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LOCAL I» ESTIMATE FOR THE SOLUTION OF
8NEUMANN PROBLEM OVER D; = {(w,z) : Rew < EZotellyk*

CHEN TIANPING* ZHANG DEzur*

Abstract .

Assume_ thaii a digtril{ution u satisfies conditions: du = f, u L H(D:) on domain Dy,
u € Dom(8g), 0u € 8}; 8f =0, f L H®L. It is proved that piu € LZ+_1_-_E ifo,f e L’b,
2m
where L’;, is the potential space defined in [14]; ¢,, ¥, € CZ(U), ¢, = 1 on suppt ¢,; U is a
neighbourhood of the origin; € is a small positive number. This result contains a result of D.
C. Chang (in [3]) by setting £ = 0.
Keywords 5-Neumann problem, Distribution, L? estimate.
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§1. Introduction

0-Neumann Problem is a very important problem in mathematics. C. L. Fefferman and
J. J. Kohn have showed the development of 8-Neumann Problem in many aspects in [6]: G.
B. Folland and J. J. Kohn obtained an important subelliptic estimate for the d-Neumann
operator and proved the boundary regularity properties for the solution of the 8 equation
in case the domain is bounded and strongly pseudoconvex (cf. [7]); In another paper J.
J. Kohn studied the same problem on weakly pseudoconvex manifolds of dimension two
(cf. [10]). In order to improve the subelliptic estimate in [10], L. P. Rothschild and E.
M. Stein introduced the method of Nilpotent Group by which they studied the regularity
properties for the solution of equation of Hérmander type (cf. [14]). For the solution of &-
equation, detailed results about L? and Ag estimates on strongly pseudoconvex domain can
be found in [8]; Ag estimate on domains of complex dimension two and three dimensional
CR manifolds is obtained by C. L. Fefferman and J. J. Kohn (cf. [6]); L? estimate on a
special weakly pseudo-convex domain in C? with boundary being of finite type is obtained
by D. C. Chang (cf. [3]). For more information, see the literatures cited in [6]. Our aim is
to prove the P estimate for the solution of the § equation in general weakly pseudoconvex
domain in C™ with boundary being of finite type. As the first step, we study the d-problem
over the domain D; = {(w,z) : Rew < 1|2™ —tw|?}. In forthcoming papers we treat
the same problem over general pseudoconvex domain in C? of finite type, over domain

n—2
{2 €C™: Rezn < |2n—1*+ X |27 — zj4120/°} (example 5.16, p. 633, [1]) (which is typical
i=1 SR
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in the sense that: on one hand the order of the 8D with algebraic curve is (2m)™~1 /271,
on the other hand,its commutator type is (1,2m,2m, - - -,2m) at the origin and (1,2, --,2)
at other boundary points (cf. [4])).

The paper is arranged as follows: We compute at first the § equation and then construct
parametrices for the associated elliptic equations by calculus of pseudodifferential operators.
We compute the boundary II, equation (defined below) which is hypoelliptic in some small
cone in the phase space (under the Fourier Transform) and elliptic in the rest set. Finally,
using the results of [2], [5], [12], [13] and [14], we get the desired LP estimation for the
solution of §-equation. '

§2. Formulation of the &-Neumann Problem .

2.1. Let R(w,2z) = Rew — [2™ — tw|?/m. Then the domain D; (denoted for'simplicity
by D) can be described as R(w, z) < 0. Let 8D denote the bounda;ry' of D. Associated with
the domain D there exist two holomorphic vector fields defined by

Sszaz:Rwaw’ T:Rwa,;R,aw" 2.1)
Whereb—z[lelz-}-IR 12)%; 8 . =2,9, ;;,R —g’j,R =8k

It is obvious that S(£)|,, = S(R/[L R; Ril*)lop =1, T(R)|,p = 0.

Let H(D) denote the space of holomorphic functions defined on D.

Let TD, denote the tangent vector space spanned by S,‘T, S, T over ring of C*-function
germs at point P € D;

T(0) = subspace of TD, spanned by S, T at P;

'Tzfo’l) = the conjugate space of T(1 0),

TD = space of sections of tangent vectors over C°(D); s1m11arly one can define T(10)
and 7D, '
 Let A, ,, = space of (0,1)-forms;

H% = {¢ : ¢ € Dom(closd) N Dom(8*) : closd(p) and 8*(¢) =0 on D}.

A(l 0)
the complex dimension is two).

On ‘T(1 9 there exists a natural metric, i.e., the complex Euchdean Inner Product which

= the conjugate space of A Similarly one can define A, (p,g =0,1,2 in case

(0,1)°

satisfies following conditions:

@ TLsS; _

(ii) (-,+) can be extended to T'D,, such that Tzfl’o) 1 Tzfo’l).

