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Abstract

This paper, the author studies fractional derivatives and integrals of fractional order a > 0
for functions in L"(G.) and Fourier transform for distributions. Under these definitions, the
author obtains the formula x;*> (x) =| y |* xy(z) for characters xy and (D<*> f) =| . |* fA,
discusses the existence of the fractional derivatives of test functions, gives relationships between
some function spaces, and proves that the fractional derivatives and the fractional integrals are
inverse operations one another.
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_ §1. Introduction and Preliminaries

The fractional derivatives that we define belowe include the derivative defined by Zheng
Weixingl!:P-8%6! different from the one by C. W. Onneweerl?3l and the one on Gy by He
Zelin4l, The fractional integrals on a-adic groups arise as inverse operations to the strong
derivatives of fractional order. _

Throughout this paper G, will dentote an a-adic group. We now state some definitions
and properties of G,, (cf [5]). Let a be a fixed but arbitrary doubly infinite sequence of
positive integers: a := {--+ ,a_pn, *+ ,8-1,80,81, -+ ,ap, -}, Where each a, is greater than
1. G, := {2 : ¢ = (Tn)nez}, Where each x, is an integer, 0 < z, < an, and z, = 0
for n < ng, with no depending on z. Addition operation is defined formally carrying from
left to right. For each integer k, let G, be the set of all z € G, such that 2, = 0 for all
n < k. It is well-known that G, is an abelian topological group which is Hé,usdorff_, locally
cpmpé,ct, o-compact and 0-dimensional. Moreover, the set G}, is a compact subgroup of 'G’a,
and {G, : k € Z} defines a topology on G.

Next, the character group of G, is topologically isdm_orphic with Gg«, where a* := (a}),
d:‘b = a_nv for all n € Z. Thus we associate with every y in Ga* a continuous character yx,
of G, in the following way: For a given y = (y,) € Ga* and each = = (x,) € Gq, if y, = 0
for all n < k and &, =0 for all n < m, then |

wiamen(im( 3 (5 )

n=m j:n
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Let G}, == {y = (yn) € Ga* : y, = 0 for all n < k}. We have G = {x in the character
group of G, : Xx|@_, =1} and G}, are compact subgroups of G;.

We denote the Haar measure on G, and G,», normalized so that the subgroups G and G§
have measure 1, by p and v, respectively. For'each n € Z we have pu(G,) = (v(G*,,))"! and
set my, := u(G,). Note that mo = 1,m_,, = a_pa_py1-++a_; and m, = (agay - - -a,;fi)‘l
for n > 1. We set Ay j i= @nlpq1---aj for n < j, Ay j :=1 forn > j.

We denote the ultrametrics on G, and G4+« by |-|, defined by |z} := m,, for z € G\ Gpi1
orz € Gi_, \ Gi,n € Z. We have the ultrametric inequality |z1 + z2| < max(|z1}, |z2]),
and G, = {2 € G, : |z| < my,} and G}, = {y € Ga+ : |y| £ Mpt1}. Consequently, the
ultrametrics are compatible with the original topologics of G, and G+, respectively.

In what follows, let e, := (z;) satisfying z,, = 1 and z; = 0 for all j# n, and set

1, ze€qG,

R — 3 1

n(w) { 0, = ¢ Gr,
and

1, yegG},

0, y¢aGn.
§2. Definitions

r) = {

In order to consider differentiability and Fourier transform for functions in L"(G,),1 <
r < 0o, we introduce the test functions spaces [6, p23 and p37] on G, and G,«, denoted
respectively by

S:={h:h(z)= chRk]. (& — vg,), z,vp € G}
j=0
and

$* :={h:h(y) =D c;Ri (y — wi;), ¥, wi; € Gar},
et

where ¢; € C. S(resp. S*)is provided with a topology as a toplogical vector space as follows:
We define a null sequence in S(resp. S*) as a sequence {h,} of functions in S(resp. $*) such
that there is a fixed pair of integers k and ! such that each h,, is constant on each coset
of Gx(resp. Gf) and is supported on Gj(resp. G}) and the sequence tends (uniformly) to
zero. A simple deduction shows that 'S(resp‘. S*) is an algebra of continuous functions with
compact support that separates points. Consequently S is dense in L"(Ga) and so is S* in
L7(Gar) for 1 < 7 < 00, Let h(y) = Ja, M@)xy(x)dz, the Fourier. transform of b € S. We
know that the mapping k — h is a homeormorphism between S and S*.

