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A FREE BOUNDARY PROBLEM FOR 
ONE-DIMENSIONAL EQUATIONS OF A VISCOUS GAS

W a n g  J u n y u * * * J ia n g  J i e * Lu X ia n r u i*

A bstract

Utilizing the unique solution (w(s), z(s)) to the singular nonlinear two-point boundary value 
problem (1.11), the authors construct a unique self-similar solution (ip(t),v(x, t), u(x, t)) =  
(Y f,w (^ ),u (j))  to the free boundary problem (1.1)-(1.6), in which (1.1) and (1.2) are one
dimensional equations of a viscous gas. The arguments are elementary which involve only the 
use of the shooting method and the integral representations for (t«(s),z(s)).
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Self-similar solution, Shooting method.
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§1. Introduction and Main Results
In this paper we consider a free boundary problem of the form

vt - u x =  0 in D, (1.1)

ut + (p(v))x =  (tNk(v)\ux\N~1ux)x in D, (1.2)

v(x,0)  =  В > A  for x > <p(0) =  0, (1.3)

u(x, 0) =  0 for x > (p(0) =  0, (1.4)

v\x=v (t) =  A  for t >  0, (1.5)

gN(M, - i ivl!(?))|wa.|JV“1tiI ,a ) |I=v(t) =  for t >  0, (1.6)

in which D  := {(ж,*); x > <p(t), t >  0}, <p(t) is unknown a priori and must be determined 
as part of the solution,

gN(M, р ,а )

’ M  -  — L k W i A l p W - W  -  Qt/J, if N  <  1,

< M — 2k(A) log /3 — a(3, if N  =  1,

M+ -  -  ав ,  if N  >  1,

(1.7)

and M+ =  max{M, 0}. The system (1.1)-(1.2) represents the one-dimensional flow of a 
viscous gas in the Lagrange coordinates x and t. In this system, v,u,p(v),  and k(v) denote 
the specific volume, the velosity, the pressure, and what we call the coefficient of viscosity of
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the gas, respectively, and the right hand side of (1.2) stands for the Von Neumann-Richtmyer 
viscosity (see [1, p. 232]).

Here we make the following hypotheses:
(Hi) p(v) >  0, k(v) > 0, and p'(v) are all continuous functions defined in (0,+oo); 

moreover, p{A) — p(s) >  0 for all s 6 [А, В].
(H2) N  > 0, and a  >  0, M  is an arbitrary real number when N  < 1 and M  > ^

when N  >  1.
Obviously, the hypothesis (Hi) is satisfied by an ideal polytropic gas where 

p(v) =  Pv~J, P  > 0, 7 > 0; k(v) =  K v ~ 6, K >  0, 6 >  0,

and by any non-ideal viscous gas. Problems on motion of a compressible viscous fluid 
(usually, gas) have been studied by a number of authors. For details, see [2, 3, 4] and their 
references. However, problems such as the free boundary problem (1.1)-(1.6) have not been, 
to our knowledge, condsidered before.

Our main result is as follows.
Theorem  1.1. The free boundary problem, (1.1)—(1.6) has a unique self-similar solution 

of the fom

(<p(t),v(x,t),u(x,t)) =  (YAt,v(y),u(y)) ,  y =  (1.8)

where the pair (YA,v(y)) is a unique solution to the free boundary problem for an ordinary 
differential equation

{ k ^ y v ' ^ ^ y v ' ) '  =  - y V  -p ' (v )v ' ,  у > Y a ,)

■»(+oo) =  B  > А, 'и(Уд)' =  A >  0, 

gN{M,k(v)\yv'\N- 1yv\  a)|j,=yA = Yj,
(1.9)

and the function u(y) is defined by

u(y) := f
Jy

+00
sv'(s)ds for  у > Ya . ( 1.10)

Moreover, Ya >  0, both v(y) and —u(y) are strictly increasing in у > YA if N  <  1; if 
N  > 1 there is a number Yb  >  YA such that v(y) and —u(y) are both strictly increas
ing in у  G [Ya , Yb ] and v(y) =  B, u(y) =  0 for у >  Yb - In order to express explic
itly the dependence of the unique self-similar solution upon M and a, we denote it by 
(YA(M ,a) t ,v (y ,M.a) ,u(y;M ,a)) ,  у =  f .  Then YA(M,a),  -v(y-,M,a), and u(y;M,a)  
are all increasing in M  and decreasing in a.

