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Abstract

The author first establishes an existence and uniqueness theorem of positive fixed points and
a theorem about the structure of positive eigenvectors for noncompact decreasmg operators,
and then, offers some applications to nonlinear integral equations on unbounded regions.
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"§1. Introduction

Let the real Banach space F be partially ordered by a cone P of E,ie,z<yiffy—z € P.
Let D C E. Operator A : D — E is said to be decreasing if z; < @3 (1,22 € D) implies
Azy > Azqe. Recall that cone P is said to be normal if there exists a positive constant. NV
such that § < z < y implies ||z|| < N||y||, where 6 denotes the zero element of E and N is
called the normal constant of P. For details on cone theory, see [1].

In paper [2], an existence and uniqueness theorem was established for decreasing and
completely continuous (i.e., continuous and compact) operator A : P — P, which satisfies:
forany 2 >0 and 0 <t < 1 there exists n = n(z,t) > 0 such that .

A(tz) < [t(1 + )] Az. | | (1.1')

This result was applied to a nonlinear integral equation on finite interval WhiAchb is of interest
in nuclear physics (see [2], Theorem 2 and Example 2). N

In this paper, we will use a quite different method to drop the condition of complete
continuity of ‘A by strengthening the condition (1.1) in- some sense.- ‘In addition to the
existence and uniqueness theorem (see Theorem 2.1 in Section 2), we get more information
about the structure of eigenvectors (see Theorem 2.2 in Section 2). Finally, we offer some
applications of Theorems 2.1 and 2.2 to nonlinear integral equations on unbounded regions
in which the corresponding integral operators are usually noncompact (see Theorem 3.1 in
Section 3).
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§2. Main Theorem

Theorem 2.1. Suppose that (a) cone P is normal and operator A : P — P is decreasing,
(b) A8 > 0, A%0 > e9Al, where g9 > 0 and (c) for any 0 < a < b < 1 there exists
n = n(a,b) > 0 such that

A(tz) < [H(1+n)] Az, Vi€ [a,b],Vt € |9, AF)]. (2.1)

Then A has ezxactly one fixed point z* in P and z* > 6. Moreover, constructing successively
sequence x, = Atn_1 (n=1,2,3,---) for any initial o € P, we have

|z, —2*|| =0  (n— o). (2.2)
Proof. Letting '
{ ug = 0, u, = Aup_1 (n=1,2,8,---)
and observing the decreasing property of A, it is easy to see that ‘
B=uygSup <+ - Sugn <+ SUgpyr <o Sug Sy = A6 (2.4)
By condition (b), ' |
Ug > €quy > 0,> (2.5)
so, (2.4) and (2.5) imply » |
| Ugp 2 E0Un+1 (n=1,2,3,---). (2.6)
Let t, = sup{t > 0: ug, > tugn+1}. Then
Uzn 2 tnlonil (n=1,2,3,---) (2.7)
and, on account of (2.4) and (2.6) and the fact

U2n42 2> Uzp > tn'u'2n+1 2> tnu2n+3a'

we have
0<e <t <t2<---Lt <0 <1, (2.8)
which implies that
lim =1 | (2.9)

exists and 0 < t* < 1. We check -

_ t*=1. (2.10)
In fact, if t* < 1, then t, € [eo,t*] (n = 1,2,3,---), and so, by virtue of (2.4), (2.7) and
condition (c), there exists an 7 > 0 such that

Upnt1 = Atz < Altntznt1) < [Ea(l+ 1) Augnts
= [ta(1 + )] uzn+2,
ie.,
Ugnt2 2 tu(l +0)Uant1 > ta(l + N)uznis,

which implies |

tn+1 > tn(l + 77)‘ (n = 1)2: 3, e )7
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and therefore ‘
tatr 21+ 0)" 2 eo(l+n)" (n=1,23,--).
Hence t,, — +00, which contradicts (2.8), and so (2.10) is true. Now, (2.4) and (2.7) imply
0 < Ugni2p — Uzn < Uzng1 — Ugn < (1= tn)Uznyr < (1 —1,)A0,
and so , v
luzn+2p — uznll < N(1 - 2,)]|46]], (2.11)

where N is the normal constant of P. It follows from (2.11), (2.9) and (2.10) that lingo Ugp =
u* exists. In the same way, we can prove that hm D Uzntl = v* also exists. Since

ugn <u* <v* < ugptr,
we have .
0 <v* — u* < ugpyy — Uz < (1 —t,)A0,
so
llv* —w*| S N(1—1,)[| 48] -0 (n — o0).
Hence v* = u*. Let 2* = u* = v*. Then z* > 6 and
‘ Ugn S T* < Upngr (R=1,2,3,-+:).
Consequently,
Ugnt1 = Aoy > Ax* > Algni1 = Ugni2 (n=1,2,3,---),

and, after taking limit,

‘ z* > Az* > z*.
Hence Az* = z*, i.e., 2* is a fixed point of A.

Let T be any fixed point of A in P. Then % > 0, and so

g =0 <T=AT < A0 = uy.

