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NONLINEAR DIFFUSIVE PHENOMENA OF
NONLINEAR HYPERBOLIC SYSTEMS***
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Abstract

The authors study the nonlinear hyperbolic system which describes the motion of isentropic
gas flow with external friction acting on it, such as a flow through porous media, and show
the nonlinear diffusive phenomena for the large time behavior of solutions for this system by
proving that the solutions tend to those of a nonlinear diffusion equation time-asymptotically.
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¢1. Introduction

We study the large time behavior of solutions for the following system
Op , 9(pu)

ot * "o =" L)
Opu) , Opu’+p(e) _ ou
ot Oz ’

which describes the motion of isentropic gas flow with external friction acting on it, such
as flow through porous media. Here the friction coefficient o is a positive constant and the
function p(p) satisfies the condition

p'(p)>0 for 0<p<oo - (1.2)

under which the system (1.1) is hyperbolic.
Ignoring the convection term in (1.1)z, one obtains

{pt + (pu)m =0,

p(p)s = —apu,
which can be rewritten as a nonlinear diffusion equation, the porous media equation for p

(1.3)

plus a decoupled equation for u, namely, :

_ 19p(p)

T a 022

_ 1 3p(p)
ap Oz

(1.4)
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One would expect that the system (1.1) is accurately approximated by (1.4) time-asymp-
totically since the convection terms in (1.1), are small time-asymptotically compared to the
terms in (1. 3)2 for similarity solution of (1.4); with u defined by (1.4),.

It would be mterestmg to prove the expectation since it shows certain relations between
the theory of nonlinear hyperbolic equations and nonlinear diffusive phenomena. Moreover,
the simplified nonlinear diffusion equation has been understood much better than the original
nonlinear hyperbolic system. . ,

This expectation was proved rigorously in [1] with the SYstems in Lagrange coordinate
which are equivalent to (1.1) and (1.3) respectively for p > 0. However, for dealing with
more general situation when vacuum may occur one has to consider the system (1.1) and
(1.3) directly in Euler coordinate.

For the fitst step, we prove the above expectation with Euler coordlnate for the case when
the initial data (po (), uo(z)) satisfy the following condition in this paper.

- po(@) >0 with lim po(z) =pg,  lim wo(e) = us. (1-5)

For comparing the solution of (1.1) and (1.3) we use variables (p,m) instead of (p,u)
where m = pu; in which the system (1.1) and (1.3) becomes

Pt + Mg = O » .
m? (1.6)
m; + (—p“ +p(p))e +am =0
and
pt+mg =0,
. - (L7)
pp)etam=0
or
- 18p(p)
T a 0x2 '
1.8
_ —13p(p) (%)
o Or

It is known that there exists a similarity solution p*(n),n = \/—t"il_——l for (1.8);, satisfying
the boundary condition p*() = ps as # — Foo under certain condition on p(p) (see [2]).
Furthermore, we can-define a constant zy by the equation

/°° (po(z) — p*(z + z0))dz = ,(p+u+ — p_u_)’ (1.9)

—oo a

.and then obtain the 31m11ar1ty solution p (f/“'%fﬂ) for (1.8);, namely p ( =2 ) satisfies the

equation as follows

. _ 19%p(p")
e a (1.10)
p*lt=0 = p*(z + z0), (1.11)
where p*(z + xo) satisfies the condition (1.9).
Define
m* = —p(p )a- | (1.12)

We Wlll compare the solutlon (p, m) for (1 6) with the 1n1t1al cond1t10n
p(2,0) = po(), m(2,0) = mo(e) = po(c)uo(z) (113)
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to the functions p* + p(x, t), m* + M (z,t) where the functions p and M are defined as follows

N -~ Uy — P_U)
Plast) = plo) - (LELE Pt e (119
p(z) > 0 with compact support |z| < k such that
"
/ plz)de =1 . _ (1.15)
and
T .
Mz, t) = p_u_e” ™ + (pruy — p_u_)e_at/ p(€)de. (1.16)
-0
Let w=p— p* — p,z =m — m* — . It follows by (1.6) (1.10) (1.12) (1.14) (1.16) that
wy + 2z, =0,
z+m* + m)? . . 1 (1.17)
a+ ! ot T Lt pw+s +2) = p(p")]a + a2 = =p(p")ar = 0.