The collections §' and $*', of continuous linear functionals on S and S*, respectively, with
their weak* topologies, are called the spaces of distributions. The action of | f € S'(resp.
f€S")onhe€$ (resp. h € S*)is denoted by (f,k). It is clear that L"(G,) C §' and
L7(G;) C8*,1< 7 < 0o, and for f € L™(G,) (or L"(G%)), we have

(w= [ f@h@as o [ F@)h()ds)
for h €S (or k€ §7).
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-

The Fourier transform of f € §' is deﬁned as a distribution f € S* by the equality
(f,h) = (f,k), forallhes.

Thus for 1 < r <2, f € L(G,), f is equal to the original one in L"(G,) sense.
For 2 < r £ o0, f is a distribution but not a function. We define g f for a continuous

function g. For a continuous function g and an b € S*, let {ﬁk} be a sequence of functions
in §$* such that kEmoo hi = gh in C(Gg»). Since {fzk} is a Cauchy sequence in S*, ( f, fzk)
is a Cauchy sequence in C. We write ( £, g’iz) hm ( £, hk) and define product g f to be a
distribution by (gf,A) = (f, gh), for all h € S*.

Note. We claim that the product gf is a continuous linear functional on S* according
to our definition. In fact, the linearity is obvious; as to the continuity, for any given null
sequence {fzn} in S*, since each A, is supported on a fixed compact subgroup G} it is easy
to see that (g £, izn) tends to zero. -

We now presnt our definitions of derivatives and integrals of fractional order on Ggx.

Definition 2.1. For f € L;,.(G,),a>0,n €N and z € Gy, let

Gj=1 A jn—

Enof(z Z ma)\‘:J, Z Z exp( 27rwla_j) (z +le_;). (2.1)

]——n
(a) If li141_1 Enof(z) exists, the limit is called the pointwise derivative of order a of f
NnN—r1+00

at z, denoted by f<*>(z).
(b) If f € L™(G,),1 <7 <00, 0rf € C(G.), and zf hm E, o[ exists in the strong sense,

the limit is called the strong derivative of order o of f, denoted by DZ*> f or D> f,
~ We denote one of C(G,) and L"(G4)(1 < r < o0) by X, and one of Dc<°‘>f and
D> f (1< r<o0) by D<*>f. We set
D(D<*?) = {f € X : D<*> f exists};
Lipx(a) :={f € X : Sup I1£¢ =) = F()llx = O(jul®), |uf — O};
Slu

Wx(|y|*) := {f € X : thereis a g € L"(G,) such that §(y) =
l9|*f(y) ace. for 1<r<2and§=||*f
in the distribution sense otherwise}.

Defintion 2.2. For each n € Z,0. > 0, define V,, ,(x) by

Z m_ji (mi 'Ry — m; =y Ry ) (). (2.2)
l=—n+1

If the convolution V, o * f(z) = fGa Va,o(z — u) f(u)du has a pointwise limit or a strong
limit in X as n — +o00, then we call it the pointwise integral of order o of f or the strong
integral of order o of f. The strong integral is denoted by I<*>f.

§3. Results and Their Proofs

Theorem 3.1. For each a >0, y € Go+ and x € Gy, xj”( x) exists and x5 (x) =
|y|aXy(w)-
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Proof. For y € G \ G}1;, we know that
= (0, ,0,Yst1,Yst2," ** )y Yor1 7 0, and |y| = msys.

