ON SUBGROUPS OF *GL*₂ OVER A CLASS OF NON-COMMUTATIVE RINGS WHICH ARE NORMALIZED BY ELEMENTARY MATRICES**

You Hong*

Abstract

Let R be an associative ring with 1 and $Y \neq R$ a quasi-ideal of R. Set $T_2(R,Y) = \{ \operatorname{diag}(u,v)a^{1,2}b^{2,1}c^{1,2}: a+c, b \in Y, u, v \in GL_1R, \text{ and } v^{-1}au-a, uav^{-1}-a \in Y \text{ for all } a \in R \}.$ It is proved that if R satisfies 2-fold condition, then $[E_2R, T_2(R,Y)] \subset E_2(R,Y) \subset T_2(R,Y);$ and if R satisfies 6-fold condition, then $E_2(R,Y) = [E_2R, E_2(R,Y)] = [E_2R, T_2(R,Y)]$ and the sandwich theorem holds.

Keywords Non-commutative rings, Subgroup, Elementary matrices, Quasi-ideal. 1991 MR Subject Classification 16L30.

§1. Introduction

Let R be an associative ring with 1, Y a set of R. As usual, GL_2R denotes the group of all invertible 2 by 2 matrices over R, E_2Y denotes the subgroup of GL_2R generated by all elementary matrices $y^{1,2}$ and $y^{2,1}$ where $y \in Y$. We denote by $E_2(R,Y)$ the normal subgroup of E_2R generated by E_2Y .

Vaserstein^[7,8] recently introduced a concept of quasi-ideal which is defined as an additive subgroup Y of R such that $yay, aya \in Y$ for all $a \in R, y \in Y$, and studied the structure of subgroups of GL_2 over non-commutative local rings which are normalized by elementary matrices^[8]. Before Vaserstein's work, many results on the subgroups of GL_2 over some commutative rings were offered by Klingenberg^[1], Lacroix^[2], Mason^[3,4], Mcdonald^[5], Zhang-Wang^[11] and so on.

For the readers' convenience, we will cite from [7,8] some properties of quasi-ideals and prove a new one.

Lemma 1.1. Let R be an associative ring with 1 and Y a quasi-ideal of R. Then

(1) $ayb + bya \in Y$, $yab + bay \in Y$ for all $y \in Y, a, b \in R$;

(2) $Ry^2 \subseteq Y$ for all $y \in Y$;

(3) $R'YR, RYR' \subseteq Y$ where R' is the ideal of R generated by all additive commutators ab - ba with $a, b \in R$.

The properties (1) and (3) above still hold for an additive group Y satisfying $aya \in Y$ for all $a \in R$ and $y \in Y$.

Manuscript received August 30, 1990.

^{*}Department of Mathematics, Northeast Normal University, Changchun 130024, China

^{**}Project supported by the National Natural Science Foundation of China.

Lemma 1.1'. Assume that the condition is the same as in Lemma 1.1. Then $Ry^2R \subseteq Y$ for all $y \in Y$.

Proof. Let $a, b \in R$ and $y \in Y$. We want to show $ay^2b \in Y$. Since $by(ay) + (ay)yb \in Y$ and $(b(ya) - (ya)b)y \in Y$, but $yaby \in Y$ by the definition of quasi-ideal, we have $byay \in Y$, hence $ayyb = ay^2b \in Y$.

Recall that a ring is called *n*-fold (or unit *n*-fold), if for $a_i, b_i \in R(i = 1, \dots, n)$ with $Ra_i + Rb_i = R((a_i, b_i) = R)$ there is a $c \in R$ (or $c \in GL_1R$) such that $a_i + cb_i(i = 1, \dots, n) \in GL_1R$.

By [10], we know that *n*-fold means unit (n-1)-fold. See [6,9] for references about *n*-fold rings, such as semi-local ring R with the fields K_i in $R/J = \prod_{i=1}^{m} M_{n_i}(K_i)$ having sufficient elements, C^* -algebra with unitary stable range 1 and full rings (commutative).

