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THE DERIVATIVES AND INTEGRALS OF 
FRACTIONAL ORDER ON CUADIC GROUPS**

J ia n g  H u ik u n * * * **

A b stra c t

This paper, the author studies fractional derivatives and integrals of fractional order a  >  0 
for functions in Lr (Ga) and Fourier transform for distributions. Under these definitions, the 
author obtains the formula X y a > (x) —I У 1“ Xy(x) for characters Xy and ( D <a> f ) A = | • |“ / л , 
discusses the existence of the fractional derivatives of test functions, gives relationships between 
some function spaces, and proves that the fractional derivatives and the fractional integrals are 
inverse operations one another.

K eyw ords Derivatives of fractional, Integrals of fractional, Local compact groups.
1991 M R  S u b jec t C lass ica tio n  43A70.

§1. Introduction and Preliminaries
The fractional derivatives that we define belowe include the derivative defined by Zheng 

Weixingt1,p'806l, different from the one by C. W. Onneweer^2,3! and the one on Go by He 
ZelinW. The fractional integrals on a-adic groups arise as inverse operations to the strong 
derivatives of fractional order.

Throughout this paper G0 will dentote an a-adic group. We now state some definitions 
and properties of Ga, (cf [5]). Let a be a fixed but arbitrary doubly infinite sequence of 
positive integers: a := {• • • , a_ n , • • • , a _ i ,a 0, a i, • • • , an, • • •}, where each an is greater than 
1. Ga := {x : x = {xn)n<z%}, where each xn is an integer, 0 <  xn < an, and xn =  0 
for n < щ , with no depending on x. Addition operation is defined formally carrying from 
left to right. For each integer k, let G*. be the set of all x  6 Ga such that xn = 0 for all 
n < k. It is well-known that Gtt is an abelian topological group which is Hausdorff, locally 
compact, (j-compact and O-dimensional. Moreover, the set G*. is a compact subgroup of Ga, 
and {Gfc : к e Z }  defines a topology on Ga.

Next, the character group of Ga is topologically isomorphic with Ga*, where a* := (a*), 
a* =  a_n for all n e Z. Thus we associate with every у in Ga* a continuous character Xy 
of Ga in the following way: For a given у =  (yn) e  Ga* and each x =  (xn) 6 Ga, i fy n = 0 
for all n < к and xn =  .0 for all n  <  m, then

*a W : = e x p ( 2 " ( E  ( Ч Е  i S ^ ) ) )
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Let G*k := {y — (yn) e  Ga* : yn =  0 for all n < k}. We have G*k =  {% in the character 
group of Ga : x|G_fc =  1} and G*k are compact subgroups of G*.

We denote the Haar measure on Ga and Ga*, normalized so that the subgroups Go and Gq 
have measure 1, by y, and u, respectively. For each n e Z w e  have f.i(Gn) = (i/(G?ln))~1 and 
set mn := n{Gn). Note that mo =  1, m _n =  a_na_ n+i • • • a_i and m n — (aoai • • • an- 1) -1 
for n > 1. We set Xn<j := anan+i • • • a,j for n < j, Anj  := 1 for n > j.

We denote the ultrametrics on Ga and Gtt* by | • j, defined by |s | := m n for x € Gn\G n+1 
or x e  G^__± \  G *,n  G Z. We have the ultrametric inequality \xi +  x2\ < тах(|жх|, |ж2|), 
and Gn = {x e Ga : |a:| < m n} and G* =  {y £ Ga* : \y\ < mn+i}. Consequently, the 
ultrametrics are compatible with the original topologies of Ga and Ga*, respectively.

