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ON SUBGROUPS OF Gl* * * OVER A CLASS OF 
NON-COMMUTATIVE RINGS WHICH ARE 

NORMALIZED BY ELEMENTARY MATRICES**

You Hong*

A bstract

Let R  be an associative ring with 1 and Y  ф R  a quasi-ideal of R. Set Тг(Д, У) =  
{diag(w, w)a1,2b2'1c1’2 : a+c,i> E Y , u , v  6 GL\R, and v- 1 au —a, won-1  —a €  Y  for all a E R}.
It is proved that if R  satisfies 2-fold condition, then [E2R, T2(R, Y)] C E2(R ,Y )  C T2(R ,Y)\ 
and if R  satisfies 6-fold condition, then E2 (R, Y) =  [E2R, E2(R, У-)] =  [E2R, Тг(Д, У)] and the 
sandwich theorem holds.

K eywords Non-commutative rings, Subgroup, Elementary matrices, Quasi-ideal.
1991 M R  Subject Classification 16L30.

§1. Introduction
Let R be an associative ring with 1, Y  a set of/R. As usual, GL^R denotes the group 

of all invertible 2 by 2 matrices over R, E%Y denotes the subgroup of GL2R generated by 
all elementary matrices y1,2 and y2,1 where у G Y. We denote by E2(R,Y) the normal 
subgroup of E 2 R  generated by E 2 Y .

Vaserstein^7,8) recently introduced a concept of quasi-ideal which is defined as an ad­
ditive subgroup Y  of R such that у ay, aya G Y  for all a € R, у G Y, and studied the 
structure of subgroups of GL2 over non-commutative local rings which are normalized by 
elementary matrices^8!. Before Vaserstein’s work, many results on the subgroups of GL2 over 
some commutative rings were offered by KlingenbergW, Lacroix^, Mason^3,4!, Mcdonald^, 
Zhang-Wangf11! and so on.

For the readers’ convenience, we will cite from [7,8] some properties of quasi-ideals and 
prove a new one.

Lem m a 1.1. Let R be an associative ring with 1 and Y a quasi-ideal of R. Then
(1) ayb +  bya G Y, yab +  bay G Y  for all у G Y, a, b G R;
(2) Ry2 C Y for ally &Y-,
(3) R'YR,RYR'  C Y where R' is the ideal of R generated by all additive commutators 

ab — ba with a,b G R.
The properties (1) and (3) above still hold for an additive group Y  satisfying aya € Y 

for all a G R and у G Y.
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Lemma 1.1/. Assume that the condition is the same as in Lemma 1.1. Then Ry2R C  Y 
for ally e Y.

Proof. Let a, b E R and у E Y .  We want to show ay2b E У. Since by(ay) +  (ay)yb E У 
and (b(ya) — (ya)b)y G Y, but yaby G Y  by the definition of quasi-ideal, we have byay G У, 
hence ayyb =  ay2b G Y.

Recall that a ring is called n-fold (or unit n-fold), if for ai,bi G R(i =  1, • • • ,n) with 
Rai + Rbi =  R((ai,bi) =  R) there is a c G Д  (or c G GL\R) such that a, +  cbi(i — 
1, • • • , n) G GL\R.

By [10], we know that n-fold means unit ( n -  l)-fold. See [6,9] for references about n-fold
m

rings, such as semi-local ring R with the fields Ki in R/J  =  Mni(Ki) having sufficient
i=1

elements, C*-algebra with unitary stable range 1 and full rings (commutative).
We say that ring R satisfies n-fold condition for a quasi-ideal Y,  if ai E R, bi E Y ( i  = 

1, • • • , n) such that Rai +  Rbi =  R, then there is a c G Y  such that a* +  cb{ G GL^R.
Lemma 1.2. That R is n-fold implies that R satisfies n-fold condition for a quasi-ideal 

Y.
Proof. We only need to show this for n =  1. Assume that a E R,b E Y  with Ra+Rb = R. 

Then (a, bsb) =  R for some s G R. Further, (a, bsbrbsb) = R for some r G R. So there is 
a t  E R such that a + tbsbrbsb E GL\R. Let us show tbsbrbs E Y . Since brb G У, we have 
(tbs — stb)brbs G Y  by Lemma 1.1. But stbbrbs =  stb2rbs E Y  (Lemma 1.1’), so tbsbrbs E Y.  