To establish the above-mentioned theorem, we need to explore the two-point boundary 
value problem

w'(s ) =  - p'(s) -  *2(«)* * e  [A,B),

2,W = ( M V /W
w(s) /

z(s), s e  [A,B), ( 1.11)

z(A) =  y/gN{M,w{A) ,a),  w (B ) =  0.̂

In section 2 we shall prove that a somewhat more general two-point boundary problem has 
a unique solution, employing the shooting method, and exhaust the continuous dependence 
of the solution upon M  and a. In the last section we shall construct a self-similar solution
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to the free boundary problem (1.1)—(1.6), utilizing the unique solution to the two-point 
boundary value problem (1.11).

§2. Two-Point Boundary Value Problem
In this section we consider a two-point boundary value problem of the form

w'(s) =  -p '(s)  -  z2(s), s 6 [A,B), (2.1)

*'(«) =  f ( s ,w ( s))z (s), s e  [A,B), (2.2)

z{A) =  y /g (M,w(A) ,a ) ,  w(B) =  0, (2.3)

where the following hypotheses are adopted:
(H3) f ( s , w ) is a positive continous function defined in [A,B) x (0 ,+oo) such that it 

is (strictly) decreasing and locally Lipschitz continuous in w, and p(s) satisfies hypothesis
(Hi).

(Щ) g(M ,/3,a) is a continuous function defined in (—oo, +oo) x (0,-t-oo) x [0, +oo) such 
that it is increasing in M  for each fixed /3 and a, and it is strictly decreasing in /3 and in 
a, respectively, when the other two variable are fixed. Moreover Urn g(M,(3, a) >

for some M  and each fixed a, and there is a positive number /Зо such that g(M,fio,a) =  0.
Obviously, the two-point boundary value problem (1.11) is a particular case of the problem

(2.1)-(2.3), since in the particular case the functions f (s ,w)  =  and g(M,j3,a) =
дн(М,/3, a)  satisfy the hypotheses (H3) and (H4), respectively.

Lem m a 2.1. For each fixed S  € [A, B], W  > 0, and Z >  0, the initial value problem 

w'(s) =  - p'(s) -  z2(s), s € [A,B), (2.1)

*'(«) =  /(s>w (s))*(s), s e  [A, В ), (2.2)

'l°|s=s =  W, zja=s  =  Z  (2.3S)
has a unique solution (w(s), z(s)), which can be represented by

i(s) =  W  +  p(S) -  p(s) -  j z2(t)dt,
Js

z(s) =  Z  • exp j  j  f(t ,  w(t))dt^ ,

(2.4)

(2.5)

and depends continuously on S ,W ,Z.  If the maximal interval of existence for the solution
is denoted by (S i, £2), then either Si =  A(S2 =  В ) or lim w(s) =  0 (lim w(s) =  0).

slSi sTS2
P roof. The proof can be found in book [5].
Lem m a 2.2. Let (w(s; fi), z(s] /3)) be a (unique) solution to the initial value problem

w'(s) =  -p '(s)  -  z2(s), s € [A,B), (2.1)

z'(s) =  f ( s ,w (s ) ) z (s), s e [A ,B ) ,  (2.2)

w\s=A =  P > 0 ,  z\s=A =  \/g(M,(3,a).  (2.3A)

If fix >  /?2 >  0, then w(s\(31) >  w(s\j32) and z(s\fi1) < z(s,(32) for all s in the maximal 
interval of existence for the solution (w(s ; /З2), z(s; /З2)).

P roof. If the first assertion is not true, then there will be a point s =  S in the maximal 
interval of existence for the solution (iu(s;/32),z(s;/32)) such that w(s;/3i) > w(s\ (32) in
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[Д* S) and w(S;(3x) —,w(S;(32), since w(A] (3i) — > (32 =  w(A)/32). Whence it follows by
(2.4) and (2.5) that

(2 .6)

^ M i ) = ^ ( M ; /?ь а) • exp u :  i))dtj

<y/g(M-,pi ,a)  -exp /(t,w (i;/32))cftj =  z{s \p2)

for all [Д, 5) (since g(M,f3i ,a )  < g(M,(32,a)),  and

f s
0 < /3 1 - / 3 2 = /  [*2(s;/3i) -  z2(s\(32)]ds < 0.

J A
This is absurd and hence the first assertion is true.

The second assertion is an immediate consequence of the first one, as has been pointed 
out by (2.6).

Lemma 2.3. The two-point boundary value problem (2.1)-(2.3) has a positive solution, 
denoted by (w(s ; M, a), z(syM,  a)), under the hypotheses (H3) and (H4).