We say that ring R satisfies n-fold condition for a quasi-ideal Y, if $a_i \in R$, $b_i \in Y(i = 1, \dots, n)$ such that $Ra_i + Rb_i = R$, then there is a $c \in Y$ such that $a_i + cb_i \in GL_1R$.

Lemma 1.2. That R is n-fold implies that R satisfies n-fold condition for a quasi-ideal Y.

Proof. We only need to show this for n = 1. Assume that $a \in R$, $b \in Y$ with Ra+Rb = R. Then (a, bsb) = R for some $s \in R$. Further, (a, bsbrbsb) = R for some $r \in R$. So there is a $t \in R$ such that $a + tbsbrbsb \in GL_1R$. Let us show $tbsbrbs \in Y$. Since $brb \in Y$, we have $(tbs-stb)brbs \in Y$ by Lemma 1.1. But $stbbrbs = stb^2rbs \in Y$ (Lemma 1.1'), so $tbsbrbs \in Y$.

Notice: In fact, tbsbrbsb is also in Y.

Every ideal is quasi-ideal, but a quasi-ideal may not be an ideal. Readers may see the counter example in [8].

For every quasi-ideal $Y \neq R$, we set $T_2(R, Y)$ to denote the set of all elements of the form

$$diag(u, v)a^{1,2}b^{2,1}c^{1,2}$$

where a + c, $b \in Y$, $u, v \in GL_1R$ and $v^{-1}au - a$, $uav^{-1} - a \in Y$ for all $a \in R$. We set $T_2(R, R) = GL_2R$.

When R satisfies $Sr(R) \leq 1$ (i.e. 1-fold) condition, it is clear that $T_2(R,I) = G_2(R,I)$ for every ideal I of R where $G_2(R,I)$ is the inverse image of the center of GL_2R/I under the homomorphism: $GL_2R \rightarrow GL_2R/I$.

In this paper we prove the following theorems.

Theorem 1.1. Let R be an associative ring with 1 satisfying 2-fold condition. Then $T_2(R,Y)$ is a subgroup of GL_2R and $[E_2R,T_2(R,Y)] \subset E_2(R,Y) \subset T_2(R,Y)$. Therefore $[E_2R,H] \subset H$ for any subgroup H of GL_2R such that $E_2(R,Y) \subset H \subset T_2(R,Y)$. In particular, H is normalized by E_2R .

Theorem 1.2. Let R be an associative ring satisfying 6-fold condition. Then

(a) $E_2(R,Y) = [E_2R, E_2Y] = [E_2R, E_2(R,Y)] = [E_2R, T_2(R,Y)]$ for any quasi-ideal Y of R (In fact 4-fold condition is enough for (a)).

(b) for any subgroup H of GL_2R which is normalized by E_2R , there is a unique quasi-ideal Y of R such that $E_2(R, Y) \subset H \subset T_2(R, Y)$.

The reason for uniqueness of Y in Theorem 1.2(b) is stated in [8, p.222].

§2. Proof of Theorem 1.1

We point out the following identity

$$a^{2,1}b^{1,2}c^{2,1}d^{1,2} = egin{pmatrix} p(b,c) & p(b,c,d) \ p(a,b,c) & p(a,b,c,d) \end{pmatrix},$$

where p() = 1, p(a) = a, p(a, b) = 1 + ab, p(a, b, c) = a + c + abc, p(a, b, c, d) = 1 + abcd + ab + ad + cd.

If p(a,b), p(a,b,c) or $p(a,b,c,d) \in GL_1R$, then diag $(p(a,b), p(b,a)^{-1})$, diag $(p(a,b,c), p(c,b,a)^{-1})$, diag $(p(a,b,c,d), p(d,c,b,a)^{-1}) \in E_2R$ (see [6]).

Lemma 2.1. $(1 + xy - xyxk)a(1 + yx - kxyx) - a \in Y$ for all $y \in Y$ and $x, k, a \in R$. Proof.