Notice: In fact, tbsbrbsb is also in У.
Every ideal is quasi-ideal, but a quasi-ideal may not be an ideal. Readers may see the 

counter example in [8].
For every quasi-ideal Y  ф R, we set T2(R, Y) to denote the set of all elements of the form

diag(«,v)o1,aba,1c1’2,

where a +  с, b E Y ,  u,v E GL\R and v~l au — a, now-1 — о G Y  for all a E R. We set 
T2(R,R) = GL2R.

When R satisfies Sr(R) <  1 (i.e. 1-fold) condition, it is clear that T2(R,I) =  G2(R,I) 
for every ideal I  of R where G2(R,I) is the inverse image of the center of GL2R/I  under 
the homomorphism: GL2R —> GL2R/I.

In this paper we prove the following theorems.
Theorem  1.1. Let R be an associative ring with 1 satisfying 2-fold condition. Then 

T2(R,Y) is a subgroup of GL2R and [E2R>T2(R,Y)\ C E2(R)Y) C T2(R,Y). Therefore 
[.E2R,H) С H for any subgroup H of GL2R such that E2(R,Y) С H C T2(R, Y). In 
particular, H is normalized by E2R.

Theorem  1.2. Let R be an associative ring satisfying 6-fold condition. Then
(a) E2(R,Y) =  [E2R,E2Y] =  [E2R, E2(R,Y)] — [E2R,T2(R,Y)] for any quasi-ideal Y 

of R (In fact 4-fold condition is enough for (a)).
(b) for any subgroup H ofGL2R which is normalized by E2R, there is a unique quasi-ideal 

Y of R such that E2(R, Y) С H C T2(R, У).
The reason for uniqueness of У in Theorem 1.2(b) is stated in [8, p.222].
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§2. Proof of Theorem 1.1
We point out the following identity

\p(a,b,c) p(a,b,c,d)J
where p( ) =  1, p(a) =  a, p(a, b) =  1 +  ab, p(a, b,c) = a +  c + abc, p(a, b, c, d) =  1 +  abed +  
ab +  ad + cd.

If p(a,b), p(a,b,c) or p(a,b,c,d) G GLXR, then diag(p(a,b),p(6,a)-1 ), diag(p(a,b,c), 
p(c, b, a)-1 ), diag(p(a, b,c, d),p(d, c, b, a)-1 ) G E2R (see [6]).

Lemma 2.1. (1 +  xy — xyxk)a(l +  yx — kxyx) — a E Y  for ally &Y and x,k,a G R. 
Proof.

(1 +  xy — xyxk)a( 1 +  yx — kxyx) — a
=a +  xya — xyxka +  ayx +  xyayx — xyxkayx — akxyx — xyakxyx +  xyxkakxyx — a 
=(xya +  ayx) — (xyxka +  akxyx) + xyayx — xyxkayx — xyakxyx + xyxkakxyx G Y.

Proposition 2.1. The set T2(R,Y) is invariant under conjugation by E2R.
Proof. It is clear that T2(R, Y) is invariant under conjugation by ж1’2 for any ж G R. We

only need to show that T2(R,Y) is invariant under conjugation by w(l) =  ^ ^ .

In fact, it is sufficient to show that ж2,1y1>2z2,1(y G Y,x + z G У) can be written as 
diag(it', v')a1,2b2,1c1'2 where b, a+c  G Y &ndu',v' G G-LiHwithu'm/-1 — a, v'~lau' — a G Y. 
Since ж +  z =  yi G Y , we write z as —x +  y\. So

П2,1ЛД, 2„2,1 _  „2,l„.l,2f „\2,1л,2,1 _ / l  —У* У l / lж 1+% ) Ц  , )-xyx l +  x y j \ y i  1 