Now
a—j—=1A_jn—-1

EnoXxy(z Zm“)\;, Z Z exp( vala_l)xy(le_,)xy( ).

j=-n v=1 =0 )
Hj<s then e_; € G_; and xy(le_g) = 1. So we have
G_j—1lA_jn—1

Z Z exp(— Zm'vla_l)xy(le_])

' v=1 =0
fj=58+1thene_; € G_,_1\G_, and we have - ‘

Xy(€-s-1) = exp(2miyst1/a—s-1),

- thus
aj—=1A_jn—1
Z Z exp(—2ﬂivla:;)xy(le_j)
Cv=1l =0 ’ :
a-s-1-1 A-~5-—-1 n—1
Z Z exp(—2mil(v — Yst1)/0—s—1)
=1 1=0
—)\—s—l,n ( note that y,41 € {1" Ay 1})
Ifj>s+1,

—~8~1

 xyle—;) =exp (Zm' Z Yok > = exp(2miual}),

P _,’a—Ja’—.‘H'l *Ck

where u'= Y + Yj— 1/a,__J+1 + 4 Ys41/(@=j41 - @—s—1) is not an integer, thus

a_j—~1A_jn—1
Z Z exp(—~27rz'vla:})xy(le_,-)
v=1 1=0

aej—=1A_jn—1 v
= exp(—2mil(v — u)a=}) = 0.
v=1 =0 :
It follows that for n>| s'| '

En,aXy(w) = m?+1Xy(w) =|y|* Xy(";")-

" The proof is complete.

Theorem 3.2. If h € S, then h<*>(z) and D<*>h exist.. Furthermore, if h is constant

on each coset of G, then
1 Enohllr < E m; a—allhllm HD<°‘>hII < Z m3a_;||Rll-
J=-—s+1 j=—s+1
and '

||h<°‘>( Z mg a_J||h||T, 1<r< oo
y——s+1

. ' oo
Specially, if sup{a;} < co. Then Y, mfa_;=O0(m2,,).
JjEL j=—s+1
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. Proof. Y mfa_;= O(m‘fs +1> provided sup{e;} < oo and
Jj=-s+1 o i€z
oo o
|Enohll- < 3 m§ajll.

J=—s41

are obvious.
We first prove that R,(z) has pointwise derivative for all z in G,. Let n be sufficiently

large.
(i) Forz e Gs, we have

n (1,..._7'—1 A_.j,n—-l

EpoRs(z) = Z “)\:J’ Z Z exp(—2mivla’}) - Ry(le—;),

j=—s+1 v=1 1=0

and le_; € G, (:))\__” 1 0=0,1,-+-, A n—1, s0

EnoRs(z)= ). mg- ,\:J, (g = 1) A

j=-s+1
n
= Z m;?‘~ :;,5—1 (a—; — 1)
j=—s+1
Thus
R3*> (z) = nkm E, oR,(z)
= Z m3 }\__“ (a—j —1) < oo for z € G,. ' (3.1)
j=-—-s+1

(ii) Forz ¢ G, ifz =2’ +z5_1€5-1+*  + To—k€s—k, &' € Gy, Tk # 0, k is a positive
integer, then we have
(a)asj < —s+k (ie. —j>s—k), Rs(x+le_;)=0;
(b)as j=—s+k (i.e. —j=s—k), z+le_; € G, if and only if
D =(@s—k — To—t) + GoitGs—kt1 — Lokl — 1) + Cobot+1(Bs—k+2 — Ts—ki2 — 1)
+ ot g Osfot1c Bs—2(Bg—1 — o1 — 1) FMA_g5m1, Mm=0,1,000 A5 — 1.

Thus

Gs—p—1As- kn"‘l

Z Z exp(—2mivla; ) - R(z +les—k) = —As
v=1 :

(c)Asj>—s+k (ie. —j<s—k), z+le_;€G, if and only if

l= ((as—k - ws—-k) + as—k(as—k+1 - ms-—k,+i - 1) + 4

Og—fGg—k41"° 'as—2(a's—1 T &g—1 — 1)) A—_7',.!3—.&:-—1 + m)\—j,s-—l,

m=0,1, -, A — L.

