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POSITIVE FIXED POINTS AND EIGENVECTORS OF 
NONCOMPACT DECRESING OPERATORS WITH 

APPLICATIONS TO NONLINEAR INTEGRAL EQUATIONS**

Guo D a j u n * * * **

A b stra c t

The author first establishes an existence and uniqueness theorem of positive fixed points and 
a theorem about the structure of positive eigenvectors for noncompact decreasing operators, 
and then, offers some applications to nonlinear integral equations on unbounded regions.
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§1. Introduction
Let the real Banach space E  be partially ordered by a cone P of E, i.e., x < у iff y —x G P. 

Let D С E. Operator A : D —> E  is said to be decreasing if aq < хг (aq, жг £ D) implies 
Axi > Ax2. Recall tha t cone P  is said to be normal if there exists a positive constant N  
such that 0 < x < у implies ||ж|| < iV||y||, where в denotes the zero element of E  and N  is 
called the normal constant of P. For details on cone theory, see [1].

In paper [2], an existence and uniqueness theorem was established for decreasing and 
completely continuous (i.e., continuous and compact) operator A : P —> P, which satisfies: 
for any x > 9  and 0 <  t <  1, there exists у — r)(x, t) > 0 such that

A(tx) <[t(l + r))]~1Ax. (1.1)

This result was applied to a nonlinear integral equation on finite interval which is of interest 
in nuclear physics (see [2], Theorem 2 and Example 2).

In this paper, we will use a quite different method to drop the condition of complete 
continuity of A by strengthening the condition (1.1) in some sense. In addition to the 
existence and uniqueness theorem (see Theorem 2.1 in Section 2), we get more information 
about the structure of eigenvectors (see Theorem 2.2 in Section 2). Finally, we offer some 
applications of Theorems 2.1 and 2.2 to nonlinear integral equations on unbounded regions 
in which the corresponding integral operators are usually noncompact (see Theorem 3.1 in 
Section 3).
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§2. Main Theorem
T h eo rem  2.1. Suppose that (a) cone P is normal and operator A : P  —» P is decreasing, 

(b) A9 > 6, A29 > £qA9, where eo > 0 and (c) for any 0 < a < b < 1 there exists 
rj = 7](a, b) > 0 such that

A(tx) <  [4(1 +  Tj)]~lA x , V4 E [a,6], V4 G [9,A9\. (2.1)

Then A has exactly one fixed point x* in P and x* > 9. Moreover, constructing successively 
sequence xn =  Axn- i  (n =  1,2,3, • • •) for any initial xo G P, we have

||жп — ж* || —> 0 (n —» oo). (2.2)

P ro o f. Letting

Uo — 9, un — Aun—i (n =  1,2,3, • • •)

and observing the decreasing property of A, it is easy to see that

9 = Uq <U2< ••• < U2n <  • • • < U2n+1 < • • • <  U3 < Ui =  A9. 

By condition (b),

U2 > £оЩ > 9,
so, (2.4) and (2.5) imply

^2n ^  £o^2n+l (n ~  1, 2, 3, • • • ).

Let tn =  sup{4 >  0 : u2n > tu2n+i}- Then

U2n tn^2n+l (p> — 1) 2, 3, • • • ) 

and, on account of (2.4) and (2.6) and the fact

^ 2 n + 2  ^  'U '2n  —  4^,14271+1 ^  t n U 2 n + 3 j •

we have

(2.4)

(2.5)

(2.6) 

(2.7)

0 <  £o <  h  <  <2 < • • • < * » < • ■ • <  1, (2.8)

which implies that

lim tn =  t* (2.9)n—► oo
exists and 0 <  4* < 1. We check

4* =  1. (2.10)

In fact, if 4* < 1, then tn € [eo,4*] (n =  1,2,3, •• •), and so, by virtue of (2.4), (2.7) and 
condition (c), there exists an r] > 0 such that

^2n+l =  Au2n — ■A(fn'U>2n+l) ^  [4n( l  "b ??)] -dl42n+l 

=  [4n( l  +V)]~1U2n+2,
i.e.,

which implies

«2ti+2 > 4n(l +  rj)u2n+l > 4re(l +  1/)«2n+3)

4n+i > 4n( l  +  V) ( n =  1,2,3,- ••),
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and therefore

tn+1 >  t i ( l  +  rj)n >  e0(l  +  T,)n (n =  1,2,3, • • •).

