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BIFURCATION THEORY OF QUADRATIC 
DIFFERENTIAL SYSTEMS**

Y e  Y a n q ia n * * * ** 

A b s tra c t

This paper deals with the number of limit cycles and bifurcation problem of quadratic 
differential systems. Under conditions о <  0, b +  21 > 0, l +  1 <  0, the author draws three 
bifurcation diagrams of the system (1.18) below in the (S,m) plane, which show that the 
maximum number of limit cycles around a focus is two in this case.
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In this paper we study firstly the number of limit cycles (LC, for abbreviation) around a 
weak focus 0 (0, 0) of the system:

x  =  - y  + lx2 + m xy + y2, у — ж(1 +  ax +  by), (0.1)

where mab ф 0, and then the same problem for the system (1.18) below, where a term 6x  is 
added to the right hand side of the first equation of (0.1 ), and draw the bifurcation diagrams 
under certain conditions.

g i ­

l t  is well-known that when m  =  0 but b + 21Ф 0, 0 (0, 0) is a weak focus of (0.1 ), JV(0, 1) 
is a weak focus or saddle, and there is no LC. If m — b +  21 =  0* then О is a center, and the 
system (0.1) is integrable; if N  is of index +1, it is a center, too.

In the following we will assume am(b +  21) (l + 1) ф 0 and investigate the generation and 
the number of LC’s of (0.1) chiefly around O. W ithout loss of generality, we may assume 
a < 0. Since the first focal quantity of (0.1) at О is

W1 = m (l + l ) - a ( b  + 2l), (1.1)

we can always let m  increase or decrease from zero to

m* =  a(b + 21) / (I +  1) . (L2)

so that W\ =  0. In order to determine the sign of m*, the number of critical points on 
1 +  ax +  by — 0 and the behavior of the line of divergence:

div(P, Q) = (21 +  b)x + my  =  0, - (1.3)
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we have to distinguish the following four cases:
1. 6 +  21 > 0, l +  1 < 0. This leads to

l <  —1, 6 > —21 > 2 and m* > 0. (1.4)

2. b +  21 <  0, Z +  1 < 0. There are two sub-cases:

i) I <  0, b <  0 and ii) l <  0, b > 0, (1.4’)

we have now m* < 0.
3. b +  2/ >  0, Z +  1 >  0. There are three sub-cases:

i) b > 0, l > 0; ii) b <  0, l > 0 and iii) b > 0, l <  0. (1.4”)

4. b +  21 <  0, Z +  1 >  0. There are also three sub-cases:

i) 6 > 0, l < 0; ii) 6 <  0, Z <  0 and iii) 6 < 0, l >  0. (1.4”’)

We will discuss the bifurcation problem in this paper only under condition (1.4); the 
discussion about other cases will be studied later on. The above program shows that we 
here use three of the coefficients: a, 6, Z as classifying variables, and then for each set of 
fixed values of a, 6, Z, we will try  to study the bifurcation problem in the (6, m) parameter 
plane.

When m  increases from zero and passes through m*, О changes from unstable focus to 
stable focus; hence an unstable LC generates from О or a stable LC disappears a t O, this 
depends on W2 > or <  0, i.e., (1 +  Z)2( l  +  b) — a2(b +  21 +  1) > 0 or < 0 . Here W2 is the 
second focal quantity of (0.1 ) at O:

W2 =  ma(5a — m)[(n +  Z)2(n +  b) — a2(b + 21 +  n)], (here m > 0, a < 0,n — 1).
1

Now, the ж-coordinates of the critical points Si(x{, yi) on the line 1 +  аж +  by =  0 satisfy 
the equation:

F( x) — (b2l + a2 — abm) ж2 +  (ab + 2 a — bm)x + 1 +  6 =  0. (1.5)

Since 1 +  6 >  0 and F (—1/a) =  b2l/a 2 <  0, we have:
1) If 62 +  a2 — abm > 0, then 0 <  Ж1 <  — 1/a < Ж2. Prom Fig.l we know that О and S2 

are anti-saddles, N  and Si are saddles. Solving (1.5) gives:

ж i =  [6m — 2a — a& ±  by/ (a +  m )2 — 4Z(1 +  6)]/2(62Z +  a2 — abm). (1.6)

Since (a +  m )2 — 4/(1 +  6) >  0, it is impossible to get жх =  жг< Actually, from the figure of 
F(x) in Fig.2 and (1 .6) we see that Ж2 |  —l /а , i  0 only when m  —» +00. At the limiting 
case F(x) =  0 decomposes into two vertical lines ж =  0 and 1 + аж =  0.

