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Abstract

Let R be an associative ring with 1land Y # R a quasi-ideal of R. Set T2(R,Y) =
{diag(u,v)at?b?1c12 : a+¢,b € Y,u,v € GL1R,and v lau—a, uav~! ~a € Y for all a € R}.
It is proved that if R satisfies 2-fold condition, then [EaR, T2(R,Y)] C Ea(R,Y) C T2(R,Y);
and if R satisfies 6-fold condition, then Ex(R,Y) = [E2R, E2(R,Y)] = [E2R, T>(R,Y)] and the
sandwich theorem holds. ' ' ‘
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§1. Introduction

Let R be an associative ring with 1, Y a set of R. As usual, GL2R denotes the group
of all invertible 2 by 2 matrices over R, E;Y denotes the subgroup of GLyR generated by
all elementary matrices y*? and y®! where y € Y We denote by E»(R,Y) the normal
subgroup of B3R’ generated by EY.

\.fa,serstem[7 # recently introduced a concept of quasi-ideal which is defined as an ad-
ditive subgroup Y of R such that yay,aya € Y for all @ € R, y € Y, and studied the
structure of subgroups of GLz over non-commutative local .rings which ‘are normalized by
elementary ma,trices[S] Before Vaserstein’s work, many results on the subgroups of GLg over
some commutative rings were offered by Khngenberg[l] Lacr01x[2] ‘Mason/34 Mcdona,ld[5]
Zhang-Wang!*!! and so on.

For the readers’ convenience, we will cite from [7,8] some properties of qudsi—ideals and
prove a new one. o - '

‘Lemma 1.1. Let R be an associative ring with 1 and Y a quasi-ideal of R. Then

(1) ayb+ bya €Y, yab—l—bayEonr allyEYa bER

Q) RP2CY forallyeY;

(3) R'YR,RYR' CY where R' is the ideal of R generated by all addztz've commutators
ab — ba with a,b € R. '

The properties (1) and (3) above still hold for an additive group Y satlsfylng aya €Y
forallaeRand'yEY -
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Lemma 1.1'. Assume that the condition is the same as in Lemma 1.1. Then Ry?RCY
forallyeY.

Proof. Let a,b € R and y € Y. We want to show ay?b € Y. Since by(ay) + (ay)yb € Y
and (b(ya) — (ya)b)y € Y, but yaby € Y by the definition of quési—ideal, we have byay €Y,
hence ayyb = ay?b €Y.

Recall that a ring is-called n-fold (or unit n-fold), if for a;,b; € R(i = 1,--- ,n) with
Raz + Rb; = R((a;,b;) = R) there is a ¢ € R (or ¢ € GL1R) such that a; + cb;i(i =
1,. ) € GL1R.

By [10], we know that n-fold means unit (n — 1)-fold. See [6, 9] for references about n-fold

rings, such as semi-local ring R with the fields K in R/J = H M, (K;) having sufficient

elements, C*-algebra with unitary stable range 1 and full rmgs (commutatlve)

We say that ring R satisfies n-fold condition for a quasi-ideal Y, ifa; € R, b; € Y(i =
1; -+« ,n) such that Ra; + Rb; = R, then there is a ¢ € Y such that a; + ¢b; € GL, R.

Lemma 1.2. That R is n-fold implies that R satisfies n-fold condztwn for a quasi-ideal
Y. | |

Proof. We only need to show this for » = 1. Assumethata € R, b € Y with Ra+Rb= R.
Then (a,bsb) = R for some s € R. Further, (a,bsbrbsb) = R for some r € R. So there is
a t € R such that a + tbsbrbsb € GL,R. Let us show thsbrbs € Y. Since brb € Y, we have
(tbs— stb)brbs € Y by Lemma 1.1. But stbbrbs = stb?rbs € Y (Lemma 1.1’), so thsbrbs € Y.

Notice: In fact, tbsbrbsb is also in Y. | _ o

Every ideal is quasi-ideal, but a quasi-ideal may not be an ideal. Readers‘ may see the
counter example in [8].

For every quasmdeal Y # R, we set Th(R, Y) to denote the set of all elements of the form

diag(u, v)at2b*tcl?,

where a +¢, b € Y, u,v € GL1R and v! au ~ a,uav” l—aeY foralla € R. We set
To(R,R) = GL2R. o |

When R satisfies S7(R) < 1 (i.e. 1-fold) condition, it is clear that T5(R,I ) = Ga(R,I)
for every ideal I of R where Gq(R,I) is the inverse 1mage of the center of GLyR/I under
the homomorphlsm GLaR — GL2R/I. :

In this paper we prove the following theorems.