Note that (—xyx, 1 +  xy) =  R, xyx,y\ G Y. We may find a к G Y such that 1 +  xy 
xyxk, 1 — ky\ G GL\R. So

=  ( -

- y x  у 
■xyx 1 + xyJPOPflttO

yx к — yxk + y \  ( 1  — кух -к  
■) \  Vi 1xyx 1 + xy — xyxk

But
1 -  yx к — yxk +  У \  _  f  1 (k — yxk +  y )(l +xy — xyxk) 1
—xyx 1 +  xy — xyxk J \  1

•diag((l +  yx — kxyx) l ,1 + xy —xyxk) 1
—(1 + xy — хухк)~гхух 1

1 - k y x  - k \  

У1 1 /

= U (1 - Ы - 1 1 ) dia«(l - % b (l - ! / ^ ) - 1) ( 1 (1 \?l)4)-
Since (1 + xy — xyxk)~xxyx = (1 + xy — хухк)~гхух(1 + xy — xyxk)(l + xy — xyxk)~x 

and xyx(l + xy — xyxk) =  xyx +  xyxxy — xyxxyxk G Y, we have (1 + xy— xyxk)~lxyx G Y.
Since yx(l -  kyi)~x =  (1 -  feyi)-1 (l -  kyx)yx( 1 -  kyx)~l and (1 -  kyx)yx = y x-  ky\ G Y, 

we have y i( l — kyx)~x G Y.
By Lemma 2.1, we know that diag((l +  уж -  kxyx)~x, l  +  xy — xyxk), diag(l -  kyx, (1 -  

yxk)~x) e T 2(R,Y).
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Finally,

(к -  yxk +  y )(l + xy -  xyxk)~x -  (1 -  kyx)~xk 
=(1 +  xy — xyxk)~x(l + xy — x yxk)(k — yxk +  y)( 1 + xy — xyxk)~x 

-  (1 -  kyx)~xk • (1 -  kyx)(l -  kyx)~x.

We show that
(1) к -  k2yx =  k(l -  kyx) G Y(k G У),
(2) (1 +  xy — xyxk) (к — yxk +  у) = к — yxk + y — xyyxk +  xyk +  xy2 — xyxk2 +  xyxkyxk — 

xyxky =  к +  у +  (xy — yx)k — xy2xk +  xy2 — xyxk2 + xyxkyxk — xyxky € Y
(Note that (xyxk — xkxy)yxk € Y  and xkxyyxk e  Y).
So (к — yxk + y)( 1 +  xy — xyxk)~x -  (1 — kyx)~lk G Y.
We finish the proof.
Proposition 2.2. Тг(Д,У) is a subgroup of GL2R.
Proof. Let diag(«,'y)a1’2b2,1c1’2, diag(rti,v1)a:1’2y2,12::l’2 € T2(R,Y), where b,y,a+c,x + 

z e Y  and u, v, ux,vx € GLXR satisfying the condition in the definition of T2(R, Y).
Since T2(R,Y) is invariant under conjugation by E2R, if we show that

z1’2diag(ti,u)a1,2b2’1c1’2diag(ui,vi)a;1’2y2,1 €T2(R,Y)

then we finish the proof. 
Since

and

diag(u, u)a1,2b2,1c1’2diag(ui, vx)x1,2y2,x 
dia,g(u,v)a1'2b2,1cl’2( - z )1,2z1’2dia,g(ux,vx)x1’2y2’1

z1,2diag(«i, vx)x1,2y2,1 =  diag(ui, wi)(u1 xzvx -  z)1'2z l,2xi,2y2'1 
=  diag(ui, vx)((uf1zvx -  z) +  (z +  ж))1,2?/2’1

(Note that u f l zvx — z +  z +  x € У), it is sufficient to show that T2(R,Y) is invariant 
under right multiplication by y\'2, yx1(yx G У) and diag(«i,ui)(ui,vi G GLxR,uxavfx — a, 
v f laux — a G У). But the proof is the same as that of [8, Lemma (1.3)].

By Propositions 2.1 and 2.2, T2(R,Y) is a subgroup of GL2R and it is normalized by E2R. 
Since E2Y  C T2(R,Y), it follows that E2(R,Y) C T2(R,Y). By the definition, T2(R,Y) 
normalizes E2(R,Y). The first inclusion is clear.