(1+xy-xyxk)a(1+yx-kxyx)-a

=a + xya - xyxka + ayx + xyayx - xyxkayx - akxyx - xyakxyx + xyxkakxyx - a $=(xya + ayx) - (xyxka + akxyx) + xyayx - xyxkayx - xyakxyx + xyxkakxyx \in Y.$

Proposition 2.1. The set $T_2(R, Y)$ is invariant under conjugation by E_2R .

Proof. It is clear that $T_2(R, Y)$ is invariant under conjugation by $x^{1,2}$ for any $x \in R$. We only need to show that $T_2(R, Y)$ is invariant under conjugation by $w(1) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. In fact, it is sufficient to show that $x^{2,1}y^{1,2}z^{2,1}(y \in Y, x + z \in Y)$ can be written as $\operatorname{diag}(u', v')a^{1,2}b^{2,1}c^{1,2}$ where $b, a+c \in Y$ and $u', v' \in GL_1R$ with $u'av'^{-1} - a, v'^{-1}au' - a \in Y$. Since $x + z = y_1 \in Y$, we write z as $-x + y_1$. So

$$x^{2,1}y^{1,2}z^{2,1} = x^{2,1}y^{1,2}(-x)^{2,1}y^{2,1}_1 = \begin{pmatrix} 1-yx & y\\ -xyx & 1+xy \end{pmatrix} \begin{pmatrix} 1\\ y_1 & 1 \end{pmatrix}.$$

Note that (-xyx, 1 + xy) = R, $xyx, y_1 \in Y$. We may find a $k \in Y$ such that $1 + xy - xyxk, 1 - ky_1 \in GL_1R$. So

$$\begin{pmatrix} 1-yx & y \\ -xyx & 1+xy \end{pmatrix} \begin{pmatrix} 1 & k \\ 1 \end{pmatrix} \begin{pmatrix} 1 & -k \\ 1 \end{pmatrix} \begin{pmatrix} 1 & -k \\ y_1 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1-yx & k-yxk+y \\ -xyx & 1+xy-xyxk \end{pmatrix} \begin{pmatrix} 1-ky_1 & -k \\ y_1 & 1 \end{pmatrix}.$$

But

$$\begin{pmatrix} 1-yx & k-yxk+y\\ -xyx & 1+xy-xyxk \end{pmatrix} = \begin{pmatrix} 1 & (k-yxk+y)(1+xy-xyxk)^{-1}\\ & 1 \end{pmatrix}$$

$$\begin{aligned} & \operatorname{diag}((1+yx-kxyx)^{-1},1+xy-xyxk) \begin{pmatrix} 1 \\ -(1+xy-xyxk)^{-1}xyx & 1 \end{pmatrix} \begin{pmatrix} 1-ky_1 & -k \\ y_1 & 1 \end{pmatrix} \\ & = \begin{pmatrix} 1 \\ y_1(1-ky_1)^{-1} & 1 \end{pmatrix} \operatorname{diag}(1-ky_1,(1-y_1k)^{-1}) \begin{pmatrix} 1 & -(1-ky_1)^{-1}k \\ 1 \end{pmatrix}. \end{aligned}$$

Since $(1 + xy - xyxk)^{-1}xyx = (1 + xy - xyxk)^{-1}xyx(1 + xy - xyxk)(1 + xy - xyxk)^{-1}$ and $xyx(1 + xy - xyxk) = xyx + xyxxy - xyxxyxk \in Y$, we have $(1 + xy - xyxk)^{-1}xyx \in Y$.

Since $y_1(1-ky_1)^{-1} = (1-ky_1)^{-1}(1-ky_1)y_1(1-ky_1)^{-1}$ and $(1-ky_1)y_1 = y_1 - ky_1^2 \in Y$, we have $y_1(1-ky_1)^{-1} \in Y$.