Theorem 1.1. Let R be an associative ring with 1 satisfying 2-fold condition. Then
T2(R,Y) is a subgroup of GLyR and [E2R,T5(R,Y)] C Ez(R,Y) C To(R,Y). Therefore
[E2R,H]| C H for any subgroup H of GLaR such that E3(R,Y) C H C To(R,Y). In
particular, H is normalized by ExR. |

Theorem 1.2. Let R be an associative ring satisfying 6-fold condition. Then

(a) E2(R,Y) = [E2R, E;Y) = [EaR,E3(R,Y)] = [E2R,T3(R,Y)] for any quasi-ideal Y
of R (In fact 4-fold condition is enough for (a)).

(b) for any subgroup H of GLaR which is normalized by E2R, there is a unique quasi-ideal
Y of R such that E2(R,Y) C H C T5(R,Y).

The reason for uniqueness of Y in Theorem 1.2(b) is stated in [8, p. 222]
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§2. Proof of Theorem 1.1

We point out the following identity '
b,c b,c,d
| a21pl:2p2:1 412 = (pﬁ, ) )c) pz()é, o, 31)) ’

where p( ) = 1, p(a) = a, p(a,b) = 1 + ab, p(a,b,c) = a + ¢ + abe, p(a,b,c,d) =1 + abed +
ab + ad + cd. :

If p(a,b), p(a,b,c) or p(a,b,c,d) € GLR, then diag(p(a,b),p(b,a)t), diag(p(a,b,c),
p(c, b, a)™?), diag(p(a, b, ¢, d),p(d, c,b,a)™*) € E3R (see [6]). '

Lemma 2.1. (1 + zy — zyzk)a(l + yxr — keyz) —a €Y foraly €Y and z,k,a € R.

Proof.

(1 + zy — zyxk)a(l + yz — kzyz) —a
=a + zya — ryzka + ayz + zyayz — zyrkayz — akzyz — zyckzyz + cyckakzyz — a
=(zya + ayz) — (zyzka + akzyz) + zyayr — zyzkayx — zyakzyz + zyzkakzyz € Y.

Proposition 2.1. The set Ty(R,Y) is invariant under conjugation by E3R.
- Proof. It is clear that T3(R,Y) is invariant under conjugation by =12 for any = € R. We

-1 0
In fact, it is sufficient to show that z*'y}2:2(y € Y,z + z € Y) can be written as
diag(u/, v')a2b>1c!2 where b,a+c € Y and v',v' € GL R withv/av' ' —a,v' lav'~a € Y.
Sincez+z =19, €Y, we write z as —z + y;. So

2,1,1,2,21 _ 21,12/ 21,21 _ (1—yz Yy 1
Ty =Ty (:L') Y1 _(_wya: 1+$y)<y1 1)

Note that (—zyz,1 + zy) = R, zyz,y1 € Y. We may find a k € Y such that 1+ zy —
zyzk,1 — ky; € GL1R. So ‘

1—yzx Yy 1 k 1 —k 1

—zyr l4zy 1 1 v 1
_[(l-yz k—yzk+y 1-kys -k
T\ —zyz 1+ zy-—zyzk I 1/

1-yz k—yzk+y \ _ (1 (k—yzk+y)(1+2y— zyzk)?
—zyr 14+zy—azyzk ) 1

~ only need to show that T3(R,Y) is invariant under conjugation by w(1) = ( 0 1);

But

. - 1 1-ky, -k
ding((1+yz — koye) ™, 14 oy — ayak) ("(1 + ¢y — zyzk)'zyz 1) ( n Y 1 )

) (yl(l _1’“"J1)—1 1) diag(1 — ky, (1 - y1k) ™) (1 -{- ];yl)—lk) .

Since (1+ zy — zyzk) ‘zyz = (1 + zy — zyzk) ‘zyz(l + oy — zyzk)(1 + oy — zyzk) ™!
and zyz(1+zy — zyzk) = cyz +cyrey — syzeyck € Y, we have (1+ 2y — zyzk) lzyz € Y.

