = ||\varphi||.$$

So A is H-self-injective, a contradiction.

Theorem 2.4. Every Hilbert module over a W^* -algebra A has a unique (up to Hisometrics) injective envelope.

Proof. We shall show that $H^{\#}$ is the injective envelope. If $H \subset Y \subset H^{\#}$ and Y is injective, then, by 3.17, Y is self-dual. Hence, by Lemma 2.1, Y is a direct summand of $H^{\#}$, i.e., $H^{\#} = Y + Y^{\perp}$. Since for every y in Y, $\langle y, x \rangle = 0$ for x in $H \subset Y$, $Y^{\perp} = \{0\}$. So $Y + H^{\#}$.

If x is another injective envelope of H, then by Theorem 2.2 X must be self-dual. Define an A-module map r from x to $H^{\#}$ by $r(x)(h) = \langle x, h \rangle$. Then ||r|| = 1. Since X is injective, there is a norm preserving A-module map i from $H^{\#}$ to X such that $i|_{H} = i_{H}$. We denote i(r) by Φ . Then $||\Phi|| = 1$. Let

$$X_0 = \{x \in X : \Phi(x) = x\}.$$

Then $X_0 \supset H$. Moreover X_0 is a closed A-module.

We claim that X_0 is injective. Suppose that $N \subset M$ are two Hilbert A-modules and φ is a bounded A-module map from N to X_0 . Since X is injective, there is an A-module map $\tilde{\varphi}$ from M to X such that

$$\tilde{\varphi}|_N = \varphi \text{ and } \|\tilde{\varphi}\| = \|\varphi\|.$$

Then

$$\Phi(\tilde{\varphi})|_x = \varphi \text{ and } \|\Phi(\tilde{\varphi})\| = \|\varphi\|.$$

Therefore $X_0 = X$, i.e., Φ is the identity map and hence r is an isometry from X into $H^{\#}$. If h is in $r(X)^{\#}$, since X is self-dual, $\langle r^*(h), x \rangle = h(r(x))$ for all x in r(X). On the other hand, by Corollary 2.2 there is an h^{\wedge} in $(H^{\#})^{\#} = H^{\#}$ such that $h(r(x)) = \langle h^{\wedge}, r(x) \rangle$ for all x in X. Now

$$\langle r(r^*(h)),x
angle=\langle r^*(h),x
angle=h(r(x))=h(x)=\langle h^\wedge,x
angle$$

for all x in H. So $r(r^*f) = h^{\wedge}$. Thus $\langle h^{\wedge}, y \rangle = \langle r(r^*(h)), y \rangle$ for all y in $H^{\#}$. In particular,

$$\langle r(r^*(h)), r(x)
angle = \langle h^\wedge, r(x)
angle$$

for all x in X. Therefore r(X) is self-dual. As in the first part of the proof, $r(X) = H^{\#}$. Therefore $h^{\wedge} = h$. Hence for each x in $H^{\#}$, by [11, 3.4],

$$\langle r^*(h), r^*(x) \rangle = \langle r(r^*(h)), x \rangle = \langle h, x \rangle.$$

So r is an H-isometry.

Remark 2.6. AW^* -algebras, injective C^* -algebras, monotone complete C^* -algebras, unital self-injective C^* -algebras, unital H-self-injective C^* -algebras are all, in some senses, generalizations of commutative C^* -algebras C(X) with X being stonean spaces. It is desirable to clarify the relationship between them. Here are some questions:

1) Is every self-injective C^* -algebra H-self-injective?

2) Is every unital self-injective C^* -algebra monotone complete?

Acknowledgment. The author would like to thank Professor C.A.Akemann for some useful discussions.

References

- [1] Akemann, C. A., The general Stone-Weierstrass problem, J. Functional Anal., 4 (1969), 277-294.
- [2] Akemann, C. A., A Gelfand representation theory for C*-algebra, Pac. J. Math., 39 (1971), 1-11.
- [3] Akemann, C. A., Pedersen, G. K. & Tomiyama, J., Multipiers of C*-algebras, J. Functional Anal., 13 (1973), 277-301.
- [4] Dixmier, J., C*-algebras, North-Holland Publishing Company, Amsterdam New York Oxford, 1977.
- [5] Dure, M. J. & Fillmore, P. A., Triviality theorem for Hilbert modules, Topics in modern operator theory (C. Apostal et al., eds), Berkhauser, Basel, 1981, 71-80.
- [6] Gillman, L. & Jerison, M., Ring of continuous functions, Springer-Verlag, New York Heidelberg Berlin (1976).
- [7] Hamana, M., Injective envelopes of Banach modules, Tohoku Math. Journal, 10 (1978), 439-453.
- [8] Hamana, M., Injective envelopes of C*-algebras, J. Math. Soc. Japan, 31:1 (1979), 181-197.
- [9] Kaplansky, I., Projections in Banach algebras, Ann. of Math., 53 (1951), 235-249.
- [10] Lin, H., Hilbert C^* -modules and their bounded module maps (preprint).
- [11] Lin, H., Bounded module maps and pure completely positive maps (preprint in proparation).
- [12] Ruan, Z. J., On matrically normed spaces associated with operator algebras, Ph. D. dissertation, University of California Los Angeles, 1987.
- [13] Paschke, W. L., Inner product modules over B*-algebras, Trans. Amer. Math. Soc., 182 (1973), 443-459.

- [14] Pedersen, G. K., C*-algebras and their automorphism group, Academic Press, London New York San Francisco, 1979.
- [15] Pedersen, G. K., SAW*-algebras and corona C*-algebras, contributions to non-commutative topology, J. Operator Theory, 15 (1986), 25-32.
- [16] Takesaki, M., Theory of opertor algebras I, Spinger-Verlag, Heidelberg, 1979.
- [17] Takesaki, M., On the Hahn-Banach type theorem and the Jordan decomposition of module linear mapping over some operator algebras, *Kodai Math. Sem. Rep.*, **12** (1960), 1-10.
- [18] Wittstock, G., Extension of completely bounded C^* -module homomorphisms, operator algebras and group representations VII, (Monographs and Studies in Mathematics 18), Pitman, 1984.