By Lemma 2.1, we know that $diag((1 + yx - kxyx)^{-1}, 1 + xy - xyxk)$, $diag(1 - ky_1, (1 - y_1k)^{-1}) \in T_2(R, Y)$.

Finally,

$$egin{aligned} &(k-yxk+y)(1+xy-xyxk)^{-1}-(1-ky_1)^{-1}k\ =&(1+xy-xyxk)^{-1}(1+xy-xyxk)(k-yxk+y)(1+xy-xyxk)^{-1}\ &-(1-ky_1)^{-1}k\cdot(1-ky_1)(1-ky_1)^{-1}. \end{aligned}$$

We show that

(1) $k - k^2 y_1 = k(1 - ky_1) \in Y(k \in Y),$

 $(2) (1+xy-xyxk)(k-yxk+y) = k-yxk+y-xyyxk+xyk+xy^2-xyxk^2+xyxkyxk-xyxkyxk-xyxky = k+y+(xy-yx)k-xy^2xk+xy^2-xyxk^2+xyxkyxk-xyxky \in Y$

(Note that $(xyxk - xkxy)yxk \in Y$ and $xkxyyxk \in Y$).

So
$$(k - yxk + y)(1 + xy - xyxk)^{-1} - (1 - ky_1)^{-1}k \in Y$$
.

We finish the proof.

Proposition 2.2. $T_2(R, Y)$ is a subgroup of GL_2R .

Proof. Let diag $(u, v)a^{1,2}b^{2,1}c^{1,2}$, diag $(u_1, v_1)x^{1,2}y^{2,1}z^{1,2} \in T_2(R, Y)$, where $b, y, a+c, x+z \in Y$ and $u, v; u_1, v_1 \in GL_1R$ satisfying the condition in the definition of $T_2(R, Y)$.

Since $T_2(R, Y)$ is invariant under conjugation by E_2R , if we show that

 $z^{1,2}$ diag $(u, v)a^{1,2}b^{2,1}c^{1,2}$ diag $(u_1, v_1)x^{1,2}y^{2,1} \in T_2(R, Y)$

then we finish the proof.

Since

$$z^{1,2} ext{diag}(u,v)a^{1,2}b^{2,1}c^{1,2} ext{diag}(u_1,v_1)x^{1,2}y^{2,1}
onumber \ = z^{1,2} ext{diag}(u,v)a^{1,2}b^{2,1}c^{1,2}(-z)^{1,2}z^{1,2} ext{diag}(u_1,v_1)x^{1,2}y^{2,1}$$

 \mathbf{and}

$$egin{aligned} &z^{1,2}\mathrm{diag}(u_1,v_1)x^{1,2}y^{2,1} = \mathrm{diag}(u_1,v_1)(u_1^{-1}zv_1-z)^{1,2}z^{1,2}x^{1,2}y^{2,1}\ &= \mathrm{diag}(u_1,v_1)((u_1^{-1}zv_1-z)+(z+x))^{1,2}y^{2,1} \end{aligned}$$

(Note that $u_1^{-1}zv_1 - z + z + x \in Y$), it is sufficient to show that $T_2(R,Y)$ is invariant under right multiplication by $y_1^{1,2}$, $y_1^{2,1}(y_1 \in Y)$ and $\operatorname{diag}(u_1, v_1)(u_1, v_1 \in GL_1R, u_1av_1^{-1} - a, v_1^{-1}au_1 - a \in Y)$. But the proof is the same as that of [8, Lemma (1.3)].

By Propositions 2.1 and 2.2, $T_2(R, Y)$ is a subgroup of GL_2R and it is normalized by E_2R . Since $E_2Y \subset T_2(R, Y)$, it follows that $E_2(R, Y) \subset T_2(R, Y)$. By the definition, $T_2(R, Y)$ normalizes $E_2(R, Y)$. The first inclusion is clear.

§3. Proof of Theorem 1.2

First let us prove Theorem 1.2(a)

Lemma 3.1. Let Y be a quasi-ideal of R and let $y \in Y$, $1 + xy \in GL_1R$. Then $\operatorname{diag}(1 + xy, (1 + yx)^{-1}) \in E_2(R, Y)$.