By duality, the complex Euclidean Inner Product can be defined on ALy
Now we calculate (1,0)-forms wy,ws defined by

| (df, wi) = S(F), (df, wz) = T(f). )
Lemma 2.1. The (1,0)-forms wy, ws satisfy ‘
| oy = Bedzt Rudz _ Rydz— _—zdw;
2b . 2b
wy L wy, (wy,w;) =26, , ’ (2.3)

8f(= f,dz + fudtt) = 3 (B(1 )01 + T(f)an).
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Proof. It is easy to verify that (2.3) holds.

2.2. 8-Neumann Problem
Roughly speaking, the §-Neumann Problem can be stated as follows: 7
" For a given (0,1)-form f = fi@; + fo@Ws which satisfies conditions 8f =0and f L H™!,
what property does the solution of equation 8u = f (u satisfies condition u L H ( )) has?
Reasoning in the same way as in [7], it is sufﬁment to solve the follong system of
differential eugations: '
1H(U) = 885 + 5;04(0) = { g
U € Domain of 85, U € Domain of ;. @4
Here 8,8, denotes the J-operator acting on function space and Ao,1) space respectively;
8* is the formal adjoint operator of 8 in L? norms.
It is obvious that if U is a solution of (2.4), then for any f satisfying 3 f=0u= BOU (f)
is a solution of Hou = [ and satisfies condition v L H(D).
2.3. Computation of §*

Throughout the rest of this paper, we always denote Re w, Imw, Re z, Imz by @, - x,;
9, = 0/0z,, R, = 0R/0z, for j = 1,2,3,4; &' = (z3,%3,24); 0,0, = Za B; and o, B, =
Za [

We need the following lemma about the 1ntegrals over D and 8D.
. Lemma 2.2. For any differential vector A€ TD, A=Y a;(z) ?:,- + ¢, it holds that

/ A(f)gdr = f C, fgdz' + fA*(g)dz,Vf,g € CP(R*). (2.5)
- JR<0 R=0 R<0 '

where A* = —A -3 0;a; +¢;Ca = z%il—R—".

Proof. Under coordinate transformation (z;) — (z; + r(z'),2'),the domain D is trans-
formed into {z; < 0}. Then integrating by parts shows the lemma.

Below we are going to compute 5;‘ (1 =0,1).

Lemma 2.3. Let f = fiw + fawz, g, h = hiwy A W, denote smooth sections in A, ,,,
A and A respectively, where g, h, f1, fo are smooth functions with compact supports.

PO N
% f = S*(f1) +T*(fz)' fe Dom(aé‘) & filop = 0.
§* =~ [6( ]=—S—az,
T =-— [8( ]=—T+El.

Proof. From (2.3), applying Lemma 2.2, we get
[ @taite= [ (f80ge = 5 / (frity + fota, S(a) + T{g)in)da

/ [115G) + HT(@)de = / (Csf +Cr g’ + / IS* (1) + T (fa)lda.

Noting that £ = (52— — za_,mz) we have

R.R, + R,R, RyR, — R,R,
0, Cpr=——pF——=0.
ba]_R # H T 0

Cs = b0, R




484 ’ . CHIN. ANN. OF MATH.

Vol.14 Ser.B

Since g is arbitrary, it holds that
8 f = 8*(f1) + T*(f2); fGDom(ao) & filop =0.

In order to compute 3, we should compute the torsion curvature of the changlng system

inA, y * W1 and Dy,
Lemma 2.4. 81w, ;cg"lfll Ae, 3=1,2.
Proof. According to Lemma 2.1, we get

dw A dz = wy A wg,

ow, ( ( ) 0, (Rw))wll\wz = %Elwl-/\wz,
Ows = ( ( ) 8 (}221) ))w1 /\-11)2 = %Ez’wl N ws.

Lemma 2.5, 8{h = —(T* - c1)(h)'w1 + (8* + &) (h)iwa; h € Dom(al) < hlap = 0.

Proof. According to Lemma 2.1, Lemma 2.3 and Lemma 2.4,
[ @t pde= [ (b,8:5)d0
D D ‘

= 5 [ 0 A e, 3(8) — (1) + cu + cafolin h b
D .

=2 [ WS +a)f) - (T -a)fle

~2 [ s~ Crfil+2 [ (5" +e)W)fa - (0 - en)(Wide.
oD D

(2.6)

Since f is arbitrary, G5 # 0, C, = 0, we see that h € Dom(8}) ¢ h|,, = 0. We complete

the proof of Lemma 2.5.
From Lemmia 2.3 and Lemma 2.5, we can prove the following
Theorem 2.1. For the operator I defined by (2.4), for any U € Dom(lI),

) = {(ss* +TT — &, T — e, T* — T*(er) + erc2) (U)o
+ ([S, T*] + €18 — caT™* — T*(cp) + €1¢2) (U )iy
+ (TT* + 8*S + €5 + c25* + S*(cz) + E2¢2)(Uz)ig
+ ([T, 8% - &T + e18* + §*(e1) + &2¢1)(Un) o };

U € Dom(8}) < Ui|,, =0; &1U € Dom(8}) & (S + 2)(Uz) — (T ~ ¢1)(U1)|,, = 0.