Hence tn —> +oo, which contradicts (2.8), and so (2.10) is true. Now, (2.4) and (2.7) imply

в < «2n+2p ^2n 5: «2n+l «2n 5: (1 ^n)^2n+l ^  (1 ^n)A9,
and SO

||«2n+2p -  «2n|| < N( 1 -  in)||iW||, (2.11)

where N  is the normal constant of P. It follows from (2.11), (2.9) and (2.10) that lim u2n =n—>oo
u* exists. In the same way, we can prove tha t lim «2n+i =  v* also exists. Sincen—HX>

«2n <U* <V* < U2n+1,

we have

9 < v* -  и* < u2n+i -  u2n <  (1 -  tn)A0, 

so

||v* -  u*|| <  JV(1 -  tn)||A0|| 0 (n oo).

Hence v* = u*. Let x* =  u* =  v*. Then x* > в and

«2n ^  ® 5: ^2n+l (n =  1,2, 3, • • •).

Consequently,

«2П+1 =  A«2n >  Аж* >  Au2n+i = u2n+2 (n = 1,2,3, • • •), 

and,, after taking limit,

x* > A x* > x*.

Hence Ax* =  x*, i.e., x* is a  fixed point of A.
Let x be any fixed point of A in P. Then x  > 9, and so

щ  = 9 < x  = Ax < A9 = щ.

It is easy to show by induction that

«2n ® ^  «2п+1 (n — 1, 2, 3, • • • ),

which implies by taking limit tha t x =  x*.
Finally, we prove that (2.2) is true. Let xq > 0. Then

uQ = 9 < xi = Ax о < A9 — u i

and u2 < x2 <uy. By induction, we have

«2n ^  ®2n ^  «2n—lj «2n ^  *®2n+l ^  ^2n+l) (n = 1, 2, 3, • • • ). (2.12)

Hence, (2.2) follows from (2.12) and the fact that P  is normal and u2n —*■ x* and u2n+i —> ж*. 
The proof is complete.

T h e o re m  2.2. Let the conditions (a) and (b) of Theorem 2.1 be satisfied. Suppose that 
(c') for any 0 <  a < b <  1 and 0 <  s < 1, there exists an r} = r)(a, b, s) > 0 such that

A(tx) <  [t(l +  77)]- 1  A®, Vt G [o, 6], x € [9, s~xA9\. (2.13)
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Then, for any Л > 0, equation

Ax =  Аж (2-14)

has exactly one solution x \  in P  and x \ > $. Moreover, we have
(i) ж a is strictly decreasing, i.e., 0 < Ai <  A2 implies х \ г >  x \2;
(ii) x \ is continuous, i.e., A —> Ao (Ao >  0) implies ||жд -  жа„ || —► 0;
(iii) ||жа|| —* 0 as A +oo.
Proof. For A > 1, we have

j А в< А 0 , А (^ А в у >  А2в > е0Ав,

^л(^Л 6>) > е о^ 4 0 . (2.15)

For 0 < А < 1, condition (с') implies that there exists an щ > 0 such that

А Ч  = А ( \-± А в )  < [А(1 +  77а) ] -1л ( ^ ) ,

and so

^ л ( ^ Л 0 )  >  (1 +  Ш)A20 > А2в > e0A6. (2.16)

It follows from (2.15) and (2.16) that

^ л ( | л 0 )  > е л^А0, VA>0,  (2.17)

where

£\ =  min{eo»Aeo} > 0 . (2.18)

Hence, operator satisfies all conditions of Theorem 2.1, and therefore, Theorem 2.1 
implies that equation (2.14) has exactly one solution x \  in P, x\ > в, and, by (2.4),

в <  ^ л ( ^ Л в )  <  жл < ^AO, VA > 0. (2.19)

Let 0 < Ai < A2 and to =  sup{t >  0 : x \ t > tx \2}. Then ждх > to®A2 and, by (2.19) and 
(2.17).