Proof. diag $(1 + xy, (1 + yx)^{-1}) = (x + xyx)^{1,2}(yz)^{2,1}y^{1,2}(-x)^{2,1}(-y)^{1,2}$ where $z = (1 + xy)^{-1} - 1 = -(x + zx)y$. It is clear that $yz = -y(x + zx)y \in Y$.

Now introduce "the lower level" L(H) of a subgroup H of GL_2R . Set

$$L(H) = \{ x \in R \mid x^{2,1} \in H \}.$$

It is easy to see that L(H) is an additive subgroup of R and that

$$L(E_2(R, I)) = L(G_2(R, I)) = I$$

for any ideal I of R. By [7,8], we know that $L(E_2(R,Y)) = Y$ and $L(T_2(R,Y)) = Y$ for any quasi-ideal Y of R.

Now we assume that H is normalized by E_2R . Then $[E_2R, H] \subset H$. Then conjugation by diag (u, u^{-1}) , or diag $(1 + rs, (1 + sr)^{-1})$ $(u, 1 + rs \in GL_1R)$, gives the following results:

$$uL(H)u \subset L(H), \quad (1+rs)L(H)(1+sr) \subset L(H).$$

Lemma 3.2. Assume that R satisfies 4-fold condition and X is an additive group such that $uXu \subset X$, $(1+rs)X(1+sr) \subset X$ for all $u, 1+rs \in GL_1R$. Then $aXa \subset X$ for all $a \in R$.

Proof. For any $a \in R$, we may write a as $v_1 + v_2$ where $v_1, v_2 \in GL_1R$. Since R satisfies unit 3-fold condition, there is a $u \in GL_1R$ such that $1 + ua, 1 + uv_1, 1 + uv_2 \in GL_1R$.

Since $(1+uv_i)x(1+v_iu) = x+uv_ix+xv_iu+uv_ixv_iu \in X(i=1,2)$, we have $uv_ix+xv_iu \in X(i=1,2)$.

Further, $uax + xau = u(v_1 + v_2)x + x(v_1 + v_2)u \in X$. From $(1 + ua)x(1 + au) = x + uax + xau + uaxau \in X$ and $uax + xau \in X$, we have $uaxau \in X \Rightarrow axa \in X$.

Now we can apply the above to the case $H = [E_2R, E_2Y]$ and prove Theorem 1.2(a). By Theorem 1.1, it suffices to prove the inclusion $E_2(R, Y) \subset [E_2R, E_2Y]$. That is, we have to show that $Y \subset X$ where $X = L(H) = L([E_2R, E_2Y])$, assuming the hypotheses of Theorem 1.2(a).

Lemma 3.3. Let $y \in Y$. Then y can be written as $y_1 + y_2$ with $y_1, y_2 \in Y$ such that $1 + y_1, 1 + y_2 \in GL_1R$.

Proof. Since (1+y, -y) = R and (1, y) = R, there exists a y' such that $1+y-y'y, 1+y'y \in GL_1R$ and $y'y \in Y$ (see Lemma 1.2). Set $y_1 = y'y, y_2 = y-y'y$. It is obvious that $y = y_1+y_2$, and $1+y_1, 1+y_2 \in GL_1R$.

By Lemma 3.3, it suffices to show that $y \in X$ for any $y \in Y$ such that $1 + y \in GL_1R$. Since diag $(1+y, (1+y)^{-1}) \in E_2(R, Y)$, we have $[\text{diag}(1+y, (1+y)^{-1}), a^{1,2}] = (ya+ay+yay)^{1,2} \in [E_2R, E_2Y]$, that is,

$$ya + ay + yay \in X$$
 for all $a \in R$. (3.1)