Thus
a_j;—1 )\_j,n—l

Z Z exp(—27r7lvla:;) ‘R(z+le_;) =(a_j — 1) - Agpn.
=1 i=0



520 ' CHIN. ANN. OF MATH. : Vol.14 Ser.B

From (a), (b) and (c), we have for € G \ Gs—kt1

‘ ) En,aRs(w) = mgs+k’\;jk,n(_)‘3,n) + Z ?A—;"(a_j - 1)/\8’"'
j-—-—s+k+1 '

= —-m—s-l-k )‘s k,s—1 + Z m A—-] §— l(a'—J )’
j=—s+k+1

so that

i Rs<a>(m) —m—-s-[-k As-—'k s—1 + Z m A—-] 8-—1(0“".7 ) <0
i ‘ J=—s+k+1

for z € Gy_p, \ Gs—k+1- (3.2)

(3.1) and (3.2) show that R<*>(z) exist everywhere. .

Secondly we claim that RS*>(z) belongs to L™(G,), 1 < r < 00, and C(G,). It is obvious
that RS>>(z) belongs to L>°(G,) and C(G,) from (3.1) and (3.2). So it is sufficient to prove
that R<®>(x) is integrable. By (3.1) and (3.2) we have

/G |RS*> (z [dw—/ Z mgAT; ,_1(a_j — 1)da

Gs j=-s+1

+ Z/ I _m—s+k}‘ —kys—1 + Z ’\——_1 s— l(a—j - 1) I dz
k=1

G-t \Gos—r+1 j=—s+k+1

) ) :
me 1 [ -1
<ms E : )\-—_’] §—10—j + § :m—a+k>‘s—-k,s—1m3“k
j———s+1 k=1

+ Z Mok E MtkmaAZjbo,e—10mimkts

j=1
o
<m8 —.s+1 Z )‘—_73 la—J+aszm—s+k
_7-——s+1
+Zm1+k— Z"s —j—k+s,8~k— 1“—1 k+s»
j=1

where o, = A; -3 for s < —1 and o, = 1 otherwise. Nothing that Z 0'3)\'J hbs,o—ke1 °
j=
- j_k+s uniformly converges with respect to k and the other three series converge, we have

/ IRS*> (z)|da < oo

Finally, it is clear that DS%> R,(z) = RS*>(z) a.e. for r = oo, and DS Ry(z) =
R:*>(z). For 1 < r < oo, using Lebesgue dominant convergence theorem we still have
D> R,(x) = R{*>(z) a.e.. For h € S, since h(z) is a finite linear combination of Ry, (z —~
vk;), DS h and h<>(z) exist.

[=.e]
By ||Enohll- £ ). mfa_jl|h|l,, a simple deduction shows that the other two inequal-

j=—s+1

ities hold. The proof is complete.
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Theorem 3.3. If f, D<*>f € L"(G,), > 0, then for 1 < r < 2 we have

[D<*> f]My) = ly|°f(y) a-e., y € G, - (33)
and for 2 <r < +o0o we have
[D<e>fIN = |- |*f in the distribution sense. (3.4)

Proof. For 1 < r < 2, since the mapping f — f is a bounded linear transform from
L™(G,) into L' (Go+) and || fllo < ||£]l-, where 1+d =1,limp o0 | Enef —D<*>f|l, =0
implies

nEI}rlco ”(En,af)/\ - (D<a>f)/\”r’ = 0.
Thus there exists a subsequence ny — 400 such that

im [Bnyof@) = D> fIN(y) ae.

'n.—->+

Now

(B o fINy) = / B of @)%y (2)de

a;j—1A_jn—1
= f(y) Z m$AT; Z Z exp(—2nivla=})x, (le—;),
j=-n v=1 =0

and we have (in virtue of the proof of Theorem 3.1)

hm [ naf] (y) = Iyl"‘f(y)-

'n,—)
Therefore [D<*> f]A (y) = ly|*f(v) a.e. for 1 <7 < 2.
Secondly, for 2 < r < 00, by definition and the relation between strong convergence and
weak convergence, for h € S, we have

