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ISOMETRIC OPERATORS ON Hyx SPACES*

YAN SHAOZONG* CHEN XIAOMAN* ZHANG JIANGUO*
Abstract

The authors obtain all generalized triangle models of U-dilation of an isometric operator on
IIx and prove that an isometric operator on IIx has Wold decomposition and the unilateral
parts of generalized Wold decomposition for an isometric operator on Il are uniquely deter-
mined up to unitary equivalence. Then a necessary and sufficient condition is got under which
an isometric operator on IIx has a regular Wold decomposition.
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In this paper, we give definitions of generalized triangle model, generalized Wold decom-

- position, Wold decomposition, and regular Wold decomposition of an isometric operator on.

Pontryagin space IIx. In first section, we obtain all forms of U-dilations of an isometric
operator on IIx under any generalized standard decomposition. In second section, we obtain
two results that any isometric operator on IIx has Wold decomposition and the unilateral
parts of generalized Wold decompositions for an isometric operator on IIx are unitarily
equivalent to another. In last section, we get a necessary and sufﬁment condition under
which an isometric operator on Iy has regular Wold decomposition and give a class of
isometric operators on II, which do not have regular Wold decompositions. Our necessary
and sufficient condition is simpler than B. W. McEnnis’ in [3].

§1. U-Dilation of Isometric Operator on Hg

In [1}, Yan Shaozong obtained all forms of U-dilations of contractions on Ilx under a
regular decomposition of Ilx: In [2], we showed that any contraction on Ilx is of the
triangle model under a standard decomposition of Ilx. Naturally, we desire to find all forms
of U-dilations of contractions. on IIx relative to a standard decomposition of IIx. In this
section, we settle this problem in the case of isometric operators on Ilk. ‘

Definition 1.1. If V is a linear operator on Ilx such that

(Va,Vy) = (#,9), for any z,y € I,

then V 1is called an isometric operator or isometry.
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Remark 1.1. In the case of Ik, any isometric operator must be bounded.

- Definition 1.2. Ifllx = ,®{Z+Z*}®1I1,, such that Il,, II,,, are complete subspaces of
Ik and {Z,Z*} is a Hilbert dual pair, then i = I,®{Z+ Z*}®I1,, is called a generalized
standard decomposition. : v

Definition 1.3. If V is an isometric operator on Ili and there is a generalized standard
decomposition llg =1, ® {Z + Z*} ® I,,, such that
S A B C Z

Us 0 E 11, ‘
V. F |, (1.1)
S_l* Z*

where S : Z — Z; Up Ny » Mgy Vi : My » Wy B Z* =1y F:Z* — Iy, and
T:Z* — Z; S is nonsingular on Z;Uy is unitary on Iy; V,, is an isometric operator on
I, A= -SE'U;,B=—SFV,,C = ~S(E'E + F'F)/2+ ST, and T = —~T* provided
that Z is identical with Z*, then V. = {5,U;, Vpn, E, F,C} is called the generalized triangle
model of V, where 1 and x denote the adjoint operations in indefinite and definite inner

products respectively.
It generalizes [4], Chapter 3, §2.

‘Definition 1.4. Suppose that T' is a contraction on Ilg and H is a Hilbert space. If
there exists a unitary U on Ilx @ H, which is a unitary with respect to the indefinite inner
product, such that

V =

T = PU|llg,

 where P is the projection from g & H onto g, then U is called the U-dilation of T.