Now we fix a unit $t \in GL_1R$ such that $1+t, 1-yt, 1+y-yty \in GL_1R$ (Note that (1,1) = R, $(1,-y) = R, (1+y,-y^2) = R$ and $1+y+yty \in GL_1R$ when $1+y-yyt = 1+y(1-yt) \in GL_1R$). We have $[\text{diag}(u,u^{-1}), y^{1,2}] = (uyu-y)^{1,2} \in H$ and hence $uyu - y \in X$, where u = t, 1+t. Thus $y + ty + yt \in X$. Using (3.1) with a = t, we obtain

$$y - yty \in X. \tag{3.2}$$

Replacing y by $y - yty \in Y$, we obtain

$$y - yty - (y - yty)t(y - yty) \in X.$$
(3.3)

Subtracting (3.3) from (3.2), we obtain

$$(y - yty)t(y - yty) = (1 - yt)yty(1 - ty) \in X$$

Let $g = \text{diag}(1 - yt, (1 - ty)^{-1}) \in E_2 R$. Then

$$g^{-1}((1-yt)yty(1-ty))^{1,2}g = (yty)^{1,2} \in [E_2R, E_2Y],$$

511

i.e. $yty \in X$, so $y \in X$.

Next, let us prove Theorem 1.2(b).

Set $K = \{g \in GL_2R \mid [g, E_2R] \subset H\}.$

Then $H \subset K$, K is normalized by E_2R , and $[K, E_2R] \subset H$. If $a, b \in R$ and $a^{1,2}b^{2,1} \in K$, then $a^{1,2}, b^{2,1} \in K$, i.e. $a, b \in L(K)$. This property makes K more convenient than H (see [8]).

If $diag(u, v)a^{1,2}b^{2,1}c^{1,2} \in K$ where $a + c, b \in K$, then

 $diag(u, v)(u^{-1}cv + a)^{1,2}b^{2,1} \in K.$

The following Lemmas are borrowed from [8], readers may find the proof in [8].

Lemma 3.4. Let $g = x^{1,2} diag(u, v) y^{2,1} \in K$ and u, v be similar in GL_1R . Then $x^{1,2}$, $y^{2,1}$, $diag(u, v) \in K$.

Corollary. If $g = x^{1,2} \text{diag}(u, v) y^{2,1} \in K$, then $(x - y)^{1,2}$, $\text{diag}(uv, vu) \in K$. **Lemma 3.5.** Let $g = x^{1,2} \text{diag}(u, v) x^{2,1} \in K$. Then

$$(x - uxv^{-1})^{1,2}, [x^{1,2}, x^{2,1}], (2x)^{1,2} \text{diag}(uv^{-1}, vu^{-1})(2x)^{2,1} \in K.$$

Lemma 3.6. Let $g = y^{1,2} \text{diag}(t, t^{-1}) x^{2,1} \in K$. Then

$$(1-t^2)^{2,1}(t^2-1)^{1,2}\operatorname{diag}(t,t^{-1}),(2x)^{2,1},\operatorname{diag}(t^2,t^{-2})\in K.$$

We define

$$\psi(H) = \{ b \in R \mid a^{1,2} \text{diag}(u,v) b^{2,1} c^{1,2} \in H \text{ for some } u, v \in GL_1R \text{ and } a, c \in R \},\$$

$$\psi'(H) = \{a + c \in R \mid a^{1,2} \operatorname{diag}(u, v) b^{2,1} c^{1,2} \in H \text{ for some } u, v \in GL_1R \text{ and } b \in R\}.$$

Lemma 3.7. $\psi(H) = \psi'(H)$, $\psi(H)$ is an additive subgroup of R, and $\alpha\psi(H)\alpha' = \psi(H)$ for every $\alpha, \alpha' \in GL_1R$ such that $\operatorname{diag}(\alpha^{-1}, \alpha') \in E_2R$.