([D<°‘>f]/\,il) — (D<a>f, h) = lim / En,af($>ﬁ(m)d$
n—-+4oo Ga

a_;j—=1A_jn—1
lim m“/\: n exp(—2mivla~! / z + le_;)h(z)dz
n_,m;n n 2 2 ew(aminial)) | flotle- k)
a—j—1A_jn-1
11141_1 Z m;‘)\:Jn Z Z exp(- 27r'wla_1)/ f(x)h(z —le_;)d
j=—n v=1 1=0
e ;j—1A_j5,—1
lim Z ma}\:Jn Z Z exp(—-27rivla:;)(f,[h(-—le_j)]"(-))
v=1 =0
a_,—l)\_, n—1
(Y mt, 3 > exp(-rinta=})%e-i)h()
j=-n v=1

=(f,1-|%h(-)).

The last equality holds because distribution f is continuous and the series converges strongly

_1"-—n

n—)+

to |-|* on the compact support of A(-) in virtue of the deduction in Theorem 3.1. By definition
we conclude that

(D=1 ) = (|- 17, s
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this implies [D<*”> f]* = | . |*f in the distribution sense. The proof is complete.
Specially, we have
Theorem 3.4. For f € L"(G,), 1<r< 400, a>0, n€N, set

Gmj—1A_jn—1

Z{m;’/\zy’ Z Z exp(—Zﬂivlaj)f(a:+le_j)}.

j=-n v=1 =0
We have _
| o pyary - | W F@) ae ifyear, |
(Brnnf) (y) = { 0 e, ifyd G—n—la (1<r<2) (3.5)
and
(Egf)" = RE1 ()] - |°F, . (36)

in the distribution sense for 2 < r < +o00. . :
Lemma 3.1. For V, ,(z) in Definition 2.2, we have Vo € LY(G,) and ||[Vaolli =
O(m *). Moreover '

’ 0- if ye Gy,
v%¢xA ) =:{ . " 3.7
el W=\ e ipy g, 0
Proof. Firstly,
Va, a”1 = Z m—z+1(mz "Ry - mz- Rl 1)“1
l_—n+1
Z m_i, -2 < Am, % = O(m,®).
l=—n+1 :
Secondly,
(Va (?J) Z m_l+1(m, R} —mi 4 RY1)(y)
l——n+1
Z mZy (RL(y) — RY, 0 (y)
l=—n+1 .
_ { 0 if y € G,
ly|=* ify¢Gi.
Lemma 3.2. If f € L"(G,),1 <r < 00, g € L}(G,), then
(fxg)*=Fg (3.8)

in the sense stated before the Note in section 2.

Proof. Let §(z) = g(—x) and k € $*. Since § is uniformly continuous, we have

((f*9)" k) = (f xg,h) = (f,é*h)= (f,55)= (f-4,h).
This means (f % g)" = f - §.
Lemma 3.3. If fe€ L"(G,) (1 <7 < ) andf(y)——O a.e forl<r<2and f=0in
distribution sense for 2 <r < oo then f =0 a.e. for L<r <o and f =0 if f € C(G,).

The proof is normal. o
Lemma 3.4. If f € L1,c(G.), then nll)r_‘r_loo mI1R, * f(z) = f(z) a.e. If f € X, then

. -1 _ — .
Lim flmy R x f — flix = 0. (3.9)
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The proof is easy- (See [6, p.174]). Furthermore, we have
Lemma 3.5. If f € Lipx(c), then ||m; R, * f — f||x = O(m%).
Theorem 3.5. If sup{a,} < oo and @y, = a_p_1 it for alln € Z, then for 0 < a < B

we have Lipx (8) C 'Dx(D<°‘>) C Lipx ().
Proof. If f € Lipx(8), then by Lemma 3.5 we have
lmi R % f — flix < Amf for n=1,2,.--, (3.10)

where A is a constant which may changes in value from one occurrence to the next. Set

Ui(z) = m3 Ry % f(z), Un(z) = my 1 Ros1 * f(z) — m7 Ry * f(z) for n > 1. We see that

Uy (z) is constant on each coset of G,. Consequently, since a, = a—n—1,Mmp = m_L, we have

|Er,aUnllx < AmE,,||Upllx = Am,; °‘||U | x for all M eN. (3.11)
By (3.10) we have
WUnllx < Mk Russ * £ = fllx + ImzBux £~ fllx S Amfl, n>1,  (3.12)
and _
flz) = Z U, (w) in X sense. (3.13)
n=1 .