2) If 62Z +  a2 — abm < 0, then Ж2 <  0 <  жх < —1/a, and we have Figs.3 and 4. From 
Fig.3 we see tha t Si, S2 and N  are all saddles.

Let

m  =  (62Z +  a2)/ab. (1.7)

m may be > 0 or < 0; when —l »  1 (< <  1), it is positive (negative). When m  < m (> m), 
S2 lies on the left (right) hand side of the у-axis; when m  = in, S2 goes to infinity.

The divergence of (0.1) at Si is

div(P, Q)\si =  (2/ +  6)жх +  my\ =  [(Ь2 +  2/6 — та)жх — т]/&. ( 1.8)
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Let m i be the value of m  such that Si(®i, yi) lies on div= 0. Since the intersection point 
of div= 0 and 1 +  ax +  by =  0 is

(m/[6(2Z + 6) — та], —(2 /+  6)/[6(2/+  6) -  ma]), (1.9)

m i/[6(2/ +  b) — m i a] must be a root of F(x) = 0. This gives:

(/ +  6)m 2 +  a(b +  2Z)mi — (1 +  6)(6 +  2Z)2 =  0; (1 .10)

we have to take

m i =  (6 +  2Z)(—a +  cfi +  4(1 +  6)(/ +  6))/2(/ +  6) >  0, (1.11)

Prom (1.6) and (1.8) we see that the values of X\ and d iv ^  both depend on m. We will 
now study the values of d x i/d m  and ddivsx/dm  as m varies. First, differentiating (1.5) 
with respect to m gives:

dF/dm \Xl =  —abxl — bx\ +  [(b2l +  a2 — abm)2Xi + (ab + 2a -  bm)]dxi/dm  =  0; (1.12)

hence
9xi _  bxi(l +  axi) ________ __ bxi( 1 +  aa?i)
dm 2(b2l + a2 — abm)xi +  ab +  2a — bm dF/dx\Xx ' ' '  "

From. Fig.2 we see tha t when b2l +  a2 — abm > 0, (1 +  axi)dFjdx\Xl < 0, so

d x i/d m  < 0 . (1.14)

When b2l + a2 — abm < 0, from Fig.4 we have dF/dx\Xl < 0, so (1.14) still holds. Therefore, 
from Fig.l we see tha t d iv ^  changes sign only when Si moves leftward and passes through 
the line div= 0.

Now, differentiating (1.8) with respect to m gives:

tMivjsj —(1 +  ax i) +  (62 +  2/6 — m a)dxi/dm
dm  b

Since 62 +  2/m — та >  0, 1 +  axi > 0 and dx i/d m  < 0, we have:

ZMivIsj/dm < 0.

(1.15)

(1.16)

It is easy to prove tha t in Figs.l and 3 trajectories cross the segment N S\ from right to 
left, and in Fig.3 trajectories cross the segment S1S2 from left to right. So in both figures 
separatrices surrounding О always come from (and go to) Si.

According to the magnitudes of m i and m*, there are three different cases:
1 . m i =  m*, that is, m* is a root of (1 .10); this gives:

(1 +  6)(1 +  /)2 — a2 (6 +  2/ +  1) =  0. (1.17)

From the formulae of focal quantities of a focus 0(0 ,0) of (0.1) we have Wi =  W2 =  W3 =  0. 
This means tha t (0.1)TO» has a center O, the two separatrices /1 and /2 passing through Si 
also coincide at m  =  m* and become a separatrix cycle, which is the boundary of the center 
region around O.