In what follows, let en := (xj) satisfying xn = 1 and Xj = 0 for all у ф n, and set

:=

and

K ( y )  ■=

§2. Definitions
In order to consider differentiability and Fourier transform for functions in Lr(Ga), 1 < 

r < oo, we introduce the test functions spaces [6, p23 and p37] on Ga and Ga*, denoted 
respectively by

S ^  {h • h(x) = ^  j CjR ki(x Vkj)i х )Ук} € Ga}
i=о

and
n

S* :=  {h : h(y) =  -  wkj), y ,w k. e Ga*},
j=o

where Cj € C. S(resp. §*)is provided with a topology as a toplogical vector space as follows: 
We define a null sequence in §(resp. §*) as a sequence {hn} of functions in S(resp. S*) such 
that there is a fixed pair of integers к and l such th a t each hn is constant on each coset 
of Gfc(resp. Gk) and is supported on G/(resp. G*) and the sequence tends (uniformly) to 
zero. A simple deduction shows that S(resp. §*) is an algebra of continuous functions with 
compact support that separates points. Consequently S is dense in Lr(Ga) and so is S* in 
Lr(Ga*) for 1 < r < oo. Let h(y) =  JĜ  h(x)xy(x)dx, the Fourier transform of h € S. We 
know that the mapping h —> h is a homeormorphism between § and S*.

The collections S' and §*', of continuous linear functionals on S and §*, respectively, with 
their weak* topologies, are called the spaces of distributions. The action of /  6 S'(resp. 
f  G §*') on h £ S (resp. h €  §*) is denoted by ( /, h). It is clear that Lr(Ga) C S' and 
Lr(G*a) C §*', 1 <  r  < oo, and for /  €  Lr(Ga) (or Lr(G*a)), we have

f  f(x)h(x)dx  (or [  f(y)h{y)dy)
JGa JGa*

for h G S (or h e  §*).

Г 1, x  G Gn, 
\  0, x ф Gn ,

f 1, y e  G*, 
l  0, y f G * .
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The Fourier transform of /  6 S' is defined as a distribution /  G §*' by the equality

( / ,  h) — (f, h), for all h G S.

Thus for 1 < r <  2, /  G LT(Ga), f  is equal to the original one in Lr(Ga) sense.
For 2 < r <  oo, /  is a distribution but not a function. We define g f  for a continuous 

function g. For a continuous function g and an h G §*, let {hk} be a sequence of functions
А А Л A A

in §* such that lim hk =  gh in C(Ga*). Since {hk} is a Cauchy sequence in §*, (f ,h k )k—> oo
Л Л A A A

is a Cauchy sequence in C. We write (f ,g h ) = lim (f ,h k ) and define product g f  to be a
fe—► oo

distribution by (gf, h) =  ( / ,  gh), for all h G S*.
N ote. We claim tha t the product g f  is a continuous linear functional on S* according 

to our definition. In fact, the linearity is obvious; as to the. continuity, for any given null 
sequence {hn} in §*, since each hn is supported on a fixed compact subgroup G* it is easy 
to see that (gf, hn) tends to zero.

We now presnt our definitions of derivatives and integrals of fractional order on Ga*, 
D efinition 2.1. For f  G Li0C(Ga),a  > 0,n  G N and x  G Ga, let

71 ®-j“ l
En,af(x) :=  mJ X- in  £  S  ex p (-2 ^ t;Ia :} ) /(*  +  le4 ). (2.1)

j——n «=1 г=о
(a) I f  lim En af(x )  exists, the limit is called the pointwise derivative of order a of fn—++oo ’

at x, denoted by f <a>(x).
(b) I f f  G Lr(Ga), 1 < r < oo, or f  G C(Ga), and if  lim En,af  exists in the strong sense,

71—►OO
the limit is called the strong derivative of order a of f ,  denoted by D fa> f  or D f a>f .

We denote one of C(Ga) and Lr(Ga)( 1 < r < oo) by X , and one of D f a>f  and 
Df-a>f  (1 < r < oo) by D <a> f .  We set

V (D <a>) : = { /  G X  : D <a> f  exists};

L ipx(a) :=  { /  G X  : sup ||/(- -  t) -  /( - ) ||x  =  a (M “)> M °};
|t|<H

W x(\y\a) := { f  E X  : there is a g E Lr(Ga) such that g(y) =

\y\af(y )  a.e. for 1 < r < 2 and g =  | • |“ /  

in the distribution sense otherwise}.