B (3.11), (3 12) and (3 13), it turns out that
|Enof — Enefllx

L 00
<Y (EnaUn — EmaUn)lx + Y, (|1En,oUnlix + | En,aUnlix)
n=1 n—L+1
<||ENaZU EMO,ZU llx + Z Amf—e,
n=L+1

. o ’
For ¢ > 0, let L be sufficiently large so that . AmS~* < ¢/2. Then since m;'R,, €
) n—L+1 .

S(Ge),n=1,2,--- ,L+1, we can see that {Ep,q Z U, } is a Cauchy sequence in X sense.
Thus "~
”EN,,ZU EM.,,ZU||X<E/2

n=1 n=1
whenever M, N > G for some G > 0. Therefore {Eps,of} is a Cauchy sequence, and D<e> f
exists; that is f € D(D<*>).
If f € D(D<*>) and h € G, \ Gr+1, by (3.7), (3.8), Theorem 3.3 and Lemma 3. 3 we
have
Ha = h) = F(8) = Ve (D< f(a ~ 1) - D5 (@) n X,
so that ) _
I£(- = R) = F()x < 20D fllx[Von,allL = O(mZT) = O(mz) = O(|A|%).
That means that f € Lipx(a). The proof is complete.
Theorem 3.6. Let o > 0. If sup{a;} < oo, then
j€ez -

D(D<*?) = Wx(|yl*)- (3.14)
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Proof. For each f € D(D<*>), from Theorem 3.3 we directly obtain f € Wx(Jy|*).
Conversely, take an f € Wx(|y|*) and assume that g € X satisfies g(y) = |y|°‘f (y) a.e. on
Gor if fEL(Gy),1 <7r<2,and j=|-|* f' in the distribution sense ortherwise. Theorem
3.4 and Lemma 3.3 with the Fourier transforms show that

Exyf(z) = m;;_}_an.H *g(z) in X.
Thus o
1Bnof —gllx < llmptiRor1x g ~gllx + D ma—j = DIiflx-
| j=n4l
By (3.9) and sup{a;} < co we have ‘
lim ”En,af —-gllx =0,
n—o0

that is f € D(D<*>). The proof is complete.

Lemma 3.6. Let f,g € X. f m-1R_, %g converge in X as n — 0o, then the following
two conditions are equivalent:

(i) g=I*>fin X.

(i) §(y) = lyl'“f(y) ae.if f,g€ L"(G,),1<r <2, and §= |-|~f in the distribution
sense ortherwise. '

Proof. (i)=(ii). If g = I<*>f, by continuity of the Fourier transform we have

- 4= (nlif_f_l Vae* ) = nlil_l,_loo(vn,a «
Then by (3.8) and (3.7) we get (ii). |

(ii)=>(i). With (3.7), (3.8) and Lemma 3.3, a comparison of the Fourier transform shows
that ‘

Voo * (&) = Viya * f(z) = mZLR_p* g(z) —mZLR_, % g(z) in X.
Then that m_2 an * g converge in X as n — +oo implies

lim ||Vp,of — Vie* fllx =0.

n,k—4o00
This means that I<*> f exists. By Theorem 3.3 and Lemma 3.3 we get (i). The Proof is
complete. '
Theorem 3.7. If f,D<*>f ¢ X and m_LR, % f converge in X as n — 400, then

f(z) = I<*>(D<*>f)(z) in X. ' ~ (3.15)
Proof. By the Fourier transform mathod we have
Voo ¥ D% f(2) = Vi o % D<* f(&) = m_LR_i » f(z) - mZ R _, * f(z) in X.
m-LR_, % f converge in X as n — +00, 50 do Vp, o ¥ D<® f. Thus I<*>(D<*> f) exists
in X. By Theorem 3.3 and Lemma 3.6 we have

(IS°>(D<*>f))* = f in themselves sense.