Proof. From Lemma 2.3 and Lemma 2.5, we get
005U = Bo[S™(Us) + T*(Ua)]

= {815 (Un) + T (U)o + TIS"(Uh) + T* U)o}
BBU = 35{[(5 + ea)(Ua) — (T - ex) (W) Ao}
= 1{ — (T* — 51)(S'U2 - TU1 + U+ Cng)’tT)l

+ (S* + 02)(SU2 - TU1 +cUp + 62U2)'w2}

Summing up, the theorem is proved
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§3. Parametrix and Applications

In this section we give at first a general formula similar to the Green Integral Formula from
which two important formulae are deduced, then construct two parametrices by Calculus of
Pseudodifferential Operators and compute some kernels. _
| Theorem 3.1. Assume that u = (uy,u2), v = (v1,v2), us,v; € CP(U) for i=1,2; U is a
' neighbourhood of origin. Then

/ (TI(ug Wy + upWa), v1 Wy + voiba)dy
D .

= —CgS(ul)'l_h + Cg~ S’('M2)’l72 + ¢cgCoxug¥s + C’S*_ulg*ﬁl + C§u25172dy’
éD

+ / w[S8* + T*T — &,T* — T*(&1) - T*(c1) + c121)(1)dy
D

+ / ug[S*S + TT* + 5" + caS + S(c2) + S*(22) + Cac2)(v2)dy
D .

+ / 45(8)(uz)5y + 44(9) (ur)Tady,
D

where A;(D), A1(8) denote differential operators of degree < 1. »

Proof. From Theorem 2.1, the theorem can be proved by Lemma 2.2.

Proposition 3.1. There exists a neighbourhood U of the origin and a coordinate system
{r;}Yj=1 such that for any x € UN D,

(i) ri(z) = R,ri(x) = z;+higher terms, i = 2,3, 4;

(n) ReS(r;) = 0 for ¢ = 2, 3 4.

Proof. Since ReS = 5 2 .0,

j= .
4bReS(h;) = —4bReS(z;) thh condition h,(0) = 0. The existence of h, is guaranteed by
the Cauchy-Kowalevskaya theorem.

let r, = x, + h,, then it is sufficient to solve equation

Expanding into Taylor series, it holds that

ri(z) = Z (ZR 8;)" (e3)(~21)", Vi = 2,3,4.

=2
Therefore (i) is satisfied.
3.1. Construction of Parametrlx for U,

Define ¢ = 1/{|S(exp{t¢ }_ ;&I + |T(exp{zzr_,§]})|2}(£ y) and
Kl(w,z;wl,z1) = K1(w,y) = W/ exp{zz:('rz } = Tz )gz}

x (exp{i(ri(z) — r1(y))1} — exp{i(rs(e) + 1 (y))&})zﬁd& :
Lemma 3.1. The kernel Ky(x,y) satisfies following conditions:
(i) Ki(z, y)lzGBD =0, Ki(z, y)lyeo'p =0;
(ii) [ Ki(z,9)9(y)6(y1 — 7(¥))dY'|.cop = 0,Vg € C’°°(8D N U),where 6 is the Dirac
distribution (cf. [12]);
(iii) [,(—8S —TT)yK1(z,y)f(y)dy = |J|f(z) + R (f)(a:) Vz : R(z) < 0, Vf € C(U);
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where R_; represents an operator with kernel

4 2 o
Ry = [enls Ylrito) - r@)ed{ Y eplitra(e) - (CDHra(w)énde?, b,
, > _ e /
a* (3,8 = (" +0F)(y, E),pj.c is homogeneous in ¢ of degree j, k = 1,2, j = 0,1 respectively;
|J| is the Jacobian of coordinate transformation J: z; — rj, 1< j < 4.

Proof. From the expreesion of K;(z,y) we have

K@ oo = oyt |, exp{ifjui(w) = i) (- 2isin(RO)E ) dé

By Propopsition 3.1, ¢ is an even function in ¢,, so the integral with respect to ¢, equals
zero.

K, (2,9)|,eop =018 obvious. Thus (i) is proved.

(i) is a special case of (i).

As for (iii), direct computation shows that

[ (=85 -7, K, (& 9)15)dy
4
— [ 5 [ ewls Y rse) - roeenplitra(@) - )}
2
— exp{iri(z) + r1(y))é1}ldédy + R_, (F)(=)
= [ 1lry(0) = 1,000) = 801, @)+ 7,00 (&) ~ D Wy + R (o)
For any given point z : R(z) < 0, take a smooth function & such that
| k(z) =1, suppt k C {y: |z —y| < 6} C {R(y) <0} -
and a smooth function 7 such that '
suppt 7 C {y : |(z1 + v1,2’ — ¥')| < 6} C {R(y) > 0}.