§3. Proof of Theorem 1.2
First let us prove Theorem 1.2(a)
Lemma 3.1. Let Y be a quasi-ideal of R and let у G Y, 1 +  xy G GLXR. Then 

diag(l +  xy, (1 +  yx)~x) G E2(R,Y).
Proof. diag(l +  xy, (1 +  уж)-1 ) =  (x + xyx)1,2(yz)2,1y1,2(—x)2,1(—y)1>2 where z = 

(1 +  xy)~x — 1 =  - (x  +  zx)y. It is clear that yz — —y(x +  zx)y G У.
Now introduce “the lower level” L(H) of a subgroup H of GL2R. Set

L(H) =  {x G R | ж2’1 G H}.
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It is easy to see that L(H) is an additive subgroup of 72 and that

L(E2(R,I)) =  L(G2(R,I)) = I
for any ideal I  of R. By [7,8], we know that L(E2(R, F )) =  F  and L(T2(R, F )) =  F  for any 
quasi-ideal F  of 72.

Now we assume that H is normalized by E2R. Then [^72, 77] C 77. Then conjugation 
by diag(tt, и-1 ), or diag(l +  rs, (1 +  sr)-1 ) (и, 1 +  rs G GLXR), gives the following results:

uL(H)u C L(H), (1 +  rs)L(H)( 1 +  sr) С L(tf).

Lem m a 3.2. Assume that 72 satisfies А-fold condition and X is an additive group such 
that uXu С X,  (1 +  rs)X (l +  sr) С X  for all и, 1 +  rs G GLXR. Then аХа С X  for all 
a G 72.

Proof. For any a € 72, we may write a as vx + v2 where vx,v2 G GLXR. Since 72 satisfies 
unit 3-fold condition, there is а u G GLXR  such that 1 +  ua, 1 + uvx, 1 +  uv2 G GLXR.

Since (1 +  uvi)x(l + Viu) — x +  uv x̂ +  xviu+ uvixviu € X{i =  1,2), we have uv{X + xViU G
Х(г = 1,2).

Further, uax +  xau = u{v\ +  v2)x +  x(vi +  v2)u G X,  Prom (1 +  ua)x{ 1 +  au) — 
x +  uax +  xau +  uaxau G X  and uax +  xau G X,  we have uaxau G X  =Ф- ожа G X .

Now we can apply the above to the case H = [E2R,E2Y] and prove Theorem 1.2(a). By 
Theorem 1.1, it suffices to prove the inclusion E2(R,Y) C  [E2R,E2Y]. That is, we have to 
show that F  С X  where X  — L(H) =  L([E2R,E2Y]), assuming the hypotheses of Theorem 
1.2(a).

Lem m a 3.3. Let у G F . Then у can be written as y\ +  y2 with yi,y2 G F  such that
1  +  2 /1 ,1  +  3/2 G G L i 72.

Proof. Since (1+2/, -y )  =  72 and (1, y) =  72, there exists a y' such that l + y —y'y, l+y'y G 
GLiR and y'y G F  (see Lemma 1.2). Set 2/1 — y'y, 2/2 =  y-y'y-  It is obvious that у =  2/1 + 2/2 , 
and 1 +  2/1 , 1 +  2/2 € GLiR.

By Lemma 3.3, it suffices to show that у G X  for any у G F  such that 1 +  у G GL\R. 
Since diag(l +  2/,(l +  2/)_1) € E2(R,Y), we have [diag(l +  2/,( l +  2/)“ 1),a 1’2] =  (ya + ay + 

yay)1,2 G [E2R,E2Y], that is,

ya +  ay +  yay G X  for all a G 72. (3.1)