Then by Lemma 3.3 we get (3.15). _
Theorem 3.8. Soppose sup{a;} < 0. if f,g € X and g =I<*>f in X, then

D<e>(I<*> f)(z) = f(z) in X. (3.16)
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Proof. By Lemma 3.3, Lemma 3.6, (3.7) and (3.8) we have
| 9(z) = (my R % 9)(@) + (Von,a * f)(z) in X.
Then
| Bnag — flix < ”En,a(mrlen *g) = flix + | Bna(V-na * Fllx- (3.17)
By Theorem 3.4 we also have ‘
E,‘;f’a(m,,';an *g)(z) =m; R, * f(z) in X,
so that _
”En,a.(m;IRn *g) — mrlen * fllx

a_j—1A_jn—1

[e o]
=|| Z m;?‘/\:;,n Z Z exp(-—21rivla:;-)m,;1Rn*g(~+le_j)||X
j=n+1 v=1 1=0

<A mZlellx =0 (s +o0). (3.18)
On the orther hand, ' _
“En,a('mj;;an *9) = flix <|Eno(my R+ g) - ma R % fllx
+{lmz  Ra x f — flix.
By (3.18) and (3.9) we get
lim || Epo(m; Ry % g) - fllx =0. (3.19)

n—-4-00
Secondly, V_no € L1(G,), f € X, s0 that V_p o % f € X, Epo(Vone* f) € X and
(Bnya(Von,a * £))" = (f * (Bn,aV-n,))". We have

Enoa(Vona* f)(@) = % (BnaVone)(z) in X
But |
. "f * (En,aV-—n,a)”X S“(En,aV-n,a) * (f - mllek * f)”X
4 || BnaVen,o * m; R * fl|x- (3.20)

Since V_p o * my 'Ry (z) = 0 as n > k, the second term in the right side of (3.20) vanishes
asn > k. Because'klil_l'_l |f — mg 'Ry * fllx =0 and || By aVonoll < A, we have
) —r 400

1B (Vona* Dllx = lim_ I # BroVonallx =0 (s21)
Applying (3.19) and (3.21) to (3.17), we get

im [Buag = fllx =0. (3.22)

The proof is complete.

As another application of the derivatives, we study the relationship between functions
belonging to D(D<*>) and their Bessel potentials.

For a > 0, let

v B, = VO,a + Ry and p, =68y~ Ro+ D1<Q>Ro,
where 6 is the Dirac §-measure concentrated at 0 € G,. Observe that B, € L*(G,) and

Mo is a Borel measure on G,. Furthermore, from (3.7) and (3.3), we have their Fourier
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transforms,
1 ify e Gj
B)\y) = { IR 3.23
BPW= 1y itgga, 29
and
A { |ly|* ifyeds,
o = 3.24
wrw={ e (3.24

For f € X, and a > 0, we define J, f := B, * f. Furthermore, L(X,a) :={f € X : f = Jog
for some g € X}. J,f is called the Bessel potential of order o of f.

Theorem 3.9. Leta > 0. If sup{aj} < oo, then 'D(D<°‘>) = (X, c).

Proof. Take J € L(X,a) and let f=By*hwith h e X. By (3.23), we have

()_{h(y) if y € Gy,
! lyl=h(y) ify ¢ G,
in the sense of itself. Thus, according to (3.24), we have [y|*f(y) = (1a)"(¥)R(y). Conse-
quently, there exists a g € X with §(y) = |y|*f(y) for a.e. y € G+ if 1 <r < 2 and in the
distribution sense otherwise; that is, f € Wx(|y|®) = D(D<*>) by (3.14). A

Conversely, take f € D(D<*>) and let g = D<*>f. Set h = g + (Ro — D{*” Ry) * f.
Clearly, h € X and we have

sz{ﬂwA ify e Gy,
lwl*f(y) ify¢Gs

in the sense of itself. Thus f = B, *h by (3.23). Hence, f € L(X,a). The proof is complete.
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