Proof. Define the set E  := {/3 > 0; w(B,/3) >  0}. Let /Зо be a positive number such 
that g(M,(3o,a) =  6. Then (3q € E, i.e., E  is nonempty, since, according to (2.4) and
(2.5), z{s\(3<f) =  0 and w(s; /30) =  p(A) — p(s) -f /Зо > 0 for s E [A, B], Now we claim that 
/3* := inf.12 > O. Tf not so, then (3* — 0 and hence w(s; 0) >  0, by Lemma 2.1. Thus it 
follows by (2.4) and (2.5) that for all s € [A, B]

since g(M,/3,a) satisfies (Не) for some M  and a, i.e.,
p(A) -  p(B)

И т0(М ,Да;) >

and hence
В -  A

r B
0 < w (B \0) =  p(A) — p{B) — / z 2{s\0)ds < 0,

Ja
which is impossible.

we prove that the solution (w(s; /3*), z(s; /3*)) is a positive solution to the two-point 
boundary value problem (2.1)-(2.3). Clearly, it is enough to show that w(B; /3*) =  0; If 
w(B] /3*) > 0, then there will be a positive number /3 < /3* such that w(B] (3) — \w(B\ /3*), 
by Lemmas 2.1 and 2.2, i.e., /3 € E, which contradicts the definition of /3*. This thus com
pletes the proof the lemma.

Lemma 2.4. Let both (wi(s), zi(s)) and (w2(s), 22(e)) be solutions defined on [а, Ь] C 
[A,B\, to the equations (2.1) and (2.2). If Wi(a) — w2(a) andw%(b) =  w2(b), then w2(s) =  
w2(s) for all s G [a, 6].

Proof. If this is not the case, we may without loss of generality assume that wi(s) < w2(s) 
in (a,b). Whence it follows by (2.1) and (2.2) that

w[(a) < w'2(a), z\ (a) < z2(a), ^i(s) > z2(s) in (a, 6),

0 > u;i(s) — w2(s) =  f [zf(t) — zl(t)\dt > 0 in (a ,b),
J 3 '

and
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which is absurd. The proof is complete.
Lemma 2.4 implies the uniqueness of the solution (w(s; M, a) ,z (s ; M,  a)) to the two-point 

boundary value problem (2.1)-(2.3).
Lem m a 2.5. If w{A \M \ ,ol) >  w(A\M2,ct), then
(i) w(s;Mi ,a )  > w(s]M2,a)  for s e  [A,B),
(ii) z (s \M \ ,a )  > z (s \M 2,a )  for s e [A ,B ) ,
(iii) Mi > М2 .
Proof. If the assertion (i) is not ture, then there will be a point S  € (A, B) such that 

w\(S)  =  W2 (S) and wi(s) >  w2(s) in [A, S), and hence wi{s) =  w2(s) and z\(s) =  z2(s) in 
[S, B), by Lemma 2.4, where (wj(s), Zj(s)) := (w(s; M j,a) ,  z(s; Mj,a)) ,  j  =  1,2. Whence 
it follows by Lemma 2.1 that wi(s) =  w2(s) on [A ,В ], which contradicts the assumption 
vji(A) > w2(A). Thus, the assertion (i) is true.

(2.4) and (2.5) give
r B ps  ,

WM )  =  v{B) -  p (A) +  g(Mj,Wj(A),  a)  /  exp{2 /  f( t ,  Wj(t))dt}ds,
Ja Ja

3 =  1, 2.

Whence it follows by (i) that

zf(A) — g(M i,w i(A) ,a )  > g(M2,w2(A) ,a ) =  z$(A),

g (M i,w i(A) ,a )  -  g(M2,wi{A), a )

>g(M2 ,w 2(A),a) -  g(M2,wi(A),a) >  0 (2.7)

by the hypothesis (H4) . This shows that M\ > M2, i.e., the assertion (iii) is valid.
If the assertion (ii) is false, then there will be a point s =  S  € (A, В ) such that zi (S) =  

z2(S) in [A, S), by (2.7). Hence it follows by (i) and (2.5) that

zl(s)  -  z$(s) =z?(S)  |exp j 2 /(t,u)i(i))dt j  -  exp j 2 ^  f ( t ,w 2(t))dt^

<0 for all s >  S,

i.e., — [wj(s) — гс?2(s)] <  0 for all s >  S. Integrating the above over [S,B] yeilds (S) — 
w2(S) <  0, which contradicts the assertion (i). This shows that the assertion (ii) is true.

Lem m a 2.6. If M\  >  M2, then
(i) ' w (s \M i ,a )  > w(s-,M2,a)  for  s £ [ A , B ) ,
(ii) ' z(s-,Mx,a) > z(s-,M2,a)  fo r  s 6 [ i,B ) .
Proof. Using the reductio ad absurdum, we conclude that w(A] M i,a )  > w(A’,M 2,a),  

by Lemmas 2.4 and 2.5. Whence it follows again by Lemmas 2.4 and 2.5 that the assertion 
(i)' and (ii)' are true.