Introducing. y(t,z) = [°_ —w(t,s)ds, it is obvious that y, = —w. Due to (1.17); (1.16)
and the facts that m(—oo,t) = p_u_e™** and m*(—o0,t) = 0, it is known that y; = 2.
Therefore, (1.17) becomes '

+ m* + m)? . o~ * 1
[(yt oy ) +p(0" + 0 — ys) — P(p" )]z + oy - ap(p*)wt = 0. (1.18)

It is clear that y(—oo, t) = 0,y(+00,t) = 0 in view of (1.9), (1.17); (1.15), (1.16) and the
facts that m(Foo,t) = mye™* m*(Foo,t) = 0.
We study the Cauchy problem of (1.18) with the followmg initial condition

y(,0) = yo(z) = / {o%( s+mo)+p(s)(p+‘+ a” “) _ po(s)}ds, (1.19)

ye(x,0) =y (x)

. .
=ro(o) + 2p(p° (@ +20))a = [p-u- + (prus = p-u-) [ B(E)de),
‘ —o0 (1.20)
where zq is defined by (1.9), p(z) is defined in (1.15) and mo(z) = po(2)uo(z).

For any given initial data (po(x),uo(z)) such that yo(z) € H*(R),y1(z) € H?(IR), we
are going to prove that (1.18)—(1.20) has a unique smooth solution in the large in time
provided the initial data are small (the precise description for the smallness will be given
later). Furthermore, the solution y and its derivatives y:,7, decay to zero in the L..-
norm as t — oo with a rate (¢ + 1), which implies that the system (1.1) is accurately
approximated by (1.3) time-asymptotically since the functlons p(z,t) and m(z,t) decay to
zero exponentially fast. : 4

For convenience, we only give the proof for the case when v = uy = 0 in which m =
0,p = 0 and (1.9) becomes
/ (0o(2) — p*( + m0))dz = 0. (1.21)
—0o0

The general case can be treated in a similar way by using the properties of #(z,t) and
p(z,t). Moreover, we assume ¢ = 1 for simplicity.
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§2. Priliminary Remarks

Consider the Cauchy problem

OO ot ) g+ u-p =0, ()
| 900 =w@) = [ (5's+a) - po(o)lds, (22)
{ %:(,0) = y1(z) = mo(z) + p(p*(z + 20))a, | (2.3)
where p (i”iﬂ) satisfies ‘
{pf = 625325*), (2.4)
p*lt=0 = p*(z + o) (2.5)

while p*(z + :vol) satisfies the condition (1.21).
For the global existence of the solution to (2.1)~(2.3) we need the a priori estimate in a
suitable norm which will be established with the help of the a priori estimate for p (m)

Let n = f}*ﬂ It is easy to know that the function p*(n) = p* -“”':%) satisfies

2Pn = p(p"* )nm : (2.6)
p*(Fo0) = pz. (2.7)

Hypothesis 2.1. p(p) is a smooth function of p in Q such that the derivatives 3 (p)
up to ¢ = 5 are bounded in © and p'(p) > 0 in §2, where Q is defined as Q : {p: po < p <
p1,0 < pg < p1 < oo} ‘

Assume the initial data po(x) is given such that p_,p; € [0o,p1] at this moment. By
a similar argument as in [2], it can be shown that the solution p*(n) of (2.6), (2.7) exists
which is a monotone function, increasing if p. > p_ and decreasing if p; < p—. Moreover,
py(0) is small if |p_ — p.| is small and p},(0) depends only on p; and p(p). For definiteness,
let us assume p; > p_ from now on, the case when p; < p_ can be dealt with in the same
way. Therefore, p_ < p*(n) < p4 for —00 < p < 00 and p}(Foo) = 0. Furthermore, we can
establish the L%-estimates on the derivatives of p*.