D efintion 2.2. For each n E Z, a > 0, define Уп>а(х) by
OO

Vn,a(x):=  mZf+l(m JlRi -  т г~_11Лг_1)(ж). (2.2)
l=—n+l

I f  the convolution Vn,a * f ( x ) =  f G Vn>a(x — u)f(u)du has a pointwise limit or a strong 
limit in X  as n —> +oo, then we call it the pointwise integral of order a of f  or the strong 
integral of order a  of f .  The strong integral is denoted by I <a> f.

§3. Results and Their Proofs

T heorem  3.1. For each a  > 0, у E Ga* and x E Ga, Xya>(x) exists and Xya>(x) = 
\y\aXy(x).
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P roof. For у G G *\ G*+1, we know that

У = (0, * • • > 0, Ув+i) 2/s+2) ■*■')> Vs+i Ф 0, and \y\ = m a+1.
Now

71 Л— Л—

ЕщаХу{х) = mj X-),n X  в х р (-21г*«/а:})х»(*е_,-)Хв(*)-
j=—n v=l 1=0

If j  < s then e -j  € G_5 and X y fo -i)  =  1- So we have
(Z—j  1 A_J)Tl —1

Y 2  X  е х р (-2тгЫа15)ху(/е_л) =  0.
v=l 1=0

If j  = s +  1 then e -j  G G -s - i  \  G -9 and we have

Xy(e-a-1) =  exp(27r«2/s+i / a _ s_i),

thus
d —j  1 A_jjTl—1

E  E  exp(-27r*uk_] )ху (ie_5-)
t»=l /=o

3 — 1 1 ^-3-1,n 1
=  X }  5 ^  exp(-27T*?(u -  ys+1)/a -s-i)

v = l  1=0

=A_s_i,n ( note tha t ys+i G {1,-• • ,a _ s_i -  1}).

If j  > s +  1,
— 5 — 1

X,( e - , )  =  ex p ^ g  ak
k = - j

=  ехр(2тгшо_]),

where и '= yj +  y j - i / a - j + i  -\-------h ys+i/(a~j+i ■ • -a_s_i) is not an integer, thus
®—j  1 A—j tn  1

E  E  exp(-27n v la jj)x y(le-j)
v = l  1=0
a_j* — 1 — 1

=  exp(—27riZ(u — u)aZj) =  0.
v = l  1=0

It follows tha t for n > | s |

Е щаХу(х) =  ™«+1Xy(x)=\ у |“ Xy(x).

The proof is complete.
T h eo rem  3.2. I f h G §, then h<a>(x) and D <a>h exist. Furthermore, if h is constant 

on each coset o fG S) then
oo oo

| |Д ,,< ,% <  E  ||Х><в!>Л||г <  E  mi “- i\M r
j=— s+1 j=-s+l

and

iift<“> (-)ii, <  E  m “a-
i=-3+ l

.j||/(/|]7’, 1 ^  7* ^  OO*

Specially, if snp{aj} < oo. Then m fa - j  =  0 (m “ a+1).
J6Z j  — — 8 + l
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Proof. m<j a- j  — О ( m t s+1 ) provided sup{aj} < oo and
j ——s+1 \  /  jGZ

oo

\\En,ah\\r <  m] a-j\ \h\\r
3—.—8+1

are obvious.
We first prove tha t R 3(x) has pointwise derivative for all x in Ga. Let n  be sufficiently 

large.
(i) For ж G Ga, we have

n a—j 1 A _ j lTl 1

Ent(XR a{x)=  X  X  ехр(-2тгivlaZ]) • R a(le-j),
j=—s+l n=l 1=0

and le - j  e G a ■€>■ A l ] ^  • l =  0,1, • • • , ASi„ -  1, so
П

En,aRs(,x) =  У  , m j ' A_j)T1 ' ifl—j ~  1) ' AS)n
j= —s+l

=  X  mr  A l ^ - i  • (a - i  -  !)■
j= —S+l

Thus

R f a>(x) =  hm Enj0lR a(x)
n—*-j-oo 

oo
=  X  mi ‘ A- L - i ( a - i  -  1) < oo for ® e  G*. (3.1)

j=-S+l
(ii) For x ф. Ga, if ж =  x' +  £Cs_ ie?_ i H------ 1ха- кеа- к, x ' € G3, ж8_а, ф 0, к is a positive

integer, then we have
(a) as j  < — s + к (i.e. — j  > s — k), R a(x +  le-j) = 0;
(b) as j  — — s +  к (i.e. — j  =  s -  k), x  +  le -j G Ga if and only if

l ~(fls—k ®s—fc) "b Ois—fc(®s—fe+1 xs—fc+1 1) "b ^s—kOs—fe+l(®s—fe+2 ®s—fe+2 1)