Where 6 is a small positive number.
/ (—417 [ exets Strste) ~ rs(w)es e r o)y

= [ anys | i) =N o T W) = 17 0T re)
=1J15(@),Vf € C2(U);
therefore

[ 80r,(0) = 7,(6)) = 807, (&) + 7, @7 (@) = @1y

= /R 801, (&) = 7, IR W) — 807, (&) + (1)o7, (&)~ r @) F W)y
= [11)(e) ~ [r1171(e) = 1915().

Here R_, is an operator which has the property stated in Lemma 3.1. So (iii) is proved.

‘In C* choose a sequence of functions which converge to K;(z,y) with z as parameter;
by the Lebesgue dominated convergence theorem, we can set 7 (y) = Ki(z,y) and vz = 0
in Theorem 3.1. With the help of uy|,, =0, we get '
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Lemma 3.2. Assume that II(u) = f,u = (uy, u2), supp(uw), supp(f) € UN D. Then

v = [ K@)+ 4,00} 0y + Ry,
D

where R_, is defined in Lemma 3.1.
3.2. Construction of Parametrix for U

Since uy|gp is determined by the equation on the boundary of D: Sug = Tuy—ciu; —caug,
we construct a delicate kernel for ug. Let

Py =P+ Pl +c=58*"S+TT" + S + &5,

where ¢ = §*(23) + S(cz) + 8*(cz2) + &2cz; P! denotes the part of order j of Py, j = 1,2
respectively; P} =b,9,.

Let R" = E,R' = dR,d ~ 1; ¢; = 1/{ZR’R’ |z£1|2 + |z£’|2 2(~1YR!,i¢,4€],}. The
kernel for u, is defined as follows:
Kz(w,‘y) =(é-7lr—)Z / exp{i(z —y)' - ¢ +i[R"(z) — R'(y)]‘&}{z/)l(y,f) +i§1[R;j¢f
+ 2R59), %1 (9, €0 + by R3] + 20ty 8301 (4, € + i€rbyr s} e
1 . 1 ! N !
- Gyt [ elite = 3) € +ilR"@) + ROIaH{a(0,0) - i6R}03
+2R}9;%2(y, &)Y +b;R Rjps] + 20410 '1/)2(:% e + iﬁj'bj”ﬁ%}df-

Lemma 3.3. The kernel K, satisfies following conditions:

(i) K2(z,9),cop =0,
(i) fp P,(8,)K, (2, 9)f (y)dy = f(z) + R_,(f)(2), V= : R(z) < 0;¥f € C2(U),
where R_, is an operator with kernel :
R_,(zy) = /D exp{i(z ~y)" - € Hexp(i(R’ (2) ~ R'(y))é,}a_,
~ expli(R(2) + R/ ())E, )., ),
where q_,,q' , € 15'1"02
Proof. For the property (i), we have

K, (:9)lop _
=Gyt [ eliGe - €}~ isalR W) {#.00) + 6, R, 07

+ 2R 0,9, %, + b, R 97| + 2i€,, 8,9, 4, +1€,,b,,9?

+ 9, (y,€) — i€, [R] %2 + 2R,8,4,9, + b, R, 4]

+2i€,0,9,9, + iéj,bj,zpf}d{l de’

+cos ([R'@)e]) {4, — 4+t de’ =0,

where we have used the facts that 9 + 15 is even in &;, 92 — 92 is odd in & etc.



488 CHIN. ANN. OF MATH. Vol.14 Ser.B

Property (ii) can be read from following facts:
P} + P} (expli(e - 9)' - € +i[R"(z) - B')lea}1(0,))
={[|z’§'|2 + R RJi€, |* + 2R i€, i€, — i€, R], — i€,b, R, ~ b€, 19,
~ 206, R} 8,4, +2i€,8,%,] }exp{ifz — ) - &' +ilR(2) - R(wlé)
P2 + P} ((expli(a - y)' - ¢ +ilR"(z) + B W)lé1 (0, €))
={ 1€ + B Ry |it, ! - 2R, i€, it +i, ), +it,b,R) - ib &, )0,
+20i6, 8,8, — i€,9,,] } explile — y) - € +ilR"(2) + R'@)lés}:

The rest is similar to the proof of Lemma 3.1.