Lemma 2.1 Under the Hypothesis 2.1, the following estimates hold

[ e <o L, 28)
[ G s o B8 29
/_ Z(pé‘t)z(w, t)dz < C - %, (2.10)
/ (Pira)?(,)dz < C- (i +(1))3/22, (2.11)



No.4 Hsieo, L. & Liu, T. P. DIFFUSIVE PHENOMENA OF HYPERBOLIC SYSTEMS 469

where C only depends on Q and the function p(p). Moreover, the L?-estimates on p’2 and
pis are the same as in (2.8); the L?-estimate on pl,, is the same as in (2.9); the L?-estimate
on pl.e is the same as in (2.10); the L?-estimate on p’,,. is the same as in (2.11).

Proof. The equation (2.6) can be rewritten as

24+0"(0*)) - o(m)

P Py (213)
It follows from (2.13) that
p}(n) = pj(0)e Jo Ale)de, (2.14)
where |
An) = 3 +2"(0"(m) - Py(m) (2.15)

?'(p*(n))
Due to Hypothesis 2.1, we denote the bounds of p'(p) by a;, the bound of |p"(p)| by B
respectively. Namely, 0 < oy < p' < ao, |p"| < 8 in Q, which, together with the fact that
0 < p} < 70, implies the following estimate about e~ Jo' 4(s)d

( _n(nt+48vg) .
e %2 for —oo <9< -267,

_n(n+48+v9)
e %1 for —20v% <n<0,

e~ Jo Alo)ds < (2.16)
= (n-480)
e ™ for 0 <7< 2B,
(n—48 Q) .
{ e~ TEan " for 2Bv < 1n < oo.
Since p} = pj, - 3 - t-|+1’ it follows that
0 oo 2 (g) 2
2 _ Py (0) . = Jo 2A(s)ds g
/_th (w’t)dw‘"/_oo (t+1)3/2 46 ° p
by using (2,14). '
With the help of (2.16), one obtains
/oo 7’_26— f‘;’ 2A(8)dsd,,’ < /—Zﬁ‘yo _7.7__2_3 W;_:TL / "(ﬂ;—:f'y )dn
-0 4 - —00 4 2ﬁ'yo
2870 - +o00 2 -
+/ 17_e n(n 4/979 d'n / | n—e—n(‘"”::m)dn
0 2Bvo0
Sc(ala a, ,317 ﬂ2) 'YO)' . (217)
Therefore (2.8) follows, namely V
o o7 (0)
t)dz < C- ”—,
\/‘-oopt(m) (+)3/2
where C only depends on 2 and the function p(p).
Since -
N 1
Py = P:; ’ m (218)

and p}(n) < Cp}(0) by (2.14) and (2.16), where C only depends on Q2 and p, it is clear that
p is small uniformly in ¢ if (p4 — p—_) is small.
" In order to estimate (2.9), we consider Pry first.
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Differentiate (2.13) once more and denote p;, by Y. One obtains the following equation
for Y with the help of (2.6)

Y, +B)Y = E(n) | (2.19)

where »
3 +39"(0" (1)) - Py (m)

on) = — 220" ) (o n))”
' (p*(n))

It is known that there exists a finite number 7y such that Y () = 0. Thus, the solution
of (2.19) with Y(19) = 0 can be expressed by

Y(n) = f e(E)p (€)e™ Jé B)age, ’ (2.21)
Substituting (2.14) into (2.21), we get |
Y(n) = ,}:,_(o)e— Jo' Ale)ds /7, : e(£)elé 1A —Ble)Ndsge (2.22)
where
o0

It can be shown that

Eﬁ_'ve -
oJTTA()-Bs)lds o ] © =8 for > ¢,
2o (E-) for 5 < &;
therefore :

— O f“‘“’“f” OOd  for > m,
<
p}(0)eq - e~ Jo' Ale)ds [0 2 EMge  for < 1,

where e is defined by ey = sup |e(n)| which depends only on pz, 2 and p(p). It follows then
nelR

that '

££’—'L‘l(n—no)_l]

ay
Py (0)eo - €~ Jo Als)ds E 7 for 7 > 7o,
Pl < : (2.23)

n [ 2_2;:_(1(,,0 )
p;(0) -eo-e” Jo' Als)ds . ———22_.&—1 for 7 < no.

a1
Since p}, = t—;%’%—’l‘)%ﬁ, it reads off that
2 2
* 2 * (P 1"+ p7)
‘/_-0<> ptw($7 t)d.’L' S o (t + 1)5/2 d"l
Due to (2.14), (2.16) and (2.23), a similar calculation as we made for getting (2.8) implies
(2.9) then. In view of p = &'34&—:%’21—, a similar treatment implies (2.10) as well.