0 <  ^2.£Al < to < +oo.
Ai

We prove to > 1. In fact, if 0 <  to < 1, then condition (c') implies that there are щ > 0 and 
ri2 > 0 such that

A(t0xX2) <[t0(l А г ц ^ А х x2

=  [*о(1 +  т ) ] _1 2̂гсА2,
'Ai .  \  г Ai

So,

л ( ^ 0жА1) <  ^ t o ( l  +  »?2)] A x\x

=  A2[t0(l +  772)] ^A i-

®a2 >  T~A(t0X\2) > ^-A xx1 =  т~*о®А11
Л2 Д2 Д2

А2жа2 =  Лжа2 < л ( ^ 0ЖАх) < A2[to(l +  .%)] ^Ai-
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Consequently,

> t o ( l  +  rj2)xx2,

which contradicts the definition of to. Thus to > 1, and x \1 > x \2. If x \x = x \2, then 
XixXl =' Ax \ i  =  Ax\ 2 =  A2x\ 2 = X2xXl, which is impossible. Hence xXl > x \2 and 
conclusion (i) is proved.

Now, 0 < Ai < Аг implies xXl > x \2, and so

X i x ^  =  A x Xl <  A x \ 2 =  A2x \ 2.

Hence, by (2.19),

в < *», -  *Xa <  ( £  -  1 > л , <  ( £  -  ± ) m ,

which implies

IK - * A , l l< iv ( i - i ) | iW | | ,  V0<A,<A2.

Thus, HajAj — x \21| -> 0 as Аг —> Ai +  0 and also as Ai —► X2 — 0. This shows that conclusion 
(ii) is true. . . . . . .  л .

Finally, conclusion (iii) follows from the following inequality

Ikxll < j||AW||, va > 0,

which is obtained by (2.19). The proof is complete.
R em ark  2.1. It should be pointed out that in Theorems 2.1 and 2.2 we do not assume 

operator A to be continuous or compact.

§3. Applications
Consider the nonlinear integral equation in whole Euclidean space Mn.

P Ш - l
X x(t) = /  f c ( t , s ) { y 'a i(s)(®(s))Qii} ds,

where

0 =  «о <  «1 < • • • <  OLm-1 <  am =  1, 

k(t, s) is measurable and non-negative on M2n and satisfies

0 < sup / k(t, s)ds <  +oo 
teiRn JMn

and

l i m y  \k(t,s) — k(to,s)\ds — 0, to E Mn\
Jmn

a,i(t) (i =  0,1, • • • , m) are non-negative bounded measurable functions on JRn and

ess • inf ao(t) > 0 . 
teiRn

Here ess • inf an(t) =  sup{m : ao(t) > m, a.e. on Mn}.
T h eo rem  3.1. Under the conditions mentioned above, for any X > 0, equation (3.1) 

has exactly one non-negative bounded continuous (on Mn) solution xx(t) and the following 
conclusions hold:

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)
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(a) x\(t) ф 0/ constructing successively sequence of functions 
I f  ( m _i

®Aj(*) =  д J  *(*»«){ X )«i(s)(® A ,i-i(s))e<} ds (j  =  1,2,3, • • •) (3.6)
i=0

for any initial non-negative bounded continuous (on Mn) Junction жд,о(t), sequence {x \j(t)}  
converges to x \  (t) uniformly on Mn;

(b) x\(t) is strictly decreasing with respect to A, i.e., 0 < Ai < A2 implies xXl(t) > x \2(t) 
(t E R n) and x Xl (t ) ф x \2 (t);

(c) xx(t) is continuous with respect to A, i.e., A —► Aq (Aq > 0) implies

(d)

sup |жа(*)-£САо(<)1 -^ 0 ;t€Rn

lim sup x\(t)  =  + 00, 
temn

lim sup ж л (t) =  0.