Lemma 3.4. Assume that II(u) = f, supp (u), supp (f) € UND. Then
w= [ K@it + 4,00 +RAw)E) - [ 045 +a) K Iudy.
D ' v D

Proof. Letting 7, = K3, #; = 0 and using the boundary condition: Suy = Tu1 - Uy ~
cauz, 41 = 0 on 8D, we get by Theorem 2.2

/ / C KzS('u,z + [Cséz + Cs:Cg]Kzuz + CgS(Kg)Uzdy’
= / - (Tu1 - c1u1 - 62u2)cs,, K> + [0562 + Cs* Cz]Kzug 4 C§S(K2)u2dy’
D 8D
= / - / [ulT*(C’s. Kg) + 620§K2u2 -+ C§S(K2)’U,2]dy’
D éD
= / - / CSS(Kz)’tQ + EzCusuzdyl.
D 8D

Here we have used the properties that C;, = C, =0 and T(f)|,, = T|,p (flon)-
3.3. Computation of S(K3) on the Boundary of D

Lemma 3.5. S, K3(x,y)|,cop = [1/(27)?] [ exp{i(z — y)' - €H{-S(R')}
(Zexp{ iR () B s + B (2)ao + R (0)°a:) €
where E = (—1)'°(R:_,/Z R R))¢, +1i4; ¢; = q;(y, &) denotes symbol € S? , for j=0,1;
A=/ RiR) - (By/Y. RR)Ey) .
Proof. We fewrite K, as
Ko = [ explite —4) €} (explilR(@) - RWleshs +51)
— exp{ilR"(2) + B (9)]é1} (¥ + E2) )

where 2, =i€,4,0,9, +z'£j,bj,'¢f — (-1)kig, {R;j'lbf +R:. ¥,.0,9, +b; R:. gbf} Let S’ denote
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the part of S which is irrelevant to 8;. Then
S Kz(w’ y)lyGBD

(;F/uﬁm»w'€+m%mﬂ{4ﬂwmmgwm%ﬁqﬁm
- a(S’)[«m + E1] - iS(R e — iS(R)1Ea — Sta + o(S s + Eal e
=Gyt | e =) €+ R — ISR + b + B2+ )

+ 501 — ¥a) + 0(8)Ez — Bx + v — ] g |

. The terms in {, } are

Z ( —iS(R)é1 + a1 + 9L +9q + g

\P[RIRE2+2(-1)FR] &€, + 8] {2[RRIE2 +2(-1)FR! &€, + €211
V€L + 9€3q1 + 93 gz + 9E1q3 + Vg4 )

{[R R &2 + 2(-1)*R] £,€, + €211/

where ¢; = ¢;(y,¢') € .S'j’o, ¥ = J(y) € C°(U) are different from time to time.
We introduce following notations '

+

F=-mvmmx-HA
= (R, /RiR))¢,, +iA;

E=WﬂWmeMm—m.
By Contour Integral Formula, the following relation holds

/ exp{(¢R" ()¢1)}191(y, €)dbr = — eXP{—zR"F }2 AZ RE,’
/exp{ZR,’(w)§1}¢2(y’ g)gldgl . exp{—ZR”F,}z AERI Rl )

1 o rolt £
%/exp{zR 51}[51 +E]3[1£1 +El]3d
. =(_1)>‘_1{ (zA))‘ 4A-3)A-1)+gq,_,

(2i4)° .
— R'(z) [((2?'AA))4 (2A—3)+gq,_ 4] } exp{—iR"E}, 0 < X < 5;
L / exp{iR"&} = 1 d¢
omi | P 1@+Em&+m21
=(- l)é - g“:;a (A-1)+q,,

— R"(z) [((22?&))2 +Q,_ 2] } exp{~iR"(z)E}, 0 <A <3.

By above four formulae, we prove the lemma.
3.4. Computation of 5,[S, K, (2,9)ll,con lscon
From Lemma 3.5, we get
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" Theorem 3.2. .
Sz [SyKZ(m’y)”yGBDIwEBD
S(R)

- zz_lF/exp{i(m_ y)' - é}ZR’R' {.S'(R" [ (R' /ZRIR')ﬁj,)z]/A
O'(Iran) + o}df'

where o(ImS) is the symbol of ImS.

§4. Various Estimates

In this section we give various estimates for the previous operators in Lg and APP norms
(for definitions, cf. [14]). We will use extensively the following propositions from several
papers.

Proposition 4.1 (Theorem 6.3 in p 536 of [10])

(D) N is pseudo-local in the sense that if U is a neighbourhood in M,and o € Lg’l(M )
such that |y € C°(U), then Na|,, € C®(U). Furthermore if o|, € H,(U), fort > 0, then
Nal, € H,,,, (). o
(E) Let H denote the space of holomorphic functions in Lz(M ). If @ € Dom (clos0), O
L HO%', Then there exists a unique v L H such that Hu ='a. Thus may be expressed
by u = 8* Na. Furthermore, by (D),8*N is pseudo-local and if o|, € H,(U), then ul, €

t+8 (U) _ )
Proposition 4.2. The restriction operator ¢ — ¢|,,, maps LE(D) to A’:ﬂ (8D) bound-
edly. . ’

The proof of Lemma 2.4 can be found in [1] with the help of interpolation theorem in
Banach Space (cf. [25]) and the mapping properties of the Bessel Potential Operator in Lp
and AP spaces (cf. [24]).