Proof. Let $b \in \psi(H)$. Then $a^{1,2} \operatorname{diag}(u,v)b^{2,1}c^{1,2} \in H$ for some $u, v \in GL_1R$ and $a, c \in R$. We have

 $(a+c)^{1,2}\mathrm{diag}(u,v)b^{2,1}\in H.$

Taking inverses and conjugating by w(1), we obtain $b \in \psi'(H)$, so $\psi(H) \subset \psi'(H)$. Similarly, $\psi'(H) \subset \psi(H)$.

To prove the second conclusion, let $a + c, a_1 + c_1 \in \psi'(K)$, i.e.

$$g=a^{1,2}\mathrm{diag}(u,v)b^{2,1}c^{1,2}\in H, \quad g_1=a_1^{1,2}\mathrm{diag}(u_1,v_1)b_1^{2,1}c_1^{1,2}\in H.$$

Then

$$g' = (a+c)^{1,2} \operatorname{diag}(u,v) b^{2,1} \in H, \quad g'_1 = (a_1+c_1)^{1,2} \operatorname{diag}(u_1,v_1) b_1^{2,1} \in H.$$

So

$$(-(a_1+c_1))^{1,2}g'g'_1^{-1}(a_1+c_1)^{1,2}$$

$$=((a+c)-(a_1+c_1))^{1,2}\mathrm{diag}(uu_1^{-1},vv_1^{-1})(u_1(b-b_1)v_1^{-1})^{1,2}\in H$$

Hence $(a + c) - (a_1 + c_1) \in \psi'(H)$. Thus $\psi(H) = \psi'(H)$ is an additive subgroup of R. The last conclusion is obvious.

Proposition 3.1. $4\psi(K) \subset L(K)$.

Proof. By Lemmas 3.5 and 3.6.

Set $X = L(K), Y = \psi(K)$.

512

Lemma 3.8. $Y = \psi(K)$ is a quasi-ideal of R.

Proof. By Lemmas 3.7 and 3.2, we know that $aYa \subset Y$ for all $a \in R$.

It remains to show that $yay \in Y$ for all $y \in Y$ and $a \in R$. Since we can write any $a \in R$ as $a_1 + a_2$ such that $1 - ya_i(i = 1, 2) \in GL_1R$ (Note that (1, -y) = R, (1 - ya, y) = R), it suffices to prove the result for $a \in R$ with $1 - ya \in GL_1R$. Choose

513

$$g = (y)^{1,2} \mathrm{diag}(u,v)(*)^{2,1} \in K$$

and let $b = u^{-1}av$. Then

$$[b^{1,2},g] = egin{pmatrix} * & * \ yay & 1-ya \end{pmatrix} = (*)^{1,2} \mathrm{diag}(*,*) z^{2,1} \in H,$$

where $z = (1 - ya)^{-1}yay$. Hence $z \in Y$ and so $(1 - ya)z(1 - ay) = yay - yayay \in Y$. Since $yayay \in Y$, we have $yay \in Y$.

If 2 is invertible, by Proposition 3.1 we have $\psi(K) = L(K) = Y$. By Theorem 1.2(a), $E_2(R,Y) = [E_2Y, E_2R] \subset [K, E_2R] \subset H$. Hence L(H) = Y and Theorem 1.2(b) follows.

In general, we need the following Lemmas.

Lemma 3.9. If $\alpha \in GL_1R$ and $\alpha^2 - 1 \in GL_1R$, then $y+ry+yr \in X$, where $r = (\alpha^2 - 1)^{-1}$ and $y \in Y$.

Proof. Applying the conclusion that if $y \in \psi(K)$ and $u \in GL_1R$ then $u^2yu^2 - y \in L(K)$ to $y' = \alpha^2 y \alpha^2 - y$, we get $y' \in X = L(K)$. Then calculate ry'r.

Lemma 3.10. Let $x \in Y$ with $1 - x \in GL_1R$ and $x^2, 2x \in X$. Then $x \in X$ (see [8], p.230).

Corollary. If $x \in Y$ with $1 - x, 1 - 2x \in GL_1R$ and $x^2 \in X$, then $x \in X$.