For establishing the estimate for pj;,, we consider pj,, next. Differentiate (2.13) twice
and denote pj,, by Z, one obtains that

Z,+D(n)Z = F(n), (2.24)
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where

2449 (p*(m) - ()

b =—2Gmy

F(n) = fi(n) - ppy(n) + fa(n) - pn(n),

A = 1t 3" (p*(n)) * Pl (1) + 60 (0*(m)) - % ()
o »'(0p*(n)) ’
_ 2@ (p*(n)) - pi (n)

) ==

|fs] < f2 < oo, the constants f only depend on , pz and p(p) It is clear that there exists
a finite value 7, such that p},, (m) = 0. Therefore, the solution of (2.24) with Z(m) = 0
can be expressed by

K n
Zm) = | 1£1(E)p5n(&) + faE)op©)e™ JE Pag. (2:25)
M
Substitute (2.14), (2.22) into (2.25), it turns out that
Z(n).=p;;(»0)e_ fon A(s)ds [/ efe (A(s)— D(s))ds{f (E

m

+1(0) (Mdﬂm)mm“a}ﬂ
7o
For definiteness, let us assume that 7y < 79. It can be shown then that

, 2849

a1 o — )__ .
p:;(())e_fon A(s)ds fﬂl e al 208 (¢ n){fo +f060(e 12}d£] for n < m,

°"1
L

I . _g_'yo_
B O S Ol e ol ——17—“2}%] for 71.< 1 < mo,
Z(m) < < - 2079 (

p,";(O)e‘fo" A(s)ds | [0 2228 (n~ E){f°+f°eo$e—a—1—p——2} dt
25'1 —ng)
- 5){f0+fle°e - ﬁ _l_l} f] for n > ng.

(2.26)

* ok 2 * *
Since pf,, = Zom p"4?t:15)’;’}g 7305 by using (2.14), (2.16), (2.23), (2.26) and the similar

argument as before, one obtains (2.11).

The other estimates in Lemma 2.1 can be established by a similar argument which is

omitted.
We seek the smooth solution y(t,z) € 02(t >0,z € R) and
ly(®)lez = ly(ts e + lyet, et + lyee(t, )l oo, (2.27)
where

FOle= S supld f(a) dai].

0<j<k

By Sobolev’s lemma, we have

1FOles < CUFCarwee. (2.28)
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Thus using the L?-energy method we will solve the Cauchy problem (2.1)-(2.3) in the Banach
space X3 defined by

m = {y(t) € L% H™),ys € L®(t; H™Y), yyy € L®(t; H™2),0 <t < T,VT} m > 3.

Hypothesis 2.2. yo(z) € H3(R), y1(z) € H*(R), p*(z +z0) — ¥'o(z) €Q, po+r <
p-; p+ < p1 —r for a positive constant 7 such that 0 < r < £7£2, We assume 0 < pp < 1
for convenience.