Now we fix a unit t G GL\R such that 1+t, 1—yt, 1+y—yty G GL\R (Note that (1,1) =  72, 
(1, -y )  =  72, (1 +  y, —2/2) =  72 and 1 +  у +  yty G GLXR when 1 +  2/ -  yyt =  1 +  2/(1 -  2/0 € 
GLXR). We have [diag(it, u-1 ),?/1’2] =  {uyu -  y)1’2 G H and hence uyu — у G X,  where 
u = t , l  +  t. Thus у + ty + yt G X.  Using (3.1) with а =  t, we obtain

y - y t y e  X. (3.2)

Replacing у by у — yty G F , we obtain

У -  yty -  (2/ -  yty)t{y -  yty) G X. (3.3)

Subtracting (3.3) from (3.2), we obtain

(2/ -  yty)t(y -  yty) =  (1 -  yt)yty(l - t y ) e X .
Let g =  diag(l — yt, (1 — ty)~l ) G ^72. Then

g - ' d l  -  yt)yty(l -  iy))1’2*/ =  (yty)1’2 G [ В Д а д ,
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i.e. yty G X,  so у G X.
Next, let us prove Theorem 1.2(b).
Set i f  =  {g G GL2R | [y, E2R] С Я }.
Then Я  С i f ,  i f  is normalized by E2R, and [K,E2R] С Я. If a,b G R and al '2b2>l € K, 

then a1,2, 62,1 G If, i.e. a,b G L (if). This property makes i f  more convenient than H (see 

$ ) .
If diag(«, v)al,2b2,1c1'2 G К  where о +  c, b G i f ,  then

diag(u,u)(u~1eu +  a)1,262’1 G if.

The following Lemmas are bprrowed from [8], readers may find the proof in [8].
Lemma 3.4. Let g =  x1'2 diag(u,v)y2,1 G i f  and u,v be similar in GL\R. Then ж1’2, 

у2’1, diag(«, v) G i f .
Corollary. If g =  x 1,2diag(u, ujy2»1 G i f ,  then (ж — у)1’2, diag(uv,vu) G if .
Lemma 3.5. Lei g =  ж1’2diag(гt,? )̂ж2’1 G i f .  Then

(ж — ижи-1 )1’2, [ж1’2, ж2’1], ^ ) 1,2diag(:iM;-1 ,tm-1) ^ ) 2’1 G if.

Lemma 3.6. Lei у =  y ^ d ia g ^  i -1 ^ 2,1 G i f  . TTien

(1 — i2)2,1(i2 — l ) 1,2diag(i, t -1 ), (2ж)2,1, diag(i2, i -2 ) G if.

We define

Ф(Н) =  {b G Я | a1,2diag(«,•v)i)2’1c1,2 G H for some u,v G GL\R and a,c G il} , 

ф'{Н) =  {a +  c G Я | a^diag^v)!»2’1^ ’2 G Я  for some u,v G GL\R and 6 G Я}.

Lemma 3.7. ф(Н) =  ф'(Н), ф(Н) is an additive subgroup of R, and аф(Н)сх.' =  ф(Н) 
for every a, a' G GL\R such that diag(a_1, a') G E2R.

Proof. Let b G ф(Н)- Then a1,2diag(u, v)b2,1c1,2 g Я  for some u, v G GL\R and 
a, c G R. We have

(a +  c)1,2diag(u,u)b2,1 G Я.

Taking inverses and conjugating by w (l), we obtain b G ф'(Н), so ф(Н) С ф'(Н). 
Similarly, ф'(Н) С ф(Н).

To prove the second conclusion, let a +  c, ai +  cj G ф'(К), i.e.

у — al,2diag(u,u)b2,1c1’2 G Я, <7i =  a i’2diag(«i,vi)b2,1cj’2 G Я.

Then

g' == (a +  c)1,2diag(u, v)62’1 G Я, y'x =  (ai +  ci)1,2diag(ui, G Я.

So

( - ( a x +  ci))1*ay,fl4-1 (ai +  c i)1’2 

=((a +  c) -  (ai +  ci))1,2diag(«'u^1,'y'y]f 1)(u1(b -  h j v f 1)1,2 G Я.