' Under the generalized triangle model (1.1),' the U-dilations of V must be of the following
form:

S A B C Wiz
0o U, 0 E X|I
U=|0 0 V, F Y|I,
0 0 0 S Q| 2z
M L J K UllH

By a direct calculation, U t is of the fo'llowing‘ form

st Et Ft Cc* K*
o U Vi Bt Jt
o 0 o0 8§ M
Q xt vt wr U

Ut =

UU' = I is equivalent to the following equations:
r SSTL4wWQ* =1,

XQ* =0,
| eer=o,
\ U()Q* =0
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( SEt+ AU} + WXt =0,
UUf + XXt =1,
I < vxt=o,
QX' =0,
| ME' + LU} + UpXt = 0.
( SFT 4+ BV + WYt =0,
Xyt =0,
(ID) § VaVh +YYi=1,
QYt =0,
A MFt 4+ JVI + U YT =0,
( SC* + AAt+ BBt + CS* + WW* =0,
UgAt + ES* + XW* =0,
V) { V.B'+FS*+YW* =0,
S*1S L QW* =1,
| MC* + LA' + JB* + K§* + UyW* = 0.
( SK* + ALY+ BJT + CM* + WU =0,
| ULt + EM* + XU} =0,
(V) { VpJi+ FM*+ YU =0,
S*=1M* + QUg = 0,
\ MK* 4+ LLY + JJ' + KM* + UgUg = I.
- UtU = I is equivalent to the following equations:
( STIS+ K*M =1,
LtM =0
) { M*M =0,
JIM =0,
L Q*S+ UM = 0.
( S~'A+ E'U, + K*L =0,
UiUu, + L'L =0,
ary ¢ JiL=o,
M*L =0,
L Q*A+ XU, + UL = 0.
( S~'B+ F'V,,K*J =0,
LtJ =0,
) § Vivm+JtI=1,
M*J =0,
{ Q*B+ Y1V, +UJ =0.
( S-'C+ EtE+ FIF +C*S* '+ K*K =0,
UJE + AtS*-1 + LTK =0,
(IvV") \ ViF 4+ BiS* 1+ JIK =0,
S§*§*1 L M*K =1,
| Q*C+ XTE+YIF + W*S* ' + UK = 0.
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V')

( S71W + EtX + EtY + C*Q + K*U, = 0,
UJX + ATQ + L1Uy =0,

ViY 4+ BiQ+ JiU, =0,

S*Q+ M*Uy =0,

| @ W+ XX +YTY + W*Q + UUp = I.

If UUY = I and UTU = I hold, then we have

Q=0,X=0,M=0,L=0,J=0

from the above equations. Therefore, equations (I)-(V) and (I')-(V’) are simplified as follows:

SFt+ BV + Wyt =o. . (1.2)

VaVL+YYT =1 : S (13)
UoYT=0. , - (14
SC* + AA' + BB' + CS* + WW* =0. (1.5)
VB! + FS* +YW* =0. ' (1.6)
KS* +UW* = 0. (1.7)
YU =0. o (L8)
UpUg = I | T 19)
YV, =0. | (1.10)

571C+E'E+ F'F +C*8* 1 + K*K = 0. @)
YIF+W*S* 1 L UK = 0. (1.12)
Y'Y + UUy = I. . ©(113)

In fact, by Definition 1.3 the above equations can be simplified further. Since ¢ =
~S(E'E + F1F)/2 4 ST, hence K = 0, equations (1.7) and (1.12) are reduced to

UeW* =0, (1.7)

YIF+W*s* 1t =0. - (112)

In (1.5), substitute —SF'Y for W. Hence

SC* + AA* + BB' + CS* + SFITT'FS*
—SC* + SEVES* + SF'V,, V1 FS* + CS* + SFYY!Fs*
=8C* + SE'ES* + SF'V,, VI F§* + CS* + SF'(I - V,,V}} ) FS*
=SC* + SE'ES* + SF'FS* + CS*
=S(C*S* '+ E'E+ FIF 4+ 571C)s*
=0, -

where (1.3) is used. Again substitute the expression of W in (1.2), and then we have

SFt 4 BV! 4+ (=SF'Y)Y' = SF' 4 BV} — SF! 4 SFV,,V}
= —SF'V,, V! + SFV,,Vi =0
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Note that equation (1.6) is the adjoint of (1.2). So, (1.2) and (1.6) hold naturally. Con-

- sequentially, UtU = I and UU' = I are equivalent to

( ViV +YY =1,
| Uyt =0,
L UUg =1, (A)
Y1V, =0,
\ YTY + U0, = I.