Since y1(1—kyy) ™! = (1— ky1) " (1 — ky1)y1(1 — ky1) ™ and (1—ky1)ys = y1 —kyf €Y,
we have (1 —ky;) "1 €Y. ' '

By Lemma 2.1, we know that diag((1 + yz — kzyz)~1,1 + zy — zyzk), diag(l — ky, (1 —
ylk)_l) S Tg(R, Y)
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Finally,
(k — yzk + y)(1 + oy — zyzk)™" — (1 — ky;) "2k
=(1 + zy — zyzk) " (1 + zy — zyzk)(k — yak + y)(1 + zy — cyxk) ™
— (L —ky) - (1= ky1)(1 — kya) ™
We show that
1) k- Ky =k(1-ky) €Y (k€Y),
(2) 1+ 2y — zyzk)(k — yzk +y) = k —yzk +y — zyyzk + cyk + y® — zyck? + cyzkyck —
zycky =k +y + (zy — yx)k — zy’zk + zy? — oyzk? + syzkyck — cyzky € Y
(Note that (zyzk — xkzy)yzk € Y and zkayyzk € Y).
So (k — yak + y)(1 + 2y — zyak) 1 — (1 — ky))"k € V.
We finish the proof. :
Proposition 2.2. T5(R,Y) is a subgroup of GLoR.
Proof. Let diag(u,v)a'2b%1cl 2, diag(uz, v; )zl 2y>1 212 € To(R,Y), where b,y, a+c, z+
z €Y and u,v;uy,v; € GL1 R satisfying the condition in the definition of T3(R,Y").
Since T(R,Y’) is invariant under conjugation by FyR, if we show that

242 diag(u, v)al2b®1 M2 diag(uy, v )ab2y?! € To(R,Y)
then we finish the proof.
ASince
22 diag(u, v)al 262! M2 diag(uy, v e bRy
=zY2diag(u, v)a>2b% 1cl’z( z)h2zh 2d1a,g('u,1,'ul):vl 2gy21

and

= diag(us, 00)(up Loy — 7)1 2 2abtyot

= diag(u1,v1)((u7 201 — 2) + (2 + 2))%y>!

P 2dla,g(ul, vl)ml 242,

(Note that uj'2v; — 2z + 2z + a: € Y), it is sufficient to show that T3(R,Y) is invariant
under right multiplication by yl , y1 (y1 €Y) and diag(u1,v1)(u1,v1 € GL1 R, uya0; " ~a,
v 'au; —a € Y). But the proof is the same as that of [8, Lemma (1.3)].

By Propositions 2.1 and 2.2, T3(R,Y) is a subgroup of GLyR and it is normalized by FR.
Since EoY C T(R,Y), it follows that Eo(R,Y) C T2(R,Y). By the definition, T5(R,Y)
normalizes E(R,Y’). The first inclusion is clear.

§3. Proof of .Theorem 1.2

First let us prove Theorem 1.2(a)

Lemma 3.1. Let Y be a quasi-ideal of R and let y € Y, 1 + a2y € GLiR. Then
diag(1 + zy, (1 + yz)~!) € E>(R,Y). »

Proof. diag(l + zy, (1 + yz)™) = (z + zyx) 2 (y2)> y"2(—z)2!(~y)? where z =
(1+zy)™' — 1 = —(z + 2z)y. It is clear that yz = —ylz+2z)y €Y.

Now introduce “the lower level” L(H) of a subgroup H of GLyR. Set

L(H)={z € R|z> € H}.
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It is easy to see that L(H) is an additive subgroup of R and that |
L(By(R,1)) = L(Ga(R 1) = T .
for any ideal I of R. By [7,8], we know that L(E»(R,Y)) =Y and L(T3(R,Y)) =Y for any
quasi-ideal Y of R.

Now we assume that H is normalized by E;R. Then [E3R,H] C H. Then conjugation
by diag(u,u™1), or diag(l + s, (1 + sr)~1) (u,1+ rs € GL, R), gives the following results:
uL(H)u C L(H), (1+rs)L(H)(1+ sr) C L(H).

Lemma 3.2. Assume that R satisfies 4-fold condition and X is an additive group such
that uXu C X, (1+rs)X(1+sr) C X for all u,1+7s € GL4R. Then aXa C X for all
a€R.

Proof. For any a € R, we may write a as v; + v where v;,v; € GL1R. Since R satisfies
unit 3-fold condition, there is a w € GL;y R such that 1 + ua, 1+ uvy,1 +uvys € GL1 R.

Since (14 uv;)2(1+v;u) = £+ uviz + zviu+wv;zviu € X (6 =1, 2), we have WL+ TV €
X(=1,2).