In the same way, we can prove the following two lemmas.
Lem m a 2.7. Ifw(A-,M, cci) >  w(A\M, a 2), then
(iv) w(s] M, c*i) > w(s; M, ot2) for  s € [A,B),
(v) z ( s ;M ,a i )  > z ( s \ M ,a 2) for  s e [ i4 ,5 ) ,
(vi) «1 < « 2-
Lem m a 2.8. If a t  <  a 2, then
(iv) ’ w(s] M ,a \ )  > w(s] M, a 2) for  s € [Л, B),
(v) ’ z ( s ]M ,a i )  > z(s- ,M,a2) for  « 6  [ i ,B ) .
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We can summarize the above results in the following statement.
Theorem  2.1. Suppose that the hypotheses (H3) and (H4) hold; Then the two-point 

boundary value problem (2.1)-(2.3) has a unique positive solution (w(s]M ,a), z(s; M, a)). 
Moreover, both w (s )M ,a ) and z(s; M, a) are increasing in M  and decreasing in a.

Finally, we prove the following statement.

Theorem  2.2. Suppose further that f ( s , w ) =  ( ^ 7̂ )  ̂ . Then z(B  — 0,M ,a )  =  +00 
when N  < 1 and z(B  — 0; M, a) < +00 when N  >  1.

Proof. We first consider the case N  <  1. If z{B  — 0; M , cc) < + 00, then w'(B — 0; M, a) 
is finite, by virtue of (2.1). Choose a number 9 such that 9 >  |w'(s; M, a)| for all s  G [А, В ). 
Then 9{B — s) > w(s] M, a)  for all s G [A, В ]. Hence it follows by (2.5) that

ГЛ k(s) l /N
ds < [ B (  Ш  . Л

Ja \ w { s ] M , a ) J

l/N
< +OO.

9 { B - s ) )  ' JA \w(s-,

This is impossible, because k(s) > 0 on [A, B] and N  <  1.
We now consider the case N  >  1. If z(B  — 0; M, a) =  + 00, then w'{B — 0; M, a) =  —00, 

and thus there exists a point s =  S E [A, B) such that w'(s; M,a)  +  1 <  0 in [5, B), i.e., 
w(s; M,a) > В  — s for all s >  S.

z(s; M, a) =z(S; M, a) exp 

<z(S]M,  ck) exp

which contradicts the assertion z(B — 0; M, a) =  + 00. 
Up to now the proof is complete.

§3. Proof of Theorem 1.1
In this section we contruct a self-similar solution to the free boundary problem (1.1)—(1.6), 

utilizing the unique positive solution to the two-point boundary value problem (1.11).
By a solution to the free boundary problem (1.1)-(1.6), we mean the triple (ip(t),v(x,t), 

u(x, t)) satisfying the following conditions:
(a) (p(t) is a continuously differentiable function defined on [0, + 00) with y>(0) =  0.
(b) both v(x,t)  and u(x,t)  are continuously differentiable functions defined in D \ { ( 0, 0)} 

and k(v(x,t))\ux(x,t) \N~1ux(x,t) admits a continuous derivative with respect to x in D, 
and

(c) the triple itself satisfies (1.1) - (1.6).
Similarly, we call the pair (YA,v(y )) a solution to the free boundary problem (1.9), if it 

satisfies the conditions:
(a) Уд is a positive number,
(b) v(y) is an increasing, continuously differentiable function defined on [Уд,+ 00) and 

k(v(y))\yv'(y)\N~1yvl(y) admits a continuous derivative in (Уд,+ 00), and
(c) the pair itself satisfies (1.9).
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Theorem 2.1 asserts that the under the hypotheses (Hi) and (H2) the two-point boundary 
value problem

w'(s) =  —p'(s) — z2(s) for s € [A, B), (3.1)

\ w
а д у /я

м ;
z(s) for s € [Л,В), (3.2)

z(A) =  v>(B)=0  (3.3)

has a unique positive solution (w (s ]M ,a ) , z ( s ]M ,a )), in which z(s;M,a)  is strictly in
creasing in s and in M, and strictly decreasing in a. Consequently, the function s =  
v(y ,M, a), inverse to у =  z(s-,M,a),  exists in (YA(M, a), Yb {M,o)), where YA(M ,a)  := 
z (A;M,a)  and Yb (M , cx) := z (B  — 0]M,a).  Theorem 2.2 tells us that Yb (M ,oc) =  +00 
when N  <  1 and Yb (M , o)  <  +00 when N  >  1. When N  > 1, it is stipulated that 
v(y\M, a) =  В  for all у >  Yb (M, a). Clearly,

v(YA(M,a)-,M,a) = A,
(3.4)lim v(y; M ,a )  =  В  and lim v'(y, M,  a) =  0 

y}YB 2/T y b

since for all у  € [YA(M, a), Y s { M , a ))

у  =  z{v{y\ M,  a); M, a) and v'(y, M ,a)  = > 0. (3.5)
z'(s; M,a); M, a)

This shows that v(y;M,a)  is continuously differentiable on [yA(M, a), + 00) and strictly 
increasing in у <  Yb (M, a).