We strongly believe th a t (0.1) has no closed orbit around О for all other values of т ф  
m*, but we can not give a strict proof now. Assume this conjecture to be true, then the 
bifurcation diagram will be as shown in Fig.5.

2. m i >  m*.
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u This means that as m  — m*, we have Wi =  0, W2 >  0. When m increases from m* 
we have Wf < О, О becomes stable, an unstable LC Ti generates from O, bu t still we 
have divlsj > 0. Гх expands with the increasing of m, it must become ultimately an inner 
unstable separatrix cycle passing through Si at m[ < m i; and when m > m[ no LC around 
О exists. For, if т[ >  m i, then this inequality means: when m =  m i, both О and Si are 
weak critical points, but Гх still exists (maybe as a separatrix cycle). This is impossible by 
a well-known theorem (see [5], §15, Theorem 15.13). So there is at most one LC around O.

3. mi < m*.
This means that when m increases and О is still an unstable focus div|s1 has already 

changed from positive to negative, li and Z2 coincide and then change their relative position 
at a certain value of m, say m[, with m i < m[ < m*, and generate a stable LC Г^. As m 
increases from m[, Г'х contracts. Since at m =  m* we have Wi =  0, W2 < 0 so Г'х =  0. 
When m  > m*, Wi becomes negative, no semi-stable LC generates between О and Si. So 
we have one LC Г'х around О for a certain interval (m'1; m*) of m.

To sum up, we have the following diagrams for these three different cases (see Fig. 5- 
Fig. 8):

noLC center noLC
Wi > 0 

0 unstable
m* = m i 

Wi = W2 =  0
Wi < 0 
0 stable

Fig. 5

no LC : Г.х unstable no LC
Wi > 0 m* . Wi < 0 

Wi — 0 W2 > 0
m'x mi

Fig. 7

no LC : Г'х unstable no LC

m i m'x
W i > 0 Wi

m* Wi < 0  
=  0 W2 >0

Fig. 8

There are two points in the above statement to which the reader will think to be ques­
tionable.

I. As m varies, system (0.1) does not form a family of rotated vector fields even at one 
side of the straight line 1 +  ax +  by — 0, for

д0/дт  =  —x2y(l +  аж +  by)/[P2 +  Q2}.

But from [1] we know: to add a term pixy to the right hand side of the first equation in 
(0.1) can be understood as: to add firstly the term fix(y +  1 / 6) and then the term —цх/Ь; 
these applications of two different families of half plane rotated vector fields were denoted 
by F3 and F2 respectively in [1]. Therefore, even if LC is not monotonously expand or 
contract when m  varies, its deformation can be obtained by a monotonous expansion in one 
manner and then a monotonous contraction in another manner. Hence the properties of the
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coincidence and change position of separatrices (and thus the generation of a LC) as well as 
the generation of a  LC through the change of stability of the focus О keep unchanged.1

II. Does semi-stable LC appear suddenly between О and S\ when m  varies? This still 
remains open even under the variation of a parameter in a family of rotated vector fields. 
But from our experience we beheve that the following Proposition holds true:

P ro p o sitio n . In the vector field defined by a quadratic system:

x = —y + Sx + lx2 + m xy  +  ny2, у =  ж(1 +  ax +  by) (1.18)

when any one of the independent coefficients varies in one direction, around any focus semi­
stable LC may appear suddenly at most for one value of this coefficient; moreover, the number 
of semi-stable LC appeared is at most one2

R em ark  1.1. This Proposition does not prevent the appearance of three LC’s, but it 
prevents the appearance of four or more LC’s around the same focus. Thus, in Figs.7 and 
8 the sudden appearance of a semi-stable LC for (0.1) when m  varies between m* and m[ 
is impossible. Otherwise, semi-stable LC will appear two times around О when in (1.18) 6 
decreases from a certain positive value to zero.