W = -SFtY. (11")

It is clear that the equation system (A) determines all forms of U-dilations of the isometry
Vin on (I, (+,+)). By (A), we can solve Y. Thus W = —SFTY.
Theorem 1.1. Suppose that V is an isometric operator on g, Mg = H,@{Z2+Z*}011,,,
and the corresponding generalized triangle model is
S A B C12Z
U, 0 E 1L,
Vi F |1y’
S*-—l Z*

V=

~ Then, the U-dilation of V exists, all forms of U-dilations of V are

§ A B, -SFiY C 72

Ugs O 0 E I,
U= Vin Y F | I, (1.14)
0 Uy 0 H
S*—l 7*
Ve Y | . , 1
‘where Vp = Us is a unitary on indefinite inner product space (I, ®H, (-,")®(, ) &)-

Moreover, in order that U is a minimal U-dilation of V, it is nesessary and sufficient that
[Vm g ] s a minimal U-dilation of V,,.
o .
‘Remark 1.2. Since all forms of U-dilations of V' are of (1.14), it follows that U",n =
1,2,..., are also the U-dilations of V™.
Remark 1.3. U is called a minimal U-dilation of V,ifllg ® H = T\o/o U™lg.
—00

Proof of Theorem 1.1. Since.

(B,-SFY) = —S(F’f,o)[ Us

U is a unitary on IIx @ H. Naturally, (1.14) are all forms of U-dilations of V. It is sufficient
for us to show that the necessary and sufficient condition for U to be a minimal U-dilation
of V is that V; is a minimal U-dilation of V,,,. Assume that U is a minimal U-dilation of V,

Vin Y]
)

: i
ie. Ix ®H = 1\70 Urllg. If Vi V{1, is a proper reduced subspace to Vg, then
—00 —o0 i



402 o CHIN. ANN. OF MATH. Vol.14 Ser.B

. tfeo _ -
Since V Vg, D II,, and V; and V; are unitary operators, we have
—00 ]

Vi ¥ I
Va (\éoVOHm)l
UI
Y=(Y1,O),andU0=[ 0 V}.
2
Letting
S A (B, -SF*Y) C 1Z
0 U, 0 0 E II,
U = Vi Y: F | 1,,
' Ué 0 Hl
S*—l Z*

we know that U’ is also a unitary; furthermore
g ® H

v=|Y |+
o [ Vz] (v VeTln)*t
This contradicts the fact that U is a minimal U-dilation. Conversely, when V' is a minimal

U-dilation of V,,, using the same method, we can show easily that U is also a minimal U-
dilation of V.

§2. Wold Decompositions of Isometric Operators on Ilx Spaces

As we know, for any isometry on Hilbert space Wold decomposition exists, i.e.
H=§V"(VH)' e 0 V'H,
Visa unitarj} on orgo V""H and V is a unilateral shift on &S V™(V H)*; moreover, subspaces
. n=

OQOO V™H and <SQOSV"(VH )t are reduced subspaces to V. Is the ﬂ vl Ka regular subspace?

n=0
In general, it is not true (see Example 3.1). ﬂ V*Ilk is possibly a degenerate subspace.
So we have to generahze Wold decompos1t10n We define generalized Wold decomposition,
Wold decomposition and regular Wold decomposition and prove that any isometric-operator
on IIx space has Wold decomposition and the unilateral parts of isometric operator on IIx
are uniquely determined up to unitary equivalence.

Definition 2.1. Let V be an isometry on lIg. A complete subspace L of g wzll be
called wandering for V if VPLLVIL for every pair of integers p,q > 0,p # q; since V is an
isometry it suffices to suppose that V*LLL forn=1,2,.