- It is easy to show by induction that
Uzn < T < Ugp41 (n=1,2,3,---),

which implies by taking limit that T = z*
. Finally, we prove that (2.2) is true. Let zo > 0. Then

u0=0§a:1=Aa:05A0=u1
and uy < 23 < uy. By induction, we havg
U2n S Ton S U2n—1; U2n S Z2n+1 S U2n+1, (n = 1721 3’ vt ) (212)

Hence, (22) follows from (2.12) and the fact that P is normal and uz, — =* and ugs41 — z*.
The proof is complete.

Theorem 2.2. Let the conditions (a) and (b) of Theorem 2.1 be satisfied. Suppose that
(c') for any0 < a <b< 1 and 0 < s < 1, there ezists an n = n(a,b, 8) > 0 such that

Ato) < [t(1+n)| 4, Ve [o,b),a € 9,57 48], (2.13)
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Then, for any A > 0, equatz'bn
Az =z S : (2.14)

has ezactly one solution xy in P and ) > 6. Moreover, we have
(1) x» is strictly decreasing, i.e., 0 < Ay < Ay implies zx, > T»,;
(ii) =z is continuous, i.e., A — Ag (Ao > 0) implies ||zy — @, || = 0;
(iii) |lzall = 0 as A — 4o00.
Proof. For A > 1, we have

540 < 48, A(XA()) > 4202 codd, |
1 /1 1
5 (XAQ) > co546. (2.15)
For 0 < X < 1, condition (c¢’) implies that there exists an 7y > 0 such that

A%0 = A(,\ ‘ %A‘O) <AL+ m)]‘lA(-l-Ao),

A
and so
XA(XAO) > (1+70)A20 > A%0 > £0A0. (2.16)
It follows from (2.15) and (2.16) that ‘
1 /1 1, :
-XA(,XA()) 2ery4,  VA>Q, (2.17)
where
ex = min{eg, Ago} > 0. o (2.18)

Hence, operator -1—A satisfies all conditions of Theorem 2.1, and therefore, Theorem 2.1.

implies that equation (2.14) has exactly one solution z in P, z) > 0, and, by (2.4),
1

1 1 |
9 < XA(XAO) Soa< 348, VASO. (2:19)

Let 0 < A; < Az and o = sup{t > 0: z), > ta}Az}. Then z), > toz), and, by (2.19) and
(2.17), SN '

A€,
v A1 _
We prove ¢y > 1. In fact, if 0 < ¢p < 1, then condition (c’) implies that there are 7, > 0 and
72 > 0 such that .

0<

<ig < +o0.

A(tozs,) < fto(1 +m)] Az,

= [to(1 + m)] " A2z,

A(ﬁtow») s [i_:t"(lJr"z)]_lAm‘

Az
= Aafto(1 + ’ﬂz)]?ﬁr
So, V

to to ) A1 )
Ty, 2 A_zA(tOm)\z) 2 X;Aw)q = 'X;tom)\u '

A -
Aoy, = Ay, < A(-X:-tow)\l) < Aalto(1 +m)] T, -



No.4 Guo, D. J. FIXED POINTS AND EIGENVECTORS OF OPERATORS 423

Consequently,
L . Tx 2 to(1+ M)z, |
which contradicts the definition of to. Thus to > 1, and zy, > z,. If z), = z),, then
Aizy, = Awzy; = Azmy, = Az, = Agz),, which is 1mposs1ble Hence z5, > -x), and
conclus1on (i) is proved.
* Now, 0 < A; < Ap implies 2, > z),, and so
A1z, = Az, < Az, = )\2:1:)‘2..

Hence, by (2.19),
' Ag 1 1
| 0 < zx, — (x ~ 1oy, < (:\: - Xz-)A(),
which implies
1
lea, — 2, )l < N(X— |
Thus, ||zx, — .|| — 0 as Az — A; +0 and also as A\; — Az — 0. This shows that conclusion
(ii) is true. ‘ Ly
Flnally, conclusion (iii) follows from the followmg 1nequahty

1 )||’A0||, Y0 < Mg < e
2

lzall < —~||A0||, VA >0,

which is obtained by (2. 19) The proof is complete
Remark 2.1. It should be pointed out that in Theorems 2. 1 and 2.2 we do not assume
operator A to be continuous or compact.

§3. Applications

Consider the nonlinear integral equation in whole Euclidean space IR™.