■b ■ ■ ■ -b ®s—fc®s—fc+i''' oa—2 (01̂ —i xa—i 1) ~b niAs_fcjS_i, тп 0,1, • • • , А3)П 1.

Thus
О* в — к 1 As _ fc j7l — 1

У2 X  exp(-27riiuZo7ifc) • Д(ж +  Jea_fc) =  -A S)„.
v=l i=o

(c) As j  > —8 + к (i.e. - j  < s — k), x + le -j  G Ga if and only if

l =  ^(as_fc — жя_*.) +  аа- к(аа- к+1 -  ®s-fc+i — 1) + ---- b

° s —fc®s—fc+i ■' 'a s —2 ( ° s —i ■ * 8 —1 — 1)^ A _j)S_fe_i +  m A _ j)S_ i ,

772- —  0) 1) ) ̂ з у7ъ 1*

ci—j  1 A_jiTl 1

X  X  exp(—2mvlaZ]) • Д(ж +  le-j) = (o_j — 1) • AS)H.
u=l i=0

Thus
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Prom (a), (b) and (c), we have for x  € Ga-k  \  Ga-k+i
n

E n , a R s ( x )  — m - s + k ^ s - k , n ( ~ ^ s , n )  +  m f ^ - j , n ( a - j  ~
J=-s+fc+1 

n

=  - m “ s+fe • A 7 \ e_ j +  Y ,  m f-  x z l , - i (a - i  -  1),
j  =  — 3-f-fc+l

so that
OO

R f a>(x) = -m°Ls+k • A 7 \ e_i +  TO?-AlJf,_ 1(a_i - l ) < o o
i = —e+fc+i

for ж G Gs-k \  Ga—k+1 - (3-2)

(3.1) and (3.2) show that R f a>(x) exist everywhere.
Secondly we claim that R f a>(x) belongs to Lr(Ga), 1 < r < oo, and C(Ga). It is obvious 

that R f a>(x) belongs to L°°(Ga) and C(Ga) from (3.1) and (3.2). So it is sufficient to prove 
that R f a>(x) is integrable. By (3.1) and (3.2) we have

+

/  \Rfa>(x)\dx= f  ro“A_j !(a_j — l)d,
JGa Jgs ,-=~ +1

OO n

E / g
fc=l "Gs-k

OO

ot \ —1
'j + k s A-j-k+S,S-ia- j - k  + 8

j = S + l
OO

| - m t e+kK - k t»-i +  1C m“A:L - i ( a- i  -  !) I
fc=l " 'Jr‘> - k \ G s - k + l  j = —s+fc+1

OO oo

fc=l
. E m j A -j,s-la -

j=  — 8 + 1
OO oo

J 2 ms-
k = l j=l

OO

>m - s + l E  t h -
j = - s -fl

oo oo
£ < + k - e £ * . A J
fe=i 3- 1

fc=l

where ere =  AS)_i for s < —1 and аа =  1 otherwise. Nothing that ]T) ersAl -_fe+e a_fc_ 1 •
i = i

a_j_fc+s uniformly converges with respect to к and the other three series converge, we have

f  \R fa>(x)\dx <  oo.
J  Ga

Finally, it is clear that D<a>Rs(x) — R f° i>{x) a.e. for r = oo, and D f a>R3{x) — 
R f a>(x). For 1 < r < oo, using Lebesgue dominant convergence theorem we still have 
D<a>R s{x) =  R f° l>(x) a.e.. For h € S, since h(x) is a finite linear combination of R kj(x — 
Vkj), D fa>h and h<a>(x) exist.