Hence (a +  c) — (ai +  c{) G ф'{Н). Thus ф(Н) =  Ф'(Н) is an additive subgroup of R. 
The last conclusion is obvious.
Proposition 3.1. 4-0 (if) c  L (if).
Proof. By Lemmas 3.5 and 3.6.
Set X  =  L (if), Y  =  ф(К).
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Lem ma 3.8. Y  =  ф(К) is a quasi-ideal of R.
Proof. By Lemmas 3.7 and 3.2, we know that aYa C Y  for all a € R.
It remains to show that yay E Y  for all у E Y and a E R. Since we can write any a E R 

as oi +  o2 such that 1 -  yai(i =  1,2) £ GLXR  (Note that (1, - у) =  R, (1 -  ya, y) =  R), it 
suffices to prove the result for a E R with 1 -  ya £ GL\R. Choose

9 =  (2/)1,2diag(ti,v)(*)2)1 £ К
and let b =  u~xav. Then

<б1’г'91 =

where z =  (1 — ya)~lyay. Hence z E Y  and so (1 — ya)z( 1 — ay) = yay — yayay E Y. Since 
yayay E Y, we have yay £ Y.

If 2 is invertible, by Proposition 3.1 we have -ф(К) =  L(K) =  Y. By Theorem 1.2(a), 
E2(R,Y) = [E2Y, E2R\ С [K, E2R] С H. Hence L(H) =  Y  and Theorem 1.2(b) follows.

In general, we need the following Lemmas.
Lem ma 3.9. If a E GL\R and a 2—1 £ GLXR, theny+ry+yr £ X, where r =  (a2—l ) -1 

and y €  Y.
Proof. Applying the conclusion that if у £ tj)(K) and « £ GL\R then u2yu2 — у £ ir(isT) 

to 2/' =  а2 у a2 — y, we get у' £ X  = L{K). Then calculate ry'r.
Lem m a 3.10. Let x € Y with 1 — x £ GL\R and x2,2x € X . Then x e X  (see 

[8],p.230).
Corollary. If x £ У with 1 — x , l  — 2x E GL\R and x2 € X, then ж £ X .
Proof. By Proposition 3.1, 4Y С X.  So 2(2ж),(2ж)3 £ X. By Lemma 3.10, 2ж £ X. 

Now 2ж,ж2 £ X . Apply Lemma 3.10 again.
Lem m a 3.11. Let ж £ У with 1 — ж, 1 — 2ж £ GL\R. Then ж4 £ X.
Proof. Since 4Y С X , we have 2(2ж), (2ж)2 £ X . By Lemma 3.10, 2ж € X . Let 

h =  ж2,1diag(*, fc^*)1'2 £ K.  The matrix (—ж)2,1[(—l ) 1’2, ^ж2’1 has the form

h' — (ж2(1 — ж)-1 )2’1diag(l -  ж, (1 -  ж)-1 )(*)1,2 £ К.

By Lemma 3.6, g =  diag((l -  ж)2, (1 -  ж)~2) £  К. So [g, l 1’2] =  (1 -  (1 -  ж)4) 1’2 e K,  i.e. 
4ж — 6ж2 +  4ж3 -  ж4 £ X , so ж4 £ X  (In fact, 2Y С X. See the following proof).

Now we can conclude the proof of the goal that Y  С X. Note that under the hypotheses 
of Theorem 1.2, every у E Y  may be written as y\ +  y2 with у 1 , 2/2 G Y  such that 1 -  j/j, 1 +  
yi, 1 — 2yi(i =  1,2) £ GL\R (The proof is similar to Lemma 3.3). So it suffices to prove that 
for у E Y  with 1 -  у, 1 +  у, 1 -  2y E GLiR.

Since 2y2 may be written as 2xx + 2x2 with 1 -  2жх, 1 -  2ж2 E GLXR, and Ж1 ,ж2 £ Y, we 
have 2y2 £ X  by Lemma 3.10. By Lemma 3.11, у4 £ X . Because 1 -  у2 = (1 — y)(l + y) E 
GLXR, we have у2 £ X . Hence у £ X  by Lemma 3.10.

Theorem 1.2(b) is proved.
Actually, we have proved that К  C T2(R,Y) also. So [E2R,E2(R,Y)\ с  H C T2(R,Y).
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