. One can then form. M (L) = V V"L, however M.,.(L) is possﬂ)ly degenerate We let

[M(L)]o be a nondegenerate subspace of My (L)([M4(L)]o is not unique).
Definition 2.2. Let V be an isometric operator on Il and Qo Vg = Z ®11,, where

o . © 1 o0
Z=[n v'ig]n[n v'Ig]™, Hy=[0 v"Tk],

If there is a generalized standard decomposition g = I, ® {Z+Z*} @ I, such that V =
{S,U,V,,C,D, B} is a generalized triangle model, where U is a unitary on I, and V; is a
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. unilateral operator on Il,, then V = {S,U,V,,C, D, B} is called Wold decomposition of V.
If there are complete subspaces g and P such that g =g ® P and V = U ®V,, where
U is a unitary on Ilg+ and V, is a unilateral operator on P, then V = U @ V; is called a
regular Wold decomposition of V.
- Definition 2.3 Let V be an isometry on Ilx. If there is a generalized standard decom-
position Ng = Iy ® {Z'+2"*} ® Iy such that V = {S',U',V,,C', D', B'} is a generalized
triangle model, where U’ is a unitary on Il and Vy is a unilateral operator on Iy, then
V ={8",U",Vy,C',D'B'} is called a generalized Wold decomposition of V.

Next we discuss Wold decomposition and generalized Wold decomposition.

Theorem 2.1. Any isometric operator on i space has Wold decomposition, i.e. there
exists a generalized standard decomposition Uy = I, ® {Z+2*} @ Il such that

S F G B Z
U 0 Cc (I,
V. D |I’

S*—l Z*

where
0,7 = ‘Fw°0 Vg, L=TgxoVIk, M(L)= °\70 VL,
n= X n=

Z =M (L)Nn My (L)*, T, =[Mi(L)o, Mi(l)=2ZoIL,

and S is unique. U and V, are uniquely determined up to unitary equivalence by the choice
of the subspace Z*.

Proof. We first prove the existence of Wold decomposition. ‘

At first we prove (n?jo vPrIlg) = My (L)t Ifz € n?jo V™, then there exists z,, € g
such that £ = V™z,,,m = 1,2,.... Let m > n, '

(V"&m, V) = (V" "%, £) = 0,
where £ € L, i.e. zLlV™L, and 21l M, (L). So nFjo VrIg C My (L)*. Conversely, let
y € M (L)* (see B. W. McEnnis [3]).
' M (Ly=LoVLa®--- & V"L V"M(L),

and . :
NxgoVlxk=LoVLe--- o V" 'L
Hence y € [llx © V"IIx]* = V"I, ie. y € A VPIIk. So (1 VPIIk)* C My(L), and

we proved °rj°0 VPl = My (L)*. Let
Z = My(L) N (Mp(D)L =] °r%’0 VPIk] N [ﬁo VrIIK]E
n= =

Then M (L) = Z & [M4+(L)}o, and norjo VI = Z @ [ncrjo V™Iklo, where [My (L))o and
[ﬁ(‘) V"Iklo are nondegenerated parts of M, (L) and norjo V™Ik respectively. They are
not unique. Let I, = [:rjo V*klo, IIs = [M4(L)]o, and there exists a neutral subspace
Z* C Mg such that {Z, Z*} is a pair of Hibert dual and g =11, ® {Z+2*} ® I1,. As

viv| °rj’0 VPl = VVH| °rjo VPl = I ‘r’w_"ovnnK,
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VI, ®Z)and VI (I, Z) c I, & Z. : _
- Similarly to triangle model theory of semiunitary on IIx established by Yan Shaozongl4,
we can find the following generalized triangle model:

S F G B Z

U o C |11

V=1 V, D |’
S*—l Z*

where S,U,V,,C, D, B are independent variants. § is an invertibie operator on Z. U is
a unitary on (I, (,-)). Vs is an isometric operator on (Il,,(-,')). C,D,B are bounded
operators from (Z*, (,-)) to (Ily, (-,-), (ILs, (-,-) and (Z(:, ")) respectively. And