It is known that the classical local existence theorem gives the solution for the Cauchy
problem (2.1)—(2.3) in the space X3 locally in time. For the global smooth solution in ¢ > 0

we only need the a priori estimate in the norm (2.27) for which the a priori estimate in the
norm of X3 is sufficient by (2.28), namely,

Ny @13 = Ny @iz + Ilyt(t)ll?qz + llyee ()| < oo for ¢ > 0. (2 29)

In order to obtain the a priori estimate in the norm (2. 29), it suffices to obtain the a priori
estimate of

E(t) = zsjEj(t) (2.30)

=1
- \2
for the solution y with p* — y, € Q and (l‘%’_ﬁ&) < %% in each (t,z), where

B0 =2 [ ou+ G4+ ol o e i, 23)
B0 = [+ 1L+ - ) - (LB ey,
10 - ) - (S22 3o, ), 23

By = ke + " )1 - T e,

Yt = PP ey 2 v o
p*—ym ) ]yzzw}( ’t)d ’ (233)

+[p'(0* ~92) — (
where (¢, 0*) = [§[p(0*) — p(p* — N
It follows by (2.28) then that
ly()[&= < Clllv@)I3 < C*E() (2.34)
for y(t,z) with p* — y, € © and (—p".,—pé%;b;? <4
Lemma 2.2. Under the Hypotheses 2.1 and 2.2 there exists an
e = &(Q,p) < min{r, % %}
such that if the solution y(t) € X3 to the Cauchy problem (2.1)-(2.3) is small as
y(®)lez<e (2.35)
and p*( 3’—"129-) satisfies the condition
Pzler <e, (2.36)
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then one has the a priori estimate
E(t) <E(0)+Rp: (0) in 0<t<T, (2.37)

where R depends only on p, ).

First we assume that the solution y(t) belongs to the space X, with yo(z) € H, (=) €
H3. In establishing the following energy estimates, a lot of troubles concerning the term
* 2
(W)m in (2.1) occur for which we have to make very careful treatment. ‘

Multiply the equation (2.1) by y and y; respectively and integrate then over [s,t] x

(—00,00). After the integration by part we have two equalities

o0 2 t poo
| wnr D@+ [ [ 06+ oniw ot

t poo k) %12
__/; /;ooym{[yt pf—(-py:pm] "P’(P*)Pf}(w,ﬁ)dwdf

0o 2 t poo
=[(wurDEader [ [ vioeost, (239

/ N [g’iz + 0 (e, 0 (2, ) + f /_ " (e, €)dade

f / . 3w, €)dodt

/ / yt{( )a: [y: — p’(p*)pilz—wpl‘

p*— Yz
2yt Ytz sz *
+ T + * x A $, dmd
I ~u. Ye (p* _yz) P(p*)ot }(, €)dwdé
=/ yzt + U(ym’p )](m,S)d.’B, (2.39)

where o (¢, p*) = f(f[p(p*) —p(p*—A)dr, 0<O<1.
By using Cauchy inequality with (2.38) and (2.39) respectively, it follows that

/ wunt+tl +yt + 0(Ys, p*) }(z, t)dz

+G- o )f/ 43(e,E)dodt
+H(E =) / / (o, €)dud

/ v-unt+tl +yt + 0(Ys, p*) }(, 8)dx

P *(w, €)dwdg

) / / 2(g, £)dudé + o / [ ot epdoat,

where pg is assumed to be less than or equal to 1 as before and 5= §(ly@®)lez + |pklcr)-
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It is clear that there exists an ¢ > 0 such that if (2.35), (2.36) are true, then
.1 2 01 »
6 < mm(gpo, —8—/00)- (2.40)
Let us assume a; < 1 for convenience. Therefore
1 90 y2 2 *
5 v v+ 5 + 9 + 0¥, p*)}(z, t)d
2/ . 2 |
bal t poo 9 9
+ 5 (ym + Ui )(m,&)da:df
< / v+ L+ 42 + (e} o)

2;2 o) f / 0¥ (s, £)dadt
a3 B / / 51z, €)dudg + o2 / / 02z, E)dode.  (2.41)

Differentiate (2.1) with respect to t and inultiply by y, integrate over [s,t] X (——oo,oo)
then with doing the integration by part whenever we need and the careful treatment on the
— * 2 -
term yy - [g&%”—)ﬁL]wt, it follows that

[ {”“+[p'<*— )= (U2 Yoty

Yz

/ f v2(z, ) duds — / / P e ala )““] (o, €)dade

/ / ya:t[pl(p 5) - ( —#lp ))2] (2, €)dede

Y=

+ / / yu{[p:(p'(p*—ym>—p'(p*>)1 ym[(-’ff———(f—)—”)zlm

Ya
)m(yt p(p*)a)e + (p* )