Proposﬂ;mn 4.35). Assume that o : R® x R* — C is a continuous Junction such that
Va = (a1, an), 8 = (b1, ---,,Bn),ai., B; =0,1,2,3, derivatives 6;"650‘(:1:,5) € L™(R"x R™).
Then o(z,£) defines an operator o(z,d) which is bounded on L*(R™).

Proposition 4.4 (implicitly contained in [5]). If o(z,&) € S:"o, then o(x,0) maps LP
boundedly into LP _

Proposition 4. 5 (a variant of Theorem 4 in [11]) Assume that A, B are given by
Au(z) = (a(z,&)i(€))Y, Bu(x) = (b(z,£)a(£))Y, where a E_Sf"o,b € St . Then the symbol
of Ao B is '

o(A40B) = Y 2 (500)%a(a,6)(50)b(e: ).

Furthermore, c(AoB)— ). =ry€ S;\;l-u—N—y
lel<N o N
Proposition 4.6 (Theorem 5 in [11]). Assume that A is given by

Au(z) = (a(=,£)a(€))", max{la(z,{)|:z €U, ¢ =1} =K,
where a(z,€) € S?_. Then for s real and any € > 0 there is a constant C such that
l4ull,-, < (K +ellull, + Cllull,_, 5, Yu e C2U).
(Il - Y|, is the Sobolev norm).
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Proposition 4.7 (Theorem 18 in [13]). Suppose L = Z X2+ Xo, where all commutators
of weight < r span the tangent space at each point, and L( f)=9,f € LP(M),1<p<oco.

(a) If g € L2 (M), then f € L‘;Lg,a > 0.

(b) If g € A (M), then f € A__,, 0> 0.

() If g € L®°(M), then f € A, (M).

Proposition 4.812, Assume that A(v) = f on U N8D,and the commutators of length<
2m of T,,T, span the tangent space. Then v = p(f) + E(v), where p, E satisfy conditions:

(1) E is bounded from LP(U) to LP(U) for some € > 0;

(2) p maps LP(U N 8D) boundedly into L? (U N AD);

(3) poT, (or T,), Ty (or Tp) o p map Lp("fJ NAD) boundedly into LP, (U N 8D);

. - - _ - 2m - .

(4) T,(or T,) opo T (or T,), T, (or T,) o T,(or T,) o p and po T, (or T,) o T, (or T,) map
LP(U 0 8D) boundedly into itself.

4.1. Estimate of ||u,]|,,.

Lemma 4.1 [l <C(furly +lually, + 1115 )

Proof. From Lemma 3.2, we have

w = / Ky(m,9){f1 + Ay(Ou(v)dy + R, () @),
D .

Since .
Kiler) =g [, o0l Zm ~ @)} x (expliCra(o) — ra(6))és}
—_ eXP{i(T1($) + 7‘1(3/_))61}) IU(S)lz _ll_ |0‘(T)'2 (é.v y)_dé.,
we have * '

0, Ka(e,y) = [ ¢ia(d, JH{Io(S)F +1om}dt.

Generally we have

dstuka(e) = [ o 3w @ ISP oD ()

Jae=1
Since the operator defined by the kernel K;(z,y) is an oscillatory integral operator which
" is approximately a pseudodifferential operator, we treat them by doing coordinate trans-
formation J : z — (rj);". By Proposition 3.1, J is regular; therefore function space L?(D)
remains the same under the transformation J. Now the theory of Singular Integral Operator
(Theorem 4.7 in [15]) can be applied and we get | ’

18;0% / Ky(z,9)f@)dyll,, <CIfll,,. (42)
B8 B

Applying (4.2), we get ‘

n / Ki(,3) 41 (0, Oy}l < Clual,, . (43)

The term R _, (u;) is treated in the same way since ’R_l has the expression given in Lemma
3.2
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4.2. Estimate for ug: Part I
From Lemma 3.4, we have

up = / Ko(z, y){f2 + A2(9)(u1) Hy)dy + R _, (uz) ()
D (4.4.1)

- [ {CswSylKa(e0llvcon + Cszaka(a,vlyean }(un)iy
oD

Therefore

Suus(@) =5 [ Kale,0){fa + 42(0)(ur)}w)dy + SR-aus
b (4.4.2)

-5 ./ap {Cs(y)sy[Kﬁm’y)HyeaD + Csész(w;y)lyeap}uzb(y’)dy',,

4.3. Estimate of Terms of §,u2|ap Arising from fD
Denote AP® by B(f).
Lemma 4.2. For any f,u € LP(U), supp(f), supp(u) € U, following estimates hold:

I [ $Ka(@0)fs@)blaconlyspy <Clfallys  (49)
1SR -2talecapll sy < Cltalg «6)

I [ 5 0 Ax(u)Kadyluconll, g, = O (@)

| [ 4x@)w)3Ka(e,v)itleconll g,y < Cllaly - (48)