F=-8Cc'U, G=-sctv,,

B= -12- S(-c'c-D'D+2Q), Q=-Q"

Then V = {S,U,V,,C, D, B}. Now we prove that I1, is a Hilbert space and V is a unilateral
operator on II;. As L =IIg © VIl is a positive subspace, M, (L) is a semipositive closed
subspace. Then II; = [M(L)]o is a Hibert subspace. Suppose that V; is not a unilateral
operator on II;. Then there is a Wold decormposition in the case of Hibert space, i.e.
I, =, & U, and V, = Vs/ ® V,n, where V, is a unltary on IIy,, V,» is a unilateral
operator on Il;». And Il = ﬂ VPI,. Then II # {0}, i.e. there exists nonzero vector

z €Il anda:=V"m§,"),n-—0 1,2,...,

n—1

vrad) = 3 sn1iqyialY + Vel
=0
where w( ) e II,,n=0,1,2,.... Then there exists 2, € Z such that
n—1
Z Sn"l_jGKngn) = "2y,
§=0

So z = V"(xzy (n) —2p),n=0,1,2,... ie. 2 € ﬂ V™l = Z@®Il,. This contradicts z € II,.
So V, is a unilateral operator on II,. Hence V {S U,V,,C, D, B} is Wold decomposition
of V. _

Let us prove the residual part of the theorem.

‘Let g = I, ®{Z'+ 2"} ®II, be another generalized standard decomposition such that
V ={8,U, 6V, ,C' D', D'} is another Wold decomposition of V. According to Definition
22, I, @ 2" = V“HK Then

n=

Z'=[ A VMIKN([ A Vgt = 2
n=0 n=0

and S =V|Z = §'. We define quotient spaces | °r<1’0 Vv*Ilg]/Z and [My(L)]/Z, equipped with
n=

~ the indefinite inner product ([z],[y])z = (2,y). Then | oﬁo v*Ilk]/Z is a Pontryagin space
n=

and [M, (L)]/Z is a Hibert space. Let Uy : I,y — | orgo V*Ik]/Z and Uz = [z], Vo € I,.
, n= .

It is the same for Us. Then U; and U, are both unitary operators. We define a linear

operator [V| m V”HK] on [ n V*1lk)/Z such that [Vl ﬂ VnHK] [] = [Vz]. This operator
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is unitary on | °r_‘1’0 VrIk]/Z and U U'UT = [V| ‘Fj’o VPIIk]. It is the same for [V M (L)]

and UpV, U} = [V|M4(L)]. Then U’ and Vs are unitarily equivalent to [V| °rjo V™IIk] and
[V|M4(L)] respectively. This concludes the proof.
For Wold decomposition of V on Iy, we ask ZIl, = oﬁo V*Ig. It assures that unitary
: —

part and unilateral part of V associated with Wold decomposition are uniquely determined
up to unitary equivalence. However, for isometric operator on Ilx there are many generalized
Wold decompositions. We ask if the unilateral parts of V associated with the generalized
Wold decompositions are unitarily equivalent. In the following, we solve the problem and
compare the generalized Wold decomposition with Wold decomposition.

Let V = {S,U,V,,C, D, B} associated with I = I, ® {Z+2*} & II, be Wold decom-
position. We obtain the following theorem. :

Theorem 2.2. Let V be an isometric operator on Il . If there is a generalized standard
decomposition Ilg = Iy & {2’ + Z"™} ® Il such that V = {S',U",V,,,C',D',B'} is a
generalized Wold decomposition of V, then '

1.Hy02 cl,®Z,ZC 2,y Cll,, and § = §'|Z;