Further, uaz + zau = u(v; + v2)z + z(v1 + v2)u € X. From (1 + ua)z(l + au) =
z + uaz + zau + uazau € X and uazx + zau € X, we have uazeu € X = aza € X.

Now we can apply the above to the case H = [E3R, E;Y] and prove Theorem 1.2(a). By
Theorem 1.1, it suffices to prove the inclusion E3(R,Y) C [E2R, E2Y]. That is, we have to
show that Y C X where X = L(H) = L([E3R, E;Y]), assuming the hypotheses of Theorem
1.2(a).

Lemma 3.3. Lety €Y. Theny can be written as Yy + y3 with y1,y2 € Y such that
14y1,1+ys € GL;R. |

Proof. Since (1+y,—y) = Rand (1,y) = R, there exists a ¢ such that 1+y—y'y, 1+y'y €
GLiRand y'y € Y (see Lemma 1.2). Set 41 = 4'y, y2 = y—y'y. It is obvious that Yy = 3}1-+y2,
and 1+ y1,1+ y2 € GL1R. ‘ '

By Lemma 3.3, it suffices to show that y € X for any y € Y such that 1 + y € GLR.

Since diag(1 4y, (1+y)™!) € Ea(R,Y), we have [diag(1+y, (1 +¥)™!),a?] = (ya+ay+
yay)'? € [E3R, E,Y], that is, - L
ya+ay+yaye X forallaeR. ' - (3.1)

Now we fix a unit ¢t € GL{ R such that 1+¢, 1—yt, 1+y—yty € GL, R (Note that (1,1) = R,
(1,-y)=R,(1+y,~-y?>)=Rand 1 +y+yty€ GLyRwhen 1+ y—yyt =1+ y(l —yt) €
GL;R). We have [diag(u,u1),y"?] = (uyu — y)'* € H and hence uyu -y € X, where
uw=1t,1+¢t Thus y+ty + yt € X. Using (3.1) with a = ¢, we obtain

y—yty € X. (3.2)>
Replacing y by y — yty € Y, we obtain o
y —yty — (v — yty)t(y — yty) € X. (33)
Subtracting (3.3) from (3.2), we obtain ' '
(v — yty)t(y — yty) = (1 - yt)yty(l - ty) € X.
Let g = diag(l — yt, (1 — ty)~!) € EaR. Then _
| (1 - g)yty(1 — t9))%g = (yty)*? € >R, B,
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ie. ytye X,soy € X.
Next, let us prove Theorem 1.2(b).
% Set K = {g € GL:R | [9, E2R] C H}.
\ " Then H C K, K is normalized by EzR, and [K, E2R] C H.Ka,b € Rand a?b?! € K,
f then a'?,b*! € K, ie. a,b€ L(K). This property makes K more convenient than H (see
If diag(u, v)al2b?1c? € K where a + ¢,b € K, then
dlag(u v)(u tev 4 a)2p%? eK.

, The followmg Lemmas are borrowed from [8], readers may find the proof in [8].
Lemma 3.4. Let g = zb 2dzag(u, v)y®! € K and u,v be similar in GL1R. Then b
y™!, diag(u,v) € K.
Corollary If g = zMdiag(u, 'u)y2 1e K, then (a: —y)?, diag(uv,vu) € K.
Lemma 3.5. Let g = = gl 2dlag(u v)z>! € K. Then _
(z — uzv™ )1 2 [zh2, 221, (2z) 2 diag(uv!, vut)(22)*! € K.
Lemma 3.6. Let g = y'2diag(t,t~1)a®! € K. Then
‘_ ' '(1 t2)2 Y- 1) 2diag(t, t*l), (2z)*1, diag(t%,t72) €'K.
We define _ S o )
Y(H)={beR]| a"diag(u, v)b>c? € H for some u,v € GL,R énd a,c € R},
V' (H) = {a + ¢ € R | a*diag(u,v)b?'c"? € H for some u,v € GLIR and b € R}