OO

By \\En>ah\\r < т^ а-з\Щ\г1 a simple deduction shows that the other two inequal-
j = —s+ l

ities hold. The proof is complete.
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T heorem  3.3. I f  f, D <a>f  € Lr{Ga),a  > 0, then fo r  1 < r < 2 we have

[£><«>/]*(„) = \y\°f(y) a .e , у е в , . ,  (3.3)

and for 2 < r < +oo we have

[£)<а>/ ] л =  | • |“ /  in the distribution sense. (3.4)

P roof. For 1 < r < 2, since the mapping /  —► /  is a bounded linear transform from 
Lr{Ga) into I f '(G a*) and \\f\\r> <  | | / | |P> where £ +  £  =  l,lim n_ +00 \\En<af  -  D <a> f\\r = 0 
implies

lim \\(Entaf ) A -  (!><“>/ ) л ||г, =  0.
n —►4-oo

Thus there exists a subsequence nk —> +oo such that

lim [Enkj0tf]A(y) =  [D<a>f]A(y) a.e..
n*,-++oo

Now

[En,af ]A( y ) =  f EntCtf(x)xy(x)da 
JGa

n  a3

= f(y )  5 3  mi A- j>  53 5 3  ехр(-2тгivlaZ})Xy(le-j),
j ——n  v = \  1=0

and we have (in virtue of the proof of Theorem 3.1)

lim [En>af]A(y) = \y\af(y).

Therefore [D<a>f]A(y) — \y\af{ y ) a.e. for 1 < r < 2.
Secondly, for 2 < r < со, by definition and the relation between strong convergence and 

weak convergence, for h G S, we have

([!)<“>/ ] ЛД ) =  (£><“> /, h )=  lim /  En>af(x)h(x)dxn-++oo JGa
n  a - j  — 1 —1 ,

=  lim 5 3  m j\Z ) >n 5 3  5 3  exP(“ 2TriuialJ) /  / ( x  +  le-j)h(x)dx
n->+00j= -n  t»=i г=о ^Ga

=  n fim 53 53 53 exp(-27riu/a:J) /  f(x )h(x -  le4 )dx
n-+  ° ° j = - n  v = l  1=0 J<3a

=  Л +оо 5 3  5 3  5 3  ex p (-2 7 riu k :j)(/,[ /i(--Z e_ i )]A(-))
n  v = l  i= 0

тъ — l  Л_5|П—1

= „5j?00( £  53 mj A- j>  53 53 exp(-27riu/a:5)x.(/e_j )/i(-))
j = —n  v = l  1=0

= ( f , \ - \ah(-))-
The last equality holds because distribution /  is continuous and the series converges strongly 
to | • |“ on the compact support of h(-) in virtue of the deduction in Theorem 3.1. By definition 
we conclude that



522 CHIN. ANN. OF MATH. Vol.14 Ser.B

this implies [D<a>f]A =  | • |“ /  in the distribution sense. The proof is complete.
Specially, we have
Theorem  3.4. For f  £ Lr(Ga), 1 <  r < +oo, a  >  0, n £ N, set 

oo a —j — 1 A_3l„ — 1

E n ,J ix )=  1 3  i m ° X4 ,n 1 3  £  exp(—2rrivlaZ])/ (x +  le4 )}.
j ——n v=l 1=0

We have 

and

(Е“«/)л = -Ri„-i(-)l • Г /. (3.6)
in the distribution sense for 2 < r < +oo.

Lem m a 3.1. For Уп,а(®) in Definition 2.2, we have Vn,a £ Ll (Ga) and ||K i)0,]|i =  
0 (m ~ a). Moreover

(vn,< ,nv)  =

Proof. Firstly,
OO

IIV"»,«Hi =  II 1 3  m -?+x(m 7 XRi - m i - iRi - i ) h
l=—Tl-J-l 

oo

< 1 3  ш -Г+1 •2 < Am n a = 0(m ~a).
I — —

Secondly,
OO

{Vn,a)A{y)=  1 3
l=—n-\-l

oo

=  E  m : ? + i ( * - ! ( ! f )  -  я - i + i W )