2. Vy and V, are unitarily equivalent, where V; is the unilateral part of V associated with
its Wold decomposition. ' '

Proof. 1t is obvious that

°r_%_’0 vrllg = {2|(Vi"z, VIt2) = (z,2),n = 1,2,..., }.
Then
HuIGBZ cll,®Z= ﬂ VnHK
We choose a suitable Hllbert pair {Z', Z"*} such that
M,y e{Z + 7"} C l'Iu ®{Z2+2*}.
Then there is another generalized triangle model V' = {§',U’,V,»,C", D", B"} associated
with
g =1y @ {ZI + Z"*} @ . v
Then Z' @ I,» = Z' ® II,, and V,» is unitarily equivalent to Vy. Hence V,»~ is a unilateral
operator on II,~ either.
I, =g o [II ®{Z+Z*}| cllg o[y & {Z’ Z"}] = gn.
If II, # I,», then II,» ©11, is an infinite dismensional Hilbert space. We choose orthogonal
bases {€,}32; for II,,, © II,. Then
€n = wn+zn+z:: + Pn,
where z,, € I, 2, € Z, 2} € Z* and p, € II,. Since e, LII,, p, = 0. Let yn'= Zn + 20
and [+, ] is the definite inner product associated with Ilx =1, & {Z +2*} ®1l,. Then x,, is
orthogonal to y,, with respect to (+,-) or [-,]. As[en,em] =0, [¥n,ym] =0, n # m. However,
the number of dimensions of {Z + Z"*} at most is 2K. So there exists £, 2 < £ < 2K + 1,
such that y, = 0. Then e, 1{Z+Z*} and .¢; € II,. Hence

(VTneg,VTneg) = (Ufnee,UTneg) = (eg,eg) =1
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In another wé,y according to the generalized Wold decomposition

| | V ={8',U',V,n,C", D", B"},
we have

(Vi"er, Vi'ey) = (Vi eg, V. % eg) =0, n— o0,
which is impos_sible. Hence I, =1II;. So
Zol,=(Zol) c(Zely) =2 0ol =2 oI,
Then Z C Z'. Z' ® Il C Z 11, implies that 1L, C II,. For any p € Il,,
|  Vp=Vip+Gp=Vp+G".

As G"p and Gp € Z' and p’' LZ' for any p’ € Z', then

(Vp,p') = (Vap, ') = (Vanp, p'),

so V, = Vin. Hence V. is unitary: equlvalent to V,. This concludes the proof.

Theroem 2.2 sufficiently shows that the unilatural part of isometric operator on Il is its
intrinsic feature.

Let L, =II, © V,II, be a wandering subspace of V;, and

o0
I, = M3 (L) = § VL.

Obviously L, is a wandering subspace of V either. We define M, (L,) = o\zo V™ Ls and have
the following corollaries. "

Corollary 2.1. (i) dim L, = dim L, (ii) M4(L,) = M+(L).

Corollary 2.2. Let V be an isometric operator on g, V = {S,U,V,,C,D, B} is its
Wold decomposition. Then V has regular Wold decomposztzon ifand only if D =0 or G = 0.

The proofs are obvious.

Below, we will discuss the regular Wold decomposition.

§3. Regular Wold Decompositions of Isometric Operators on Iy

In his doctoral dissertation, B. W. McEnnis showed that the necéssary and sufﬁcxent
condition for an isometry V on II to be of Wold decomposition is II = V V*L® V V" IL
At the beginning of this paper, we have pointed out that it is difficult to venfy this condltlon
Below, we will prove another necessary and sufficient condition for V' to be of regular Wold
decomposition. .

Theorem 3.1. Suppose that V is an isometry on g (its generalized t'rz'angle model
is (1. 1)) and (Go,G1,Gay...,Gn,...) is a linear operator from ®&(I, = I) to Z, where
G, = Z S"’"‘lFTV" ~k and I = Hm OV H . Then, the necessary and sufficient condition

for'V to be of regular Wold decomposztzon is that (Go,G1,Ga,...,Gy,...) is bounded. In
that case there exists a generalized standard decomposition

g =1y & {Z' + ZI*} & {Hml & P}
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such that
s A (B 0) c’ A
‘ u o 0 E' Iy
V= Uml F' 1--[m’ y
Vor 0 P
Sl—l* ZI*
where Vy,n = U is Wold decomposition on the Hilbert suace Il ® P, t.e. Upy s

Vy
a unitary on Il and Vy is a unilateral shift on P.