Define
f B

u ( y ] M , a ) =  I z(s-,M,a)ds  (< (B -  A)1̂ 2{w(A) +  p(A) -  p(B))1/2). (3.6)
Jv (y \M ,a )

Then —u(y,M ,a)  is also continuously differentiable on [YA(M,a),  + 00) and strictly in
creasing in у <  Yb (M , oi), and « (+ 00; M, a) — 0; when N  > 1, u(y;M,a ) =  0 for all 
y > Y B{M, a).

We now study the dependence of YA(M, a), v(y; M, a), u(y\ M, a) upon M, a.
Clearly, YA(M,a) — z (A ]M ,a)  is strictly increasing in M  and strictly decreasing in a. 
If Mi >  М2, then

z{v(y \М 2, a); М 2, a) -  z (v (y ,M1,a)-,M2, a )

= z (v (y ;M i ,a ) ;M 1,a)  -  z(v(y,Mi,a)- ,M2,a) > 0 for all у > YA(M, a) 

by (3.5), i.e., v(y ,M 2, a ) >  v (y ,M i ,a )  for all у > YA(Mi,a),  and hence, 

u(y,Mu a) - u ( y ; M 2,a)
pv(y\M 2,a) pB

=  /  z ( s \ M i ,a ) d s +  J [z{s\M\,a) -  z(s\M2,a)]ds
J v (y ,M i ,a )  Jv (y ,M 2 ,ot)

>0 for all y > Y A(Mi,a) .

If oil > a 2, then

z(v(y; M, cci); M, a x) -  z(v(y; M, a 2); M, а г)

=z(v(y;  M, « 2); M, a 2) -  z(v(y, M, a 2); M, a x) > 0 for all у > YA(M , a 2)



418 CHIN, ANN. OF MATH. Vol.14 Ser.B

by (3.5) again, i.e., v {y ,M ,a \ )  > v(y;M, a 2) for у > YA(M,a),  and hence

u(y,M, a 2) - u ( y ,  M,ati)
pv(y ;M,ai )

z (s ; M, a i ) d s +  / . [z(s] M , a 2) — z(s;M,ai)]ds
Jv{y ,M,ax)

>0 for all y > Y A(M ,a2).

Next, we prove that the pair (Уд, v (y)) (Уд (M , a), v(y; M, a)) is a solution to the free
boundary problem (1.9).

Substituting s — v(y) into (3.1) and (3.2) yields

V (v(y)) =  ~p'(v(»)) ~  У2 for y e [ Y A,YB), (3.7)

- ™{v(y)) =  k(v(y))\yv'(y)\l/Nyv'{y) for y&[YA,YB), ' (3.8)

and hence,

(k(v(y))\yv'(y)\1/Nyv'(y)y =  w'(v(y))v'(y)

=  ~ ( y 2 +p'(v(y)))v'(y)  for у e  [Ya , 7 b ); (3.9)

when N  >  1, the above equations read all 0 =  0 for all у >  Yb ■ The equations (3.8) and (3.9) 
show that the function k(v(y))\yv'{y)\N~l yv'(y) is continuously differentiable on [Уд, +oo). 

From (3.3), (3.7), and (3.8), it follows that

gN(M,k(v(y))\yv'(y)\N- 1yv,(y),a)\y=YA =  YA-

To sum up, the pair (YA,v(y )) is a solution to the free boundary problem (1.9).
Finally, let us define the triple given by

(<p(t),v(x,t),u(x,t)) =  (YAt,v(^),u(^)),  (3.10)

where (YA,v(y))  is a solution to the free boundary problem (1.9) and u(y) is defined by
(3.6) or (1.5). It is easy to verify that the triple (3.10) is a self-similar solution to the free 
boundary problem (1.1) - (1.6).

Up to now, the proof of Theorem 1.1 is complete. Evidently, Theorem 1.1 is still valid, if 
the function ft, a)  is replaced by the function g(M, ft, a ) which satisfies the hypothesis
(H4).
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