(3.7)

(3.8)

Proof. Let E  be the Banach space of all bounded continuous functions x(t) on R n with 
norm

II®II =  SUP l*(*)l temn
and P = {x E E  : x(t) > 0, t E JRn}. Then, P  is a normal cone in E. Define operator

/ 7П
k(t, a) j  У) ai(s)(x(s))ai j  ds. (3.9)

?n 1 i= 0

It follows easily from (3.2)-(3.5) that A  is a decreasing operator from P  into P. Let

M  = sup /  k(t, s)ds <  + 00, 
testn Jmn

Щ == ess • inf an(t) > 0 tem.
and

a* =  ess • sup оi(t) <  + 00, 
tern.

where ess • sup ai(t) =  inf {L : aj(t) < L, a.e. on JRn}. Then, it is easy to see that Ав > в 
tem .

and A29 > sqAB, where
m

£0 =  a0|  ^ a * M a i(ao)- a i } > 0 . (3.10)
k i- 0

So, conditions (a) and (b) of Theorem 2.1 are satisfied.
Now, let 0 <  a < b < 1 and 0 < s <  1 be given and let

?/ =  a0( l  — b ) |a 06 +  b ^ a * M “<(sa0)~“< |  > 0 . (3.11)
i—1

For any t\ E [a, b], x E [0,s~xA6\, we have

0 < x(t) <  -  [  k(t, s)(ao(s))~1ds < M (aao)-1 ,
s Jr *

t E R n (3.12)
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and
г m i -1

4 (tix (t))  =  J  fc (t,s ) |o 0( s ) + ^ O i ( s ) i “<(x(s))0:i|  da

t  11 m -.-I
*(*» H- 5 Z  ®<(e)(®(e))ot' } ds-

On the other hand, from (3.11) we know
- m

-  1 -  'ojao = г}'^Га$Ма*(за0) - а*,
2=1

and so, by (3.12),
1 \ m

( b ~ 1 ~  V a° ^  - 71S  в*(*)(*(в))0,< » s e R n,
2=1

which implies

i  m m
^Oo(s) +  22ai(s)(x(s))ai > (1 + v){ao(s) +  ^ a i ( s ) ( x ( s ) ) a<},

s e Mn.
i—l i=l

(3.13)

(3.14)

It follows from (3.13) and (3.14) that
Г m —1

A{txx{t)) <  [ti(l +  г})]'1 j ' fc(<,s){a0(s) +  ^ a i ( s ) ( x ( s ) ) a< J ds

= [ti(l + v)]~1Ax(t), t e R n. (3.15)

So, condition (c') of Theorem 2.2 is satisfied. Consequently, Theorems 2.1 and 2.2 imply 
th a t conclusions (a), (b), (c) and (3.8) are true. It remains to prove (3.7). Suppose that 
(3.7) is not true. Then, by conclusion (b),

and

lim ||®x|| =  lim sup x\(t) = Mq < +oo 
A—>+0 A-++0  t€Hn

(3.16)

0 <  xx(t) < Mo, VA > 0, i €  Ж". (3.17)

For 0 <  Л <  1, we define
m _  j

7?л =  а0(1 - Л ){ о 0Л + Л ^ а ? М 0“<} . (3.18)
2=1

Similar to the establishment of (3.15) (using (3.17) instead of (3.12) and letting b =  A), we 
can prove that

A(Xxx)<[X(1 + vx)]~1Axx, 0 < A < 1 .  (3.19)

By virtue of (2.19), Ажд <  A0t and so

Л(Ажл) >  А2в > еоАв,

where £o is given by (3.10). It follows from (3.19) and (3.20) that

xx =  ~A xx > (1 +  щ )А(\хх)

> £0(1 +  Vx)A6, 0 < A < 1,

(3.20)
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and therefore

IM I >£o( l  +  f?A)||40||, 0 < A < 1,

which implies ||жл || -> +oo as A —► +0 since, by (3.18), rj\ +oo as A -> +0. This 
contradicts (3.16), and hence (3.7) is true. The Proof is complete.

R em ark  3.1. It is easy to show that under the conditions of Theorem 3.1 operator A is 
continuous (from P  into P ), but usually A is noncompact.
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