+2(y: — p(p*)m)[(

)e(9e —p(p*)z)al

4l - p(p*)mtxyw — p1) = (5 — p(p")e)p}]
+ SO0 a5 — ) ) = (" — el O

- /t /;°° Ye0(p* ) wtt (€ ) dwdt
=/_°° {y??t T~ e) - (yf—:—g(f)—w)zl ' -y-;”?i}<m, s)dz. (2.42)

P — Yz

Differentiate (2.1) with respect to z and multiply by y.:, integrate over [s,t] x (—o0, 00)
then with doing the integration by part whenever it needs and the careful treatment on the
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term yqs - [M—EL]M, it follows that
W2 . ¥ = 2(p%)n 2y Yo b
[ ) - By ey ok [ [ a2y €t
t o0 t 00 _ *
[ [ varttoertote— [ [ gz o2, o pana
t oo .2 - * t poo
I e R T S I (LGS
v =02y 4 4y, — (o))

1
P~ Y p* — Y
(ot — P5)? — (g2 — P(P*)z) - P4l

—9'(0"))Pale — Yaul( )a* (¥t = p(0%)2)w

+
P* — Yz

N __._@zp; 21(;3;)2 (2065 — Yss)? — (0" — )Pl )l

[T Yae Y~ P(0")z 2 Yz -
= [ - ) - (B Ry B o, g, e

Express ¥, in terms. of s, s, etc by (2.1) and multiply the equation by ¥, integrate
it over [s,?] x (—o0,00), one obtains

v / t /_ N P'(p* — Yo )yie (, £)dzde
= / t / B Yoo Ut + ¥ — P(P )at + [P/ (0" — %) ~ 2'(p™)1P3
e R o (244

By using Cauchy inequalities with the above three equations respectively, it turns out
that

3 [ - - e, - )

- (U)o Yoty + (- ) [ [ 0+ )it

p*_ya:

<3 [ g - - (e,
(6 — o) - (LB ey 3o o)

P* — Yo
—/ / {v? +:uac+p’t"2+pac + P H(e, E)dwdf

v+ 2 [ [ ptegasderad [ [ pik e, doat
s J-
It is clear that there exists an & > 0 such that if (2.35) (2.36) are true, then

Y+ 1
§< mm{-élpﬁ, 7P0}- (2.45)
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Therefore
1 * * - * x *
! / W+ 4P o) - (LB ()

P — Yz

Padede+ 5 [ [ 6h+ (e s

(yt p(p ):c
P Y

<5 [ - - 2 g g - )

- (U2 ey )5, )00

/ / (4 +42)(, £)ddt + - / / (oot 2 (€ )dzdg

@ h [ [ ez vas [ [ oitieeraude

(2.46)

Differentiate (2.1) with respect to z and ¢ successively and multiply the resulting equation
by Yiiz, integrate it then over [s,t] X (—oo, 00) with doing the integration by part wherever
~ one needs and doing the careful treatment on the term Yet * [53’*—"’&”—&)—]%“ it follows that

JR R R R e R O W I A

t poo ,2 B . '
t poo _ .
_/s ‘/_‘-ooyfm[gt‘p*—zi‘(‘%]x(w,f)dmdg

+ / f " 1etodl@ (0" = 9a) = P (P")0)s — 7 (0" — Yol - Yoo (@, €)ddt

[ [ w{[("” ey T EDe) )., )

Yo

/ / Ye m(yt P (Z ))‘Z) - {(pz — ym)[4(p* ~ Yz)(Pat — Yaat) = (P — Yat) (03

+ (P - yw)[z(pt ymt)(pzw yzww) - (P* - ya:)P;a;t]}(w &)dwdé.