Proof. Similar to the proof of Lemma 4. 1, we can prove Lemma 4.2 w1th the help of
Proposition 4.2 and Lemma 3.3.
4.4. Estimates of uz]ep arising from [, C;&Ka(z,y)u,, (¥),pdY

Lemma 4.3. (i) Ka(2,9), ,con = [exp{i(z —y) - €'} Zk (y_)q’fz(ﬁ)dﬁ; where q’fz(g)
are homogeneous of degree —2 in &';

@) u /8  CeaU) K@ ¥V )30 oo s S Ol
. _ o 2R,
() 5. [ Gyeatu)Ka(o, 0 @)1 = (3 (B s mmpa B¢ )",

I [ Bos(@) 68 sy < Clltaley:

Proof. By following Lemmas 4.6 and 4. 7, using Proposition 4.4, (1) is verified from the
expression of K. (ii) and (iii) are treated similarly.
4.5. Estimate for ug: Part II, the Boundary Equatlon
Since A
Suslap = (Tm —Ccug — Czuz)laD =0,

Tuilop = Tlop(u1lep) = 0,
from (4.4.2), we get

- / C55:[SyK2(z,9)lyeop]lopuzs(y')dy’ = —cauzp + g, (4.9)
8D . .
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where
g= --S'/Kz{f - Az(a)ul} - S’R..z'LLz + S’/ Cgé'nguzb.
: D

From Theorem 3.2, we get

o 1 S(R' .
S / Cs(y’)Ssz(w,y')Uzbdy’=—W Cs EER' 1){, ugp(y)dy’

« /-ei(m_y)"EI{S(R")(m) A2 — ((R;//E R R )¢ )2 g o(Im S) }df’,

1

where Im S = % R18; + 0(1)8; + 0(1)d; ﬂm_s_z 4b£2 + o(1)&3 + o(1)és.
Lemma 4.4. The boundary value of us satzsﬁes the following equation:
()  Mp(uz)(z) = g — coum = g1;

A 'a:--y' ! S
@) Mew)e) = G [ # Hw)

A7 ((R;v/z': BR)Y o)y, ey

x {S(R")(a:)

(iii) IlglllB(ﬁ+1 l—e) — (”f”LP + ”u]-”LP + ”u2” P + “qullB(p_'_]__.l.))"

In order to estimate uqp,we must look for a pa,ra,metnx for the pseudodlfferentlal operator
) ((R’,/ZR' R} )53’)2 cr(Im S)
II, (whose symbol is S(R')(x ) - ) which is elliptic in region:
{€ € B3 : |&3, 84| > 8l&s), 1€ > M(6)} for any 6 > 0; M(6) is a constant dependmg on 6
Since [¢/| is involved, we modify it at first.
| Lemma 4.5. f — (|§’|’\f_(€'))v is bounded from L to Lf_, and from AR® to A’b’p/\,
YA >0.
Proof. We give the proof of the lemma only in case 0 < A < 2. If A = 2,. the lemma
holds by the definition of function spaces Lj and ARP. If A = 0, the map is identity, the
lemma is obviously valid. For the rest A, making use of theorem of interpolation, we are led

to verify that the following operator ,

T.f = (€ f(¢)",0< 2 <1,
satisfies all conditions in Theorem 4.1 in [15](p.205). 6.12 in [14] (p.51) gives the details of
the proof.

We analysis the II; operator defined in Lemma 4.5 in two cases. Fix a small § > 0.
Decompose the phase space (£') into three parts: '

Region I : |¢'| < 2;
Region IT : [¢/| > 2, |¢/| + € < 8J¢'|; and
Region 11T : |¢/| > 2, 1¢'] + & > 8/¢'].
Choose three smooth functions «, p and x vsuch that
K(€') = 1 over |¢'] < 1, supp(x) C {|¢']| < 2};
p=0over |¢'|<1, p+x=1—kK;
supp (p) C {|¢'| + &2 < 26|¢'|}, p=1 over the region II;
supp (x) C €] + & 2 81}, x = 1 over {[€'] + & > 261
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4.6. Elliptic Case
We solve the following equation .
IT(9)x(O)uzp = (3)91 + [y, x (3)]u2b = ga. ' (4.10)
Lemma 4.6. (i) There exists a kernel ky of type 1 (p 208, [13]) such that
kIHb(B) I+’R,_1,Hb(8)k1 I+R.g;
(ii) For the solution of (4.10), we have

”u_Zb“B(ﬁ+?f?;ili—e) S C”gzuﬂ(“l_ 1)

therefore
2l < Ol sy, + 000

Proof. (i) Consider the part of ITy of degree one which is elliptic over suppt x(¢'), we
can construct the parametrix k; by Proposition 4.5. As for (11), it can be proved by general
theory of elliptic equation with constant coefficients. We sketch it as follows: one obtains
the L} estimate by Proposition 4.4 and the A%”® estimate by the following Lemma 4.6 and
thus prove the first inequality; by the followmg Lemmas 4.6 and 4.7, we get the Sobolev
inequality in A” ’? norms. The second inequality thus follows