Az(t) = / k(t,s) Zaz(s)(m(s )a‘} ds, (3.1)

=0
where

O=ap< 01 < " <Op-1 <Gy =1, ‘ (3.2)

k(t, s) is measurable and non-negative on IR?" and satisfies

0 < sup k(t, s)ds < 400 o (3.3)
tclR™ JR»
and . - -
lim |k(2, s) — k(to, s)|ds = 0, to € R™; o (3.4)
ai(t) (¢=0,1,--- ,m) are non-negative bbunded measurable functions on R™ and
ess_ ]~R1§1f ao(t) > 0. o | (3.5)

Here ésgE I.Ri’Pf ag(t) = sup{m : ap(t) > m, a.e. on R"}.
Theorem 3.1. Under the conditions mentioned above, for any A > 0, equation (3.1)
has ezactly one non-negative bounded continuous (on R“) solution m,\(t) and the following

conclusions hold:
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(a) zA(t) # 0; constructing successively sequence of functions

zy,;(t) = :1\—/;” k(t, s){ Zai(s)(w)‘,j_l(s))a.-}—lds (1=1,2,3,) (3.6)

i=0
for any initial non-negative bounded continuous (on IR™) function zx(t), sequence {x) ;(t)}
converges to z(t) uniformly on R";
(b) zx(t) is strictly decreasing with respect to X, i.e., 0 < Ay < A implies z», (t) > z, (t)
(t € R™) and z,(t) # =, (2); '
(c) zA(t) is continuous with respect to A, i.e., A — Ag (Ao > 0) implies

sup |za(t) — z,(t)| — 0
teR™

(d)
Ali&o tsetg)n zA(t) = +oo, (3.7
lim sup z)(t)=0. (3.8)
A—++00 teR»

Proof. Let E be the Banach space of all bounded continuous functions z(t) on IR™ with
norm

]| = sup |a(t)|
teRn
and P = {z € E: z(t) > 0,t € IR"}. Then, P is a normal cone in E. Define operator

Az(t) = /R G s){iai(s)(w(s))“‘}_lds. (3.9)

=0

It follows easily from (3.2)-(3.5) that A is a decreasing operator from P into P. Let

M = sup k(t,s)ds < 400,
teR~ JR»
ao = esste}é.nf ao(t) >0
and

a; =ess -sup a;(t) < +o0,
teR.
where ess - sup a;(t) = inf {L : a;(t) < L, a.e. on IR"}. Then, it is easy to see that A6 > 6
t€R.
and A2%0 > ¢y A, where

€0 = ao{ i ar M (a-o)-ai}“l > 0. - (3.10)

i=0
So, conditions (a) and (b) of Theorem 2.1 are satisfied.
Now, let 0 < a <b < 1and 0< s <1 be given and let

: ™ -1
n= Tio(l - b){l—iob + bz a;‘M""' (s&o)“"} > 0. (311)

i=1

For any t; € [a,b], € [, 31 A0], we have
o< < / k(t, 8)(ao(s))"1ds < M(s)™),  te ™ (312)
Rn
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and

Atsa(t)) f K, s){ao(s)+2a,(s)t°“(m(s e}

t=1

/ k(t, s) ao s)+Za,(s)(m )“‘} ds.. | - (3.13)

i=1
On the other hand, from (3.11) we know

(-l]); -1- ﬂ)ﬁo = néa;?M“"(sEo)““‘,
and so, by (3.12),

(5-1-Meu 20N aelo)™,  se R

which implies

2aos) + Zaz(sxw(s))“- > (1+m){ao(s) + Zaxs)(z(s))“'}
s€ R  (3.14)

It follows from (3.13) and (3.14) that
| Attia(®) < (L + 7)™ f k() {ao(s) + 3" ai(s)a(s))® )} " ds

i=1
= [t1(1 +n)) " 4=(t), teR™ | (3.15)

So, condition (c') of Theorem 2.2 is satisfied. Consequently, Theorems 2.1 and 2.2 imply
that conclusions (a), (b), (c) and (3.8) are true. It remains to prove (3.7). Suppose that
(3.7) is not true. Then, by conclusion (b),

)\1—1»1-?-0 llzall = )\lil-?-(] tzg zA(t) = Mp < +o0 (3.16)

and
0<Lz\(t) S My,  VA>0,teR" (3.17)
For 0 < A < 1, we define

m _ .
m = 'a_o(]. - A){EOA + AZ a: gi} 1. (318)
i=1

Similar to the establishment of (3.15) (using (3.17) instead of (3.12) and letting b = A), we
can prove that

AQdzy) < M1 +m)] 14z,  0<A<L (3.19)
By virtue of (2.19), Az < A6, and so
A(Azy) > A%0 > g9 A0, (3.20)

“where ¢ is given by (3.10). It follows from (3.19) and (3.20) that
1 .
z) = -)-‘-Aa:)‘ > (1 +m)A(z)y)
> eo(1 + ma)AS, 0<A<],
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and therefore
leall 2 eo(1+m )l 48], ~ 0< A<,

which implies ||wA|| — 400 as A — +0 since, by (3 18), 7\ — +oo as /\ — +0. This

contradicts (3.16), and hence (3.7) is true. The Proof is complete.
Remark 3.1. It is easy to show that under the conditions of Theorem 3.1 operator A is

continuous (from P into P), but usually A is noncompact.

REFERENCES
(1] Guo Dajun & Lakshmikantham, V., Nonlinear problems in abstract cones, Academic Press, Inc., Boston

and New York, 1988.
[2] Guo Dajun, Some fixed pomt theorems and applfcatlons, Nonlinear Anal. TMA, 10 (1986), 1293-1302.