R em ark  1.2. This Proposition is a natural generalization of the following property of 
a real cubic curve (it must be a solution curve of a quadratic system) to the case of the 
intersection curve (i.e., LC) of the real plane with a certain complex solution of the complex 
quadratic system (0.1 ) when one of the independent coefficient varies in one direction:

When a cubic curve moves upward or downward, the number of contact points of this 
curve with a horizontal line which appears suddenly is at most one (See Fig.9), the number 
of times of sudden appearance is at most two (See Fig. 10).

We conjecture th a t Fig.10 cooresponds to the appearance of LC’s around two foci; it also 
suggests th a t as an independent coefficient varies in one direction, a (1,3) distribution of 
LC’s may become a (3,1) distribution.

R em ark  1.3. The assertion we made in this Proposition concerns with the general 
quadratic system (1.18). For the special case:

x = - y  + 6x+  lx2 + mxy +  ny2, y = x  (1.19)

with m(l + n) < 0, 6 > 0, when 6 increases from zero, the stable LC Г generated from О 
expands until it becomes a finite of infinite separatrix cycle and then disappears. In the 
whole process semi-stable LC appears neither within nor outside Г.

§2 .

Now, let us consider system (1.18) under condition (1.4) and study the signs of d x i/86 
and ddiv\s1/d8  as 6 varies. Notice tha t the ж-coordinate of the saddle point S i(x i,y i)  on 
1 +  аж +  fey =  0 will satisfy the equation:

G(x) =  (b2l + a2 — abm)x2 +  (afe +  2 a — bm + Sb2)x +  1 -f fe =  0. (2.1)

xThe behavior of Ti (or Tj) when S =  0 but m  increases can also be explained by the increase of the 
stability of О (or the decrease of the value of div|5x).

2By “an independent coefficient” we mean that in the space (a,b,6,l,m) there is an open curve a =  
а(т), • • • , m =  m (r), and as r  increases or decreases, а(т), • • • , m (r) all vary monotonously. Of course, some 
of the five variables may not depend on r  and remain fixed.
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Since G(—l /o )  =  b2(l -  a8)/a? <  0 when 0 <  |<$| «  1 , and > 0 when 6 »  1 , the figures 
of G(x) for 6 small when b2l + a2 — abm >  0 and b2l + a2 — abm <  0 are shown in F igs.ll 
and 12 respectively; and those for 6 large axe shown in Figs. 13 and 14, respectively.

It is easily seen that

d x \/d 8 = -b 2x i/d G /d x i > 0, (2.2)

since dG /dxi < 0 in any case.
Now, div(P, Q) = 8 +  (21 +  b)x +  my =  0, so divlsj =  [(b2 +  2lb — ma)x\ — m  + b8]/b, and 

ddiv/d8\s1 = [(b2 + 2lb — m a)dxi/d8 + l]/b> 0, (2.3)

since b2 +  2lb — та > 0.
Fo;r the ж-coordinate of the intersection point of div=, 0 and 1 +  ож +  by = 0: Si((m  — 

b8)/(b2 + 2Ы — та), (a8 — b — 21)/(b2 +  2Ы — та)) to be a root of G(x) = 0, 8 must satisfy 
the equation: .

[a2 -  b2(b + 1)}82 +  [2m6(6 + 1) -  a(b +  2l)(b +  2)}8 

+(1 +  b)(b +  2Z)2 — a(b +  2 l)m — (l +  b)m? =  0. (2.4)

It ip easy to prove that (2,4) is a hyperbola in the (5, m) plane when l + b > 0. The upper 
branch of it passes through and has positive slope at the point G(0,m{), since when 5 =  0 
(2.4) reduces to (1.10). The two asymptotic directions of (2.4) are