4.7. Hypoelllptlc Case

We are going to estimate the term p((‘)’ Yugp. We derive boundary equation directly from
the definition of II operator. For equation Iy = f , the condition 8f = 0 gurantees that
00*du = 0; therefore |

(8*8u, 8*Bu) = (85*8u, du) = 0.
Thus ITu = f is reduced to 8p8;u = f. From the computation of the II, we get
' | | TT*Uz = fg — TS*ul _
Making use of the property T(R)|op = 0,we have (Th), = Tyhs for any C* function A with
compact support. Therefore the boundary value ug;, satisfies
TbTb’U,zb =g3 = f2 b T(C’UQ};) - Tb[S*(ul)HaD, A ‘ (4.11)
) |
Ty Top(8' Yugs =p(8')g" + [ToTs, p(8")]uz
‘ =p(8")g" + [[Ts, p(8")), To)uzs + T5[Ts, p(8")]uize + T[T, p(8")]uzy ~ (4.12)
=g3. _ A
In order to treat equation (4.12), we make use of the theory developed by M. Christ!?l and
J. J. Kohn and C. L. Fefferman!®. Let us introduce a new pseudodifferential operator A
which is defined by .

. 1, - 1 —
A(f) = { 50T + ToTy) + 51T, Tl } 1.
Here [T}, T3] = ABmod{T}, T}, A > 0 since 8D is convex; |8,| is defined to be the map
f e (&lF)Y.

M. Christ showed the Proposition 8 in [2]. For more information, see [2].
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In order to obtain the Ag’p estimate for the p(8')uss,we need the following two lemmas
Lemma 4.7. For any0 < a<f <79, LE(8DNU) C Ap’p(aDﬂU) c L2(8Dn 0).
Lemma 4.8. For any 0 < a < <7, for any € > 0, there emsts a constant C' > 0 such
that
loll5 < ellvllzy +Cllvll,, ,Yo'€ C(0DN ).

Proof. By the mapping. properties of the Bessel Potential Operator (cf. (41) in p.135
and Theorem 4’ in p.153 of [14]), Lemma 4.8 can be deduced to the case 0 <@ < 8 < v < 1.
Then the conclusions are consequences of the deﬁnltlon of A%? and Lj (cf. (60) in p.151
and 6.12 in p.162 of [14]). ‘

Making use of the characterization of Lj (cf 6.12 in p.162 of [14]); since for any € > 0,
there exists a constant C' > 0 such that t}, < e L+ CL f&, We prove the lemma.” "

- Lemma 4.9. For the equation (4.11), we have ' '

”p(a’)u2b“3(,¥+__e) —_ (”-f2”LP + “u2b“B(-y+-§%'T—~%) + HUI“LZ.{._L-}J).

2m

Proof. From (4.22) and the deﬁn;tlon of A, we get
o | | A(p(8')uzs) = g3.
Define A” by f — (F(L+]¢)? ) )’\ then A7 € S7, and |
[A, A”] =-[TbT'b +ToTo), A7) + ([T, Tlll, A7
(13T, A7) =Ty[Ts, A”] + (T3, AT,
=TT A + TalT, A + ([T, A7), T
=TyQy + ToQ, + Q). .

(4.13)

Here Q,,Q’, and Q" € 87 ;.
From (4.11) and (4.13), we get

Ao A7p(0"Yuzy = ATpfz + (To@y + TbQ +Qy (uzb) + (TbQiyﬂ + Q%;_)(“lﬁ)-' .
By Proposmon 4.8, ' ] | - R
A7 p(8 Yz = (A"’pfz + (TyQq + To@", + Q1) (uz)
+ (To@yn + Q) (1)) + BATH(8Yuny).

By Proposition 4.8, together with Lemmas 4.7 and 4.8, we prove the lemma.
" Theorem 4.1. ||ugl|

(4.14)

B(B+ g~ —e)

2
< C(Z 19515515 3, + Wfellp + lwzpll iy, o sy + el )

T .
Proof. Summing up the estimates in elliptic and hypoelhptlc cases, we prove the theorem.
4.8. Conclusions
From (4.4.1), noticing that the term

/SgK2($,y)ly€8Du2b(yl)dy

is indeed the Poisson Integral with boundary value ugp (Which can be read off from Lemma,
3.5), we get by Lemmas 4.7 and 4.8 the following
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Theorem 4.2. IIU2||LZ+#_C <c(l Fall g + WAl + Nl Tl ).
Finally we give

Theorem 4.3. For u = 8% (u1®; + ugis) = §*(uy) + T*(uz),we have
s <Oy sl |+l }-

Bty —e
Proof. Apply Lemma 4.1, we get the estimate for S*(u; ). Noticing that T™ is of degree
1, we get the estimate for T*(ug) by Theorem 4.2.
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