/ / ytw{ )zm (g = p(0")e)*)e + 2(
)w((yt p(P ).'c) )t +(

+2(— (e p(p*)z) e

p*

+ L 3
P

[ [ veb6 ooz, )it
oo ' _ * 2
= [ e ) - B E Oy Yoy g

Yz

)mt ((ye — P(P*)w)z)m

- ywa:)]

3 " [2(.%9c ~ P(P")oz) Yeta — P(p" )a:a:t) + (Yee = (P )ot) Yta2 ~ P(P*)aza)] H(a, §)dedé

(2.47)

Differentiate (2.1) with respect to z twice and multiply it by sy, integrate then over
[8,%] X (—00,00). With the help of integration by part and the careful treatment on the term
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ytmm[w]mwm, one obtains that

P* Yo

oo 2 . — * 2 e
[ {%&;u[p'(p*—ym)—-(”‘p* Ao yytieny o, )da+ [ [ o)

/ / e (6" = 36) =P (0" = " gl Yo + (31 — (6")a)?

2(p% — Yua)® = Paa(P* — Ya) oy 2
[ "~ ) ]+2(p*——ym)m[(yt P(p*)z) e

+ 2(y — p(p*)z)z(ytmp: —P-I;m— 2(ys — p(P*)a) Pz Yo, §)dwd€

t [o'o) .
_ / / YrooPlsa (0 €)derdt

= [ e ) - (2

— 2(6")e 121 Paa-
o — 7. )] o} (@, 8)de. - (248)

Differentiate (2.1) with respect to  and multiply then by y,,., integrate it over [s, ] x
(—00,00), we obtain that

it oo ‘ |
/ /_ p’(p* - y"’)y:mm(a’,g)dmdf
t poo . . g
=/ [- ywmm{yttw + Ytz — p:t + (%)wx
+@' (0" = y2) = P (0*)p%]e — 2" (6" = ¥e) (0% — Yuo)Veu } (x, €)dzde.
| | (2.49)

Using Cauchy inequalities with the above three equatlons respectlvely, it can be obtamed
similarly as before, that '

L 0 =) 1~ 2242 -
Yt —P (p )m 2
- OB 2 oot [ [ o
<G [0kt 0 - w1 - S ey 2 )
2 ogan [ [ G+ s et

w3 [ [ ot e s p ok ok o) o

/ / Pr (@, €)dadE + a?%/: /_Z-P;itt(-""a £)dmd§. . (2.50)
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Due to (2.41), (2.46) and (2.50), it reads off that
4 (e <] y2 9 00
o / {y-9e + 5 + 9 +0(ys, ) Nz, t)da + / {va + 1+ (0" ~ %)
I e
v — p(p* . ~p(P*)e 2
~ (U yapa 1o — ) — (AP ez e
P Yo P Yy ,
1 *® * - * @ * '
t5 [ Wt B —wm) -1 (E 2 s - )
pu— T .
Yt —P( ) 2
— (2L e x,t
( pa— 2 y2ee} (@, t)da |
1
+7 / / {02+ 92 + 924 + ¥ + Yhs + Y20} (2, E)dade
4 0 y2 2 * *® 2 ! *‘
sa—l {y- 3+ ot + 0(Yz, p )}(w,S)der/ {ve +[1+9' (" — ya)
—oo —00

et S CALICTE S ST PR Stk A i0 2 W PPN

P* = Yo P Yz
b5 [ O e w1 - (S
(0" - ) - (yf—"i)—)ﬂym}(w o+ C g O (s + 1) - (24 1)7H]

P* = Yo . (2.51)
where C' depends only on {2 and p.

This gives (2.37) in view of the definition of E(t). Therefore, we arrive at the a priori
estimate (2.37) under the assumption (2.35) (2.36). This a priori estimate is also valid for
the solution y(¢) in X3 by use of the Friedrich’s mollifier under the same assumptlon (2.35)
(2.36). Lemma 2.2 follows then.

§3. The Main Theorems

Theorem 3.1 Under the Hypotheses 2.1 and 2.2, there exists a constant 0 < ¢ <
min{r, 32—\/_ } such that if the initial data are small as E(0) < €, then the Cauchy problem
(2.1)—(2.3) has a unique smooth solution in the large in time provided that |p+ — p—| is suf-
ficiently small so that |p%|cr < € holds. Moreover, the solutions y and y;,y, decay to zero
in the Loo-norm as t — oo, with a rate (t+ 1)1

Proof. We choose the initial data so small that

2
:];—CXE,

where ¢ is the same as in Lemma 2.2, C is the same as in (2.34).