Proof. By Proposition 3.1, $4Y \subset X$. So $2(2x), (2x)^2 \in X$. By Lemma 3.10, $2x \in X$. Now $2x, x^2 \in X$. Apply Lemma 3.10 again.

Lemma 3.11. Let $x \in Y$ with $1 - x, 1 - 2x \in GL_1R$. Then $x^4 \in X$.

Proof. Since $4Y \subset X$, we have $2(2x), (2x)^2 \in X$. By Lemma 3.10, $2x \in X$. Let $h = x^{2,1} \operatorname{diag}(*,*)(*)^{1,2} \in K$. The matrix $(-x)^{2,1}[(-1)^{1,2}, h]x^{2,1}$ has the form

$$h' = (x^2(1-x)^{-1})^{2,1} \operatorname{diag}(1-x,(1-x)^{-1})(*)^{1,2} \in K.$$

By Lemma 3.6, $g = \text{diag}((1-x)^2, (1-x)^{-2}) \in K$. So $[g, 1^{1,2}] = (1-(1-x)^4)^{1,2} \in K$, i.e. $4x - 6x^2 + 4x^3 - x^4 \in X$, so $x^4 \in X$ (In fact, $2Y \subset X$. See the following proof).

Now we can conclude the proof of the goal that $Y \subset X$. Note that under the hypotheses of Theorem 1.2, every $y \in Y$ may be written as $y_1 + y_2$ with $y_1, y_2 \in Y$ such that $1 - y_i, 1 + y_i, 1 - 2y_i (i = 1, 2) \in GL_1R$ (The proof is similar to Lemma 3.3). So it suffices to prove that for $y \in Y$ with $1 - y, 1 + y, 1 - 2y \in GL_1R$.

Since $2y^2$ may be written as $2x_1 + 2x_2$ with $1 - 2x_1, 1 - 2x_2 \in GL_1R$, and $x_1, x_2 \in Y$, we have $2y^2 \in X$ by Lemma 3.10. By Lemma 3.11, $y^4 \in X$. Because $1 - y^2 = (1 - y)(1 + y) \in GL_1R$, we have $y^2 \in X$. Hence $y \in X$ by Lemma 3.10.

Theorem 1.2(b) is proved.

Actually, we have proved that $K \subset T_2(R, Y)$ also. So $[E_2R, E_2(R, Y)] \subset H \subset T_2(R, Y)$.

References

 Klingenberg, W., Die structur der linearen gruppen üder einen nichtkommutative lokalen ring, Arch. Math., 13 (1962), 73-81.

- [2] Lacroix, N. H. J., Two-dimensional linear groups over local rings, Can. J. Math., 21 (1969), 106-135.
- [3] Mason, A. W., On GL_2 of a local ring in which 2 is not a unit, Can. Math. Bull, 30 (1987), 165-176.
- [4] Mason, A. W., On GL₂ of a local ring in which 2 is not a unit, II, Comm. Algebra, 17 (1989), 511-551.
- [5] McDonald, B. R., GL₂ of rings with many units, Comm. Algebra, 8 (1980), 869-888.
- [6] Menal, P. & Moncasi, J., K₁ of Von Neumann regular rings, J. Pure. and Appl. Algebra, 33 (1984), 295-312.
- [7] Vaserstein, L. N., Subnormal structure of the general linear groups over Banach algebra, J. Pure. and Appl. Algebra, 52 (1988), 187-195.
- [8] Menal, P. & Vaserstein, L. N., On subgroups of GL_2 over non-commutative local rings which are normalized by elementary matrices, *Math. Ann*, **285** (1989), 221-231.
- [9] Silvester, J. R., On the GL₂ of a semi-local ring, Lect. Notes in Math., 966, 244-260, Springer-Verlag.
- [10] You Hong, The defining relations of GL_2 over 1-fold rings (preprint).
- [11] Zhang Yongzheng & Wang Luqun, GL2 over full rings, Chin. Ann. of Math., 8B:4 (1987), 434-439.