Proof. Using the generalized triangle model (1.1), we calculate (VIIx )t and V™ (VIIg)™L.
Assume (2},2',9',25) € (VIIg)*; for any vector (21,%,y, z5) € Ilx we have

(Szl,z ) 4+ (Az, 25) + (By, 2') + (C25, 25") + (S* 123, Z7)
+(Us, o) + (B2 a') + (Vo) + (F2h, ) = 0.
Let ¢ = y = 2} = 0. Hence (§%;,2*) = 0, which implies z;* = 0. Again let y = 23 =
z = 0. Hence (Uyz,2') = 0, which implies 2’ = 0. Therefore
(8*7125, 20) + Vet ¥') + (F25,9/) = 0.
Obviously, ¥’ € (I, © Vi, IL,;) and
(5123, 2) + (F23,') = 0.
This is equivalent to 2’ = —SFty’. Thus
L= (VIig)* = {-SF'y' +¢/ly' € (L O Vm Hm)}
By the induction, we obtain
V"L = {(—SF ~ SF'V,, —--- = SFV,.)y' + Viyly' € I}.

It is clear that the necessary and sufficient condition for V0 V"L to be a regular subspace
n=

is that V0 V™L is non—degenerate
e
Now we prove the sufficiency. Let the norm || || be associated with a generalized standard

decomposition
Mg = {Z+Z*} I,
Suppose that z, + y, € 0\70 V™L is a convergence sequence. Since dim Z < oo and II,, is
n= .

closed, we have y, -y € Il,,,, 2, — 2z € Z. Assume that y = 0. Because 0\70 V™I is a closed

n=l
subspace of I1,,,, we can write

[ o]
=3 Vi, oV €1, kin=0,1,2,...
From the isometry of V,, it follows that

lyall? = Zuy‘"’nz — 0 (n — +00).
k=0

Since (G, G1,Ga,- . ..) is bounded, we have Z ka(") — 0 (n — 400). By the ex-

pression of V"L, we know z — 0, which means z = 0. Therefore, V vrLis nondegenerate.
ne0
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. 00
Second we prove the necessity. In the case, we conclude that Y Gy is convergent for
k=0 R
any {yx} € @®I,. If it is not true, then for some &, > 0 there exist my,Ixy < N for any

positive integer N such that

my+in o
I ) Gruwll > 6o for some {yi} € B In.
mpn - 0
Set
_(mn)
£
(N) JN) )y L.
(yo Y1 e Yp ,“'1)— 0'-'v0aym1v ” Z Gkﬂk”v""
_ o
(mn+in)
my+LN
Ymu +zN/|| D kakII,O---).
. mN
Since || > ka;(N)“ =1 and dim Z < oo, there exists a convergent subsequence
k=0

o0 . o0
{3 Gy ™2, of {3 Gryl™}ss_, such taht

o0

Z ka;e(Ne) — 2 #0 (£ = +0).
k=0
But
ol V)2 my+EN mnN+Eny
> Ml 2 =( > Ilykllz)/ll Y Gyl
k=0 my my
my-+E€n
<O lwell®)/83 = O(N — +o0),
my . .
SO

‘00 oo
Eka;c(Ne) + ngy;c(Nz) 2 0,

which is impossible.