_ Г o ifyeG *n, 
l  if У i  G*n-

Lem m a 3.2. I f f  £ Lr(Ga), 1 <  r  <  oo, g £ ^ (G a ), then

( /  *g)A = f - g  (3.8)

in the sense stated before the Note in section 2.
Proof. Let g(x) = g(—x) and h £ §*. Since g is uniformly continuous, we have

((f * g ) A, h ) =  (f * g , h ) =  (f , g * h ) = ( f j h )  = ( /  • g,h)- 

This means ( /  * g)A = f  • g.
Lem m a 3.3. If f  £  Lr(Ga) (1 <  r  <  oo) and f (y)  =  0 a.e. for 1 <  r <  2 and f  =  0 in 

distribution sense for 2 < r < oo then f  — 0 a.e. for 1 <  r  <  oo and f  =  0 if f  £ C(Ga). 
The proof is normal.
Lem m a 3.4. I f  f  £ Lioc(Ga), then lim m f^R n *  f{x)  — f{x )a .e .. I f  f  £ X , then

n —>+oo

lim \\m~l Rn * /  -  f\\x = 0. (3.9)

{
0

\y\'

i f  У € Gn, 
i f  У i  G*n.

(3.7)

(y)
= f l»le

l  0 a.
f (y)  a.e. i f  у £ G*_n_v  

i f  У i  G*_n_u
(1 < r < 2) (3.5)
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The proof is easy (See [6, p.174]). Furthermore, we have 
Lem m a 3.5. I f  f  G L ipx(a), then Ц т"1^  * /  -  / | |x  =  0 (m “ ).
T heorem  3.5. I f  sup{aj} <  oo and an = a_n_i it for all n  G Z, then for 0 <  a  < /?

jez
we have Lipx(ft) С  T>x(E<a>) С  Ы рх(а).

Proof. If /  G Lipx(fl), then by Lemma 3.5 we have

* f -  f\\x  < Am% for n  =  1 ,2, • • • , (3.10)

where A is a constant which may changes in value from one occurrence to the next. Set 
Ui(x) = m,2 1R 2  * / (я ) , Un(x) = m~+xR n+i * f (x)  -  m ^ R n  * f (x)  for n  > 1. We see that 
Un(x) is constant on each coset of Gn. Consequently, since an =  a_n_ i ,m n = m l* , we have

\\EM,aUn\\x < A m Z J U j x  =  Ат~а\\ип\\х  for all M  G N. (3.11)

By (3.10) we have

W n\\x  <  ||m ^liRn+ i * f  ~ f \ \x  + ||m -'R n  * f  -  f\\x < Am£, n  > 1, (3.12)

and
OO

f i x ) =  ^ 2  Un(x) in X  sense. (3.13)
71—1

By (3.11), (3.12) and (3.13), it turns out that 

||Д л/> / -  EM ,af\\x
L oo

< | | ^ ( E j V , a ^ - ^ M , a t 7n ) | U +  £  (\\EN,aUn\\x +  \\EM,aUn\\x)
n=l n=L+l

L L oo

<\\EN,a J 2 U n - E M>a'5 2 u n)\x+  £  Am n~a-
n— 1 n=l n=L-HI

OO

For € >  0, let L  be sufficiently large so tha t Am£- “ < e/2. Then since m ^ R n  €
n=L+l

L
S(Ga), n =  1,2, • • • , L  - f 1, we can see tha t {Em ,a ]C Un} is a Cauchy sequence in X  sense.

П— 1
Thus

L L
II EN,a Y , U n - E MiaY ,U n\\x< e /2

n=1 n=l
whenever M ,N  > G for some G > 0. Therefore {EM,af}  is a Cauchy sequence, and D<a> f  
exists; tha t is /  G V{D <ot>).

If /  G V{D <a>) and h G Gn \  Gn+1, by (3.7), (3.8), Theorem 3.3 and Lemma 3.3 we 
have

f i x  -  h) -  / ( я )  =  * (D <a>f{x - h ) ~  D«*>f(x)) in X,

so that

ll/(- -  h) -  / ( . )b  < 2||r><«>/|U||V_„,«||i = 0(m-_l) = 0(m°) = 0(|Л|“).
That means th a t /  G L ipx(a). The proof is complete.

