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HOMOLOGICAL PROPERTIES OF TORSION
CLASSES UNDER CHANGE OF RINGS
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Abstract

Let R be a ring with identity,  be a central element of R which is neither a unit nor a
zero divisor. S = R/xzR is the quotient ring of R and ¢ : R — R/xR is the natural map.
R-Mod (resp. S-Mod) denotes the category of unital left R-modules(resp. S-modules). In
this paper, relationships betwee torsion theories on R-Mod and torsion theories on S-Mod are
investigated. Properties of the functor Ext% (NN, —) are given. Properties of the localization
functor Qsare also investigated.
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Let R be a ring with identity, = be a central element of R which is neither a unit nor
a zero divisor. S = R/xzR is the quotient ring of R and ¢ : R — R/xR is the natural
map. R-Mod(resp. S-Mod) denotes the category of unital left R-modules (resp.S-modules).
There is a canonical way to define each left S-module M to be a left R-module:

r-a=p(ra forany ae€ M, r € R.

The family of all hereditary torsion theories defined on R-Mod (resp. S-Mod) will be denoted
by R-tors (resp. S-tors). Let T (resp. F.) be the torsion class (resp. torsionfree class) of
R-Mod determined by 7 € R—tors. According to [1], define a map ¢, from R-tors to S-tors:
for each 7 € R-tors, p.(7) = o is defined by the condition that a left S-module M is o
torsion if and only if M is 7-torsion as a left R-module. If 7 is perfect, then o is perfect.
In general, the converse is not true. A counterexample will be given in section 2 which
is a negative answer to a problem in [1]. Nevertheless, the perfectness of o does provide
information of 7. For instance, we will show in section 1 that the functor Ext%(N, —) with
Nr-torsion kills all o-closed left S-modules. Other properties of Extg(N, —) will be given
in section 1.

In section 2, we will investigate the properties of the localization functor @, and give
some interesting results.

Throughout this paper, R is a ring with identity, S = R/xR. The maps ¢ and @, are
defined as above. We always assume that 7 € R-tors, 0 = p,(7). We say 7 is compatible
with ¢ if it happens that any S-module M is 7-torsionfree iff M is o torsionfree. By [1],
every T € R-tors is compatible with the surjective homomorphism . As for the notations
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and terminologies of torsion theory we refer to [1]. Notations of spectral sequence are the
same as [3].

§1.

Lemma 1.1. Let M be an R-module which is T-closed, then (0:z)py = {m € M |zm =
0} is also a T-closed module.

Proof. Evidently M/(0 : x) = M. But M is 7-torsionfree. Therefore (0 : z) is a closed
submodule of M. Since M is T-closed, (0 : ) is T-closed.

In the following we will use the trivial fact: Hompg (N, M) = Homg (N, M) for S-modules
N and M.

Lemma 1.2. Let 0 = ¢.(7) and M' be a o-torsionfree S-module. Then M’ is T-closed
(regarding M’ as an R-module canonically) if and only if M’ is o-closed as an S-module.

Proof. It sufficies to show that M’ is 7-injective iff M’ is o-injective. Let K’ be any
dense left ideal of S. Then K’ = K/xR, where K is a dense left ideal of R which contains
zR. Let f be any S-homomorphism from K’ — M’, p be the canonical homomorphism
K — K'. We have a diagram as follows:

0 K R M’

gl [
0 A S NN V7

dl

M/

where 7 and j’ are injections. Since M’ is T-injective, there is a homomorphism g : R — M’
such that fu = gj. Then g induces an R-homomorphism g : S — M’ which is also an S-
homomorphism. Since p is onto, we get f = gj’, which shows that M’ is o-injective.

Conversely, assume that M’ is o-injective. We have to show that Ext} (N, M’) = 0 for
every 7-torsion R-module N (see [1]). There is a spectral sequence

Ext(Torf(S,N)) =, Ext}(N,M'),  p+q=n. (1.1)
Now n = 1.
Ey* =Exti(S ®r N,M'), S®r N = R/tR®r N = N/zN.
Since N is 7-torsion, S ®g N is o-torsion. Thus E21’O = 0. On the other hand,
EY' = Homg(Tor®(S, N), M').
From the short exact sequence
0—2R—R—S5—0, (1.2)
we get an exact sequence
0 — Torf(S,N) — RN — RN — S@ N — 0.

Since N is 7-torsion, xR ® N is also 7-torsion. Then Tor{% (S, N) is T-torsion, and hence is
o-torsion. Therefore Homg(Torf(S, N), M’) = 0 for M’ is o-torsionfree. We have already
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shown that E21’O = 0, Eg’l = 0. By Grothendieck cohomology 5-exact sequence, H’ =
Extp(N, M’) = 0. This is the desired result.

Theorem 1.1.. Let 7 € R-tors, N be any T-torsion R- module. If 0 = ¢.(7) is a perfect
torsion theory in S-tors, then Ext%(N, M') =0 for every o-closed module M.

Proof. We use (1.1) again. Let n = 2.

E2? = Ext%(S ® N, M").
Evidently S ® N is o-torsion. Then E22’0 = Ext%(S ® N, M') = 0 for o is perfect. Now,
Ey' = Ext(Torf (S, N), M").

By the proof of Lemma 1.2, Tor{%(S, N) is o-torsion. Therefore E‘21’1 = 0 for M’ is o-injective.

Since z is not a zero divisor, R is a projective R-module. By the long exact sequence
induced by (1.2), we get Torf(S, N) = 0. This implies E3® = 0. An easy calculation shows
that Ext%(N, M) = 0.

Corollary 1.1. Let K be a dense left ideal of R. Then for any o-closed module M',
Exth(K, M') = 0.

Proof. We have a short exact sequence:

0—K-—R— R/K—0, (1.3)

where R/K is 7-torsion. By Theorem 1.1, Ext%(R/K, M') = 0. Then the long exact
sequence induced by (1.3) gives the desired result.

Corollary 1.2. Let M be any 7-closed R-module. Then xM is also a T-closed module.
Moreover, M /xM is o-torsionfree as an S-module.

Proof. Evidently (0 : )y can be regarded as an S-module. By Lemma 1.1, (0 : ) is
7-closed, so it is o-closed as an S-module by Lemma 1.2. Clearly, the following sequence is
exact:

0—0:2) — M —aM —0. (1.4)
Then for any 7-torsion R-module N, we have the following exact sequence:
oo — Bxth(N, M) — Extp(N,zM) — BExt