E(0) < (3.1)

By the local existence theorem there exists to > 0 such that the solution y(t) € X3 exists
in 0 <t < ¢y and satisfies

E(t) < 2E(0) and p* — y, €,

-_— *‘
(yt p(p )m)2 < ot <t<tp.
P* — Yo 2
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It follows by (2.34) then that

w®) < C2E(t) < 26?E(0) < = S <o <t <t (3.2)
Therefore, Lemma 2.2 implies '
A E(t) < E(0) + Rp3(0)?in 0 <t <t - (33)
Due to (2.51), it is always possible to choose |p; — p-| so small that
2
Rp, (0 : ' 3.4
OPS 34

-~

Next, by the local existence theorem for ¢ > to, there exists { = (E(0) + Rp}(0)?) such
that the solution y(t) exists in 0 < t < ¢y + % and satisfies
E(t) < 2E(tp) and p* — y, € Q,

— p(p* - 3.5) -
(————————yt*p(p)w)zgﬂinto§t§t0+t. (35)
P Y 2 E .
Combine (2.34) (3.1) (3.3) (3.4) and (3.5), one obtains in o < ¢ < o +1,
ly (t)|c,2 < C?E(t) < 202E(t0)
2 (3.6)

< 26%[E(0) + Rp3(0)%] < = + % —¢2,
Therefore, (3.2), (3.6) and Lemma 2.2 imply '
E(t) < E(0) + Rpj(0)in 0 < t < o +1.

Repeat the same procedure with the same time interval £ > 0, we complete the proof of the
global existence of the solution.

The decay of ¥, y:, ¥ can be obtained easily with the help of (2.51).

The decay rate can be obtained then by using the following Lemma 3.2 which can be
shown by a similar argument as used in [1] and the detail is omitted.

Lemma 3.2. The solution y in Theorem 3.1 satisfies the estimate

~1
et a4 llyz s )l e = CEQ)(E+1)7%. (3.7)
Since y; = 2 =m —m* — m and yt = —w = —(p — p* — p), it turns out that
</ 1T Zo ~
m(x,t) + —m(z,t) =0
(@0 + 22l e U
as t — oo uniformly in z, in a rate of (¢t + 1)~ %
o T+z ~ .
plx,t) — (H) p(z,t) =0

as t — oo uniformly in z, in a rate of (¢ + 1)~ i. Therefore, the following theorem holds
Theorem 3.3 Under the same assumption of Theorem 3.1, the solution (p(z,t), m(z,t))
of (1.6) with (1.13) approaches to the solution of (1.8), '

L @+, —100(0" (f/{——”—"—))
(P ( F—t+1)’_a_ = )’

as t — oo uniformly in x, in a rate of (t + 1)_%.
On the other hand, it can be shown that(®] the solution p(=, t) of (1. 8) with p(z,0) = po()

approaches to p*( \/__—) as t — oo uniformly in & with a rate (t+ 1)~% if po(z) — px with
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a rate
po(z) — p— = O((~z) %) as £ — —o0,
po(z) = p+ = O((272)) as & — +o0,
where k; > 1 (i = 1,2). Therefore, we have the last theorem.
Theorem 3.4. Under the Hypothesis 2.1, assume py(z) — px as  — Foo with a rate
|il7 I_ka k> %’
'U,O(-'l?) — Uxp A8 T — FO0, P, P4+ € [PO +7 01— 7‘],
~ Uy — Pt
po(z) — Bla) - ﬂt_t&_&_ en
and the initial data satisfies E(O) < €. Then the solution (p(z,t),m(z,t)) of (1.6) (1.13)
approaches to the solution (p(x + xo,t), m(z + zo,t)) of (1.8) (1.13); as t — oo, uniformly
in x, with a rate t~%. . ' '
This shows that the system (1.1) is accurately approximated by (1.4) time-asymptotically.
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