T heorem  3.6. Let a  > 0. I f  sup{a_,} < oo, then
je z

. V(D«*>) =  W x { \y n (3.H)
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Proof. For each /  G V (D <a>), from Theorem 3.3 we directly obtain /  G Wx(\y\a)‘ 
Conversely, take an /  G Wx(|y|a) and assume that g G X  satisfies g(y) — \y\af (y)  a.e. on 
Ga* if /  G L r(Ga)> 1 < r < 2, and g — | • |“/  in the distribution sense ortherwise. Theorem 
3.4 and Lemma 3.3 with the Fourier transforms show that

En,af(x) = m n + lR n + l * gfa) in X.
Thus

OO

\\En,af  ~  g\\x < \\m~lxR n+x * g -  g\\x  +  m j(a4  -  l)\\f\\x .
j - n + l

By (3.9) and sup{fl,j} <  oo we have

lim ||Ent0lf  -  g\\x  =  0,

that is /  G T>(D<ol>). The proof is complete.
Lem m a 3.6. Let f , g € X .  If  mZ}nR - n * 9 converge in X  as n —* +  oo, then the following 

two conditions are equivalent
(i) g — I<a> f  in X .
(ii) g(y) = \y\~af{y) a.e. i f  f ,g  G Lr(Ga), 1 < r < 2, and g -  | • |_“/  in the distribution 

sense ortherwise.
Proof. (i)=^(ii). If g =  I <0i> f ,  by continuity of the Fourier transform we have 

9 = ( Urn К , « * / ) л =  lim (Vn>a* f )л .n—»+oo n—»+oo
Then by (3.8) and (3.7) we get (ii).

(ii)=»(i). W ith (3.7), (3.8) and Lemma 3.3, a comparison of the Fourier transform shows 
that

Vn,a * f ( x ) - V k>a*f ( x)  = m _lR -.k * g ( x ) - m J nR -n *g{x) in X. 

Then that m l*  й _ п * g converge in X  as n  -> +oo implies

lim \\Vn,af - V k,a * f \ \x  = 0.
n,k—y+oо

This means th a t /< “> /  exists. By Theorem 3.3 and Lemma 3.3 we get (i). The Proof is 
complete.

T heo rem  3.7. I f  / ,  D <a> f  G X  and m ZXnRn * /  converge in X  as n —► +oo, then

f (x)  = I <a>(D<a>f){x) in  X . (3.15)

Proof. By the Fourier transform mathod we have

Vn,a * D <a>f ( x ) - V kia*D <a>f{x) = m Z l R - k * f { x ) - m Z l R - n * f { x )  in X.

mZ}nR - n * f  converge in X  as n  —> +oo, so do Vn>a * D <a>f .  Thus I <a>(D<a>f)  exists 
in X . By Theorem 3.3 and Lemma 3.6 we have

( I<a> (D<a> f ) )A — f  in themselves sense.

Then by Lemma 3.3 we get (3.15).
T heo rem  3.8. Soppose sup{aj} <  oo. if f ,g  £ X  and g =  I<a>f  in X , then

D <a>(I <a>f)(x) = f{x)  in X.  (3.16)
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P roo f. By Lemma 3.3, Lemma 3.6, (3.7) and (3.8) we have

g(x) = (m~1Rn *g)(x) + {V-n,a * f)(x )  in X.

Then

\\En,ag -  / | | а  < ||£7п,а ( т ^ 1Лп * g ) ~  /Ц * +  \\EntCl(V-n,a * /)||лг-

By Theorem 3.4 we also have

En,a(mn lR n*g)(x) = m~1R n *f ( x )  in X,

so that

(3.17)

(3.18)

(3.19)

||£„,<.(т„ Я* * g) -  » f\\x
OO d—j 1 X—ĵ n 1

=11 £  £  exv(-2irivlaZ1j )m -1Rn *g(- + le4 )\\x
j=n+ 1 г>=1 l=Q

<A • m “+1||flf||x -* 0 (n -> +oo).

On the orther hand,

||E n ^ im ^ R n  * g ) ~  / | | x  < ||E ^ i m ^ R n  * g ) ~  m ^ R n  * f\\x

+ \\m~1R n * f  -  f\\x .