(=)
Similar to the above proof, we can show ), ka,(c") — 0 for any {y,(en) ¥ — 0, which
k=0

means that v V"L is non-degenerate.

n=0

If V is of regular Wold decomposition, then

|V Hy
V‘[- V]H

where Hy and H; are Pontryagin spaces, Vj is a unitary on Hg, and V; is a unilateral shift
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on Hi. By‘;the generalized triangle models of V and V;, we obtain

"TSe Ao Bo Co 1 Z 1
Us, Eo | I,
Vmo FO Hmo
V= Se~t1 z3
B St A4 B G %
U€1 E1 Hll
le Fl Hm1
| sy1) zy |
sl [*u] 8] [%e] |2
S1 Ay By C Z
[er ] Ey 1 Il
- Us, Ey IT,,
» [Vmo ] FO ] Hm};
Ving i Fi | | 1 1,
g~ Zo
| 5 ] | 2

Because VIIk contains a maximal semi-negative subspace, zp = 0, II, = 0, and IL,,, is
a Hilbert space. The corresponding decomposition of operator is

V'Ino Hmo
Sl A1 Bl c’1 Zl
Vv = Ugl E] Hgl .
Vm1 Fl Hm;
LA

Thus all conclusions of Theroem 3.1 are proved. _

Corollary 3.1. There is no pure unilateral shift on any Pontryagin space Ilg, 0 < k <
+00. | ’

Theorem 3.2. Suppose that V is an isometry on Ili. Then, the necessary and sufficient
condition for V' to be of regular Wold decomposition is that | Po||, n = 1,2,..., are uniformly

' bounded, where P,, n=1,2,..., are projections from Ilx onto HIV"‘HK, n=12,....
m= N

Proof. This theorem is only a direct corollary of Theorem 4.5 in [4].

Remark 3.1. Using the structure of the proof of Theorem 3.1, we can express the

projections P, = 1,2,... as follows
I An Bn 'Cn
I .
P-,,, = ’
I~ P(Vpnp)J.) F,
. o I

where A, = E,, =0, C, = snF;';P(Vpu_,,)LFns*ﬁ, and
Fo= (VP + VEm2FS™2FS* 4. 4 FSCD)S* " Pus, n=12,....

Below, construct an example to show that regular Wold decomposition does not hold for
some isometric operators on Ilk.

o0
Example 3.1. Set I, = £2 and (z,y) = —2oJo + Y, Lnlin, Where z = (29,1, - ),y =
k=0
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(yO,yl"")- Let : »
Z =span{%(§o +e1)},
z* =SPan{%(€o — e},

P =span{en|n =23, }’

where e, = (0,-++,0,1,0,---).
Obviously, Il = P @ {Z+2Z*}. For any A > 0, construct an isometry on I as follows

A B C
Vi=| Vp F |,
1A

where Vpe,, = ept1, 1 =23, (clearly (VpP): = {es}), F((eo — €1)/v/2) = e (which
implies F™*(e3) = (e + €1)/v/2 and F*(ey) = 0,k # 2). Consequentially,
g
Grea =Y  SEHIF VL e,
k=0
:Sn+1F*€2 = Xn+1(€0 + 61)/\/-2_
and Grer, = 0, k # 2. Hence, the necessary and sufficient condition for (Gg,G1,++ , Gp,- - - )
to be bounded is A < 1.
We can also use the method of structure in the proof of theorem 3.1 to clarify ﬂ V"L.

We have
L =span{—Xeo + e1)/V2 + ez},
V3L =span{—A"+1(eo +e1)/V2+ ensal,

V VAL-span{( Z/\k“ )eo + €1) /\/——I—Zakek+2|2|ak| <oo}

. k=0 k=0
It is clear that Z |)\k+1Ha(n)| — 0, when A < 1 and E [a(")|2 — O(n — +00), which
k=0
shows that V V"L is non-degenerate.
- When A > 1 for example A=2,let

(n
(agn),agn), v ’a‘l(c,n) °")=(0 «,0, 1/'2n+1 )_)0

But 3> A+1a{™ = 1, which implies v VrL = Z & (@VEP).
k=0
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