- 6 = [-b(b + 1) ±  aVb + i}/[a2 -  b2(b +  l)]m = K 1<2m

with K i > 0  and K 2 < 0.
Now, similar to Fig.6 let us take the straight line in Fig.7 as the m-axis in the (8, m) plane, 

and let 8 increase or decrease from zero. Notice tha t if 0 (0 ,0 ) is an unstable weak focus of 
(0.1) then an unstable LC Г2 will be generated from 0  as 8 decreases, Г2 expands with the 
decreasing of 8; if 0 (0 ,0 ) is a stable weak focus of (0.1) then a stable LC Г2 will be generated 
from 0  as 5 increases, Г2 expands with the increasing of 8. On the other hand, Г1 contracts 
(expands) with the increasing (decreasing) of 8. Hence in the (8,m) plane we will have a 
semi-stable LC bifurcation curve Ci with its left end point 0(0, m*), which represents the 
coincidence ofXi and Г2; and a separatrix bifurcation curve C2 with its end point B(0, m[), 
which represents the fact tha t Г2 becomes a, separatrix loop passing through 5 i. C\ and 
02 must meet a t a point A  on the hyperbola L (div= 0). Otherwise, the two regions with 
different number of LC’s will not be separated from each other. Corresponding to A, (1.18) 
has a separatrix loop passing through the weak saddle S\. There are also bifurcation curves 
03(04), which represent the fact that Г^Г^) becomes a separatrix loop passing through Si. 
02 and 04 both extend to infinity as |m| —>• + 00; maybe, they will have vertical asymptotics 
8 = 2 and 8 = —2 since, when |5| > 2, (1.18) can have no LC. C3 and 04 joint together 
at a point on the horizontal line m = m*. So we have the bifurcation diagram as shown in 
Fig. 15.

. Similarly, using the straight line in Fig.8 as the m-axis in the (6, m) plane, we can get a 
bifurcation diagram as shown in Fig. 16. In each figure we have a curvilinear triangle with 
two tails.

Finally we get the following
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T h eo rem . Under conditions

a < 0, b +  2 Z> 0  and 1 + 1 < 0 (2.5)

the system (1.18) has a bifurcation diagram Fig.5 when

(1 +  /)2(1 +  b) — a2(b +  21 +  1) =  0; (2-6)

a bifurcation diagram Fig. 15 (Fig. 16), when

(1 +  Z)2( l  + b) — a2(b +  21 + 1) > 0(< 0). (2.7)

So (1.18) can have at most 2 LC ’s.
Notice th a t Fig.5 can be taken as the limiting case of Fig. 15 or Fig. 16 as (1 +  /)2(1 +  b) — 

a2(b + 21 +  1) —► 0. Moreover, the curvilinear triangle in the bifurcation diagram of [2] is 
similar to  the curvilinear triangle OAB in Fig. 16.

R e m a rk  2 .Ts.For another special case of (1.18):

x = —у + 6x + lx2 + y2, у — x (l  +  ax), a > 0, l < 0 (2.8)

we can use a Dulac function e~2ly to prove tha t when 5 =  0 (2.8) has no closed orbit around 
0 (0 ,0 ), and О is unstable. If 6 decreases from zero, an unstable LC Г generates from O. 
Now, N (0,1) is a fixed saddle point. The other two critical points are on 1 +  ax = 0: 
R (—l/a ,y i  > 0) with index +1 and S (—1 /a , y2 < 0) with index -1 . They come nearer and 
nearer and finally disappear when 6 <  (41—a2)/4a. By inspecting the direction of trajectories 
on the segment N S , we see that separatrices comes from and goes to the neighbourhood of
0  passing through N. Since divjjv =  8 <  0, we conclude that: if no semi-stable LC appears 
suddenly outside Г (another form of the Proposition) the number of LC’s arounds О is at 
most two. Actually, for S in a certain interval C (l/a, 0) the number of LC’s around О  is 
two. For (2.8), the appearance of two LC’s around О was first discovered in [3] for a < 0,
1 > 2a2, 6 < 0; and rediscovered by [4] in the case of a Poincare bifurcation when |5|, \l\ are 
small.

We have finished in this paper the analysis of the bifurcation problem only for one of the 
many (maybe more than 100) cases, and only around one focus O. Later we will try to find 
a certain case such that system (0.1) may have two LC’s around О and at the same time, 
aside from foci there exists also finite saddle point, although this seems not an easy task.
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