By (3.18) and (3.9) we get

lim ||E n ^ m ^ R n  * g) -  f\\x  =  0.n—►-f-oo

Secondly, V-ща € L x{Ga), f  e X , so that V -n,a * /  6 I ,  Еща{У-.ща * / )  € X  and 
{En,a{V-n>a * / ) ) л =  ( /  * (En,aV-.nt0l))A. we have

Entai(V— n,a *  / ) ( * )  =  /  *  {Еп,аУ—п,а)(,х) i n  X.

But

Ц / * {ЕщоУ - ща)\\х  < | | ( £ n ,QF _ n,a ) * ( /  -  m ^ R k  * / ) | | x

+  \\En,aV -nia * m ^ R k *  f\[x . (3.20)

Since V -nta * m ^ lRk{x)  =  0 as n > k, the second term in the right side of (3.20) vanishes 
as n > k. Because lim Ц/ -  rri^Rk * / l lx  =  0 and ||.E>i,<*F_rii0!|| < A, we have

fc—»+oo
lim ||£n,a(VL„,a * / ) | |X =  lim | | / * E n,aV-ra,a ||X =  0.

n - ^  +  OO 71—> +  00

Applying (3.19) and (3.21) to (3.17), we get

lim ||Ещад -  / | | х  =  0.n—» + o o

(3.21)

(3.22)

The proof is complete.
As another application of the derivatives, we study the relationship between functions 

belonging to V{D <CI>) and their Bessel potentials.
For a  >  0, let

Ba =  Vo,a +  R q and fia :=  Sq — Rq +  D^a>Ro,

where 6q is the Dirac 6-measure concentrated at 0 € Ga. Observe that B a € Ll (Ga) and 
ixa is a Borel measure on Ga. Furthermore, from (3.7) and (3.3), we have their Fourier
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transforms,

and

w Aw={J

1 if У € <35,
if У i  G%,

if у G Gq,
1 i i y£G*0.

(3.23)

(3.24)

For f  £ X,  and a  > 0, we define Jaf  :=  Ba * / .  Furthermore, L(X, a) := { /  £ X  : /  =  Jag
for some g G X}. Jaf  is called the Bessel potential of order a  of /.

T h eo rem  3.9. Let a > 0. Ifs\xp{aj} < oo, then V (D <a>) =  L(X,  a).
j€Z

P ro o f. Take /  € L(X,ot) and let f  — Ba *h  with h € X.  By (3.23), we have

f (y) -{
h(y) if у G Gq,
\y\~ah(y) if y £ G l ,

in the sense of itself. Thus, according to (3.24), we have \y\af(y) =  (Ha)A(y)h(y). Conse
quently, there exists a g £ X  with g(y) =  \y\af (y)  for a.e. у G Ga- if 1 < r  < 2 and in the 
distribution sense otherwise; that is, /  G W x{\y\a) =  V{D <a>) by (3.14).

Conversely, take /  G T>(D<a>) and let g = D <0l>f .  Set h = g + (Ro — D ^a>R 0) * f .  
Clearly, h G X  and we have

ifseG5’
1 \y\af (y)  i i y $ G l

in the sense of itself. Thus f  = B a *h by (3.23). Hence, /  G L(X,  a). The proof is complete.

References

[1] Zheng, W. X., Derivative and approximation theorems on local fields, Rocky Mountain J. of Math., 15:4 
(1985), 803-817.

[2] Onneweer, C. W., Fractional differentiation and Lipschitz spaces on local fields, Trans, of American 
Math. Soc., 258:1 (1980), 155-165.

[3] Onneweer, C. W., On the definition of dyadic Ddifferentiation, Applicable Anal..
[4] He Zelin, The derivatives and integrals of fractional order in Walsh-Fourier analysis with applications 

to approximation theory, J. of Approx. Theory, 39:4 (1983), 361-373.
[5] Hewitt, E. & Ross, K. A., Abstract Harmonic Aanalysis Vol. I, Springer-Verlay, New York, 1979.
[6] Taibleson, M.H., Fourier analysis on local fields, Princeton Univ. Press, 1975.