Lemma 38.7. ¢(H ) =¢'(H), ¢(H ) is an additive subgroup of R, and ayp(H)o' = $(H)
for every o, o' € GLyR such that diag(a™*, ') € B3R,
Proof Let b € qb(H) Then a,1 2diag(u, v)b?!c!? € H for some u,v € GL1R and
a, ‘¢€ R. We have
: v - (a+ ¢)*diag(u,v)b*! € H. I
Taklng inverses and conjugating by w(1), we obtain b € ¢'(H), so ¥(H) C '(H).
Similarly, ¥'(H) C ¢ (H). .
“'To prove the second conclusion, let a +ca1+e € P (K), ie.
g=a" 2dla,g(u bt e H, g = a,1 dlag(u;l,vl)b2 1ei? e H.
Thé‘{l‘ ) ' ‘ .
= (a-+ c)"*diag(u,0)t>! € H, g} = (o1 + c1)"ding(uy, 01)b}" € H.
So
(—(a1 + ¢1))2g'0L " (ay + 1)1
| =((a + ¢) — (a1 + c1)) 2 diag(uug®, vor 1) (s (b — b )y 1)1 2 € H.
Hence (a + ¢) — (a1 + ¢1) € ¥'(H). Thus y(H) = ¢'(H) is an additive subgroup of R.
The last conclusion is obvious.
Proposition 3.1. 4¢(K) C L(K ).
Proof. By Lemmas 3.5 and 3.6.
Set X = L(K), Y =9(K).
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Lemma 3.8. Y = ¢(K) is a quasi-ideal of R.

Proof. By Lemmas 3.7 and 3.2, we know that aYa cYforalla€R.

It remains to show that yay € Y for all y € Y and a € R. Since we can write any a G R
as a3 + ag such that 1 — ya;(i = 1,2) € GL;R (Note that (1,~y) = R,(1 — ya,y) = R), it
suffices to prove the result for ¢ € R with 1 — ya € GL; R. Choose

g = (y)"2diag(u,v)(x)*! € K

and let b = u~1gv. Then .
0= (a1t ya) = () g, 0% € B,
where z = (1 — ya)~lyay. Hence z € Y and so (1 — ya)z(1 — ay) = yay — yayay € Y. Since
yayay €Y, we have yay € Y. .
" If 2 is invertible, by Proposition 3.1 we have ¥(K) = L(K) = Y. By Theorem 1.2(a),
E2(R,Y) = [ERY,E2R] C [K,E;R] C H. Hence L(H) =Y and Theorem 1.2(b) follows.

In general, we need the followmg Lemmas.

Lemma 8.9. Ifa € GL1R and a®—1 € GLyR, then y+ry+yr €X, where'r = (a -1)71t
andy €Y. »

Proof. Applying the conclusion that if y € ¢(K) and v € GL, R then u?yu? — y € L(K)
to § = a?ya? — y, we get y’ € X = L(K). Then calculate ry"r

Lemma 3.10. Let z € Y with 1 —z € GL1R and 2%,2z € X. Then r € X (see
[8], ».230).

‘Corollary. Ifz €Y with1 — 2,1 -2z € GL1R and2? € X, thenz € X.

Proof. By Proposition 3.1, 4¥Y C X. So 2(2z), (2z)? € X. By Lemma 3.10, 2z € X.
Now 2z,2? € X. Apply Lemma 3.10 again.

Lemma 3.11. Letx € Y with1 — 2,1 -2z € GL1R. Thenz* ¢ X.

Proof. Since 4Y C X, we have 2(2z),(2z)?> € X. By Lemma 3.10, 2z € X. Let
h = z»ldiag(*, *)(x)2 € K. The matrix (—z)*[(~1)"2, h]z>' has the form

W = (2*(1 - 2)"1)>ldiag(l — 2, (1 — 2)"1)(»)? e K.
By Lemma 3.6, g = diag((1 — z)%,(1 ~z)"2?) € K. So [g,1"?] = (1 -~ (1 - 2)*)*? € K, i..
4z — 622 + 42% — 2* € X, so z* € X (In fact, 2V C X. See the following proof).

Now we can conclude the proof of the goal that ¥ C X. Note that under the hypotheses
of Theorem 1.2, every y € Y may be written as y; + y2 with y;,y5 € Y such that 1 —y;,1+
¥i,1—2y;(i = 1,2) € GL1 R (The proof is similar to Lemma 3.3). So it suffices to prove that
foryeY withl-y,1+y9,1-2y € GL;R.

Since 2y? may be written as 2z, + 2z with 1 — 22,1 — 223 € GL1 R, and 24, % € Y, we
have 2y2 € X by Lemma 3.10. By Lemma 3.11, y* € X. Because 1 — 3% = (1 —y)(1+y) €
GLiR, we have y% € X. Hence y € X by Lemma 3.10.

Theorem 1.2(b) is proved.

Actually, we have proved that K C T»(R,Y) also. So [EaR, E2(R,Y)] C H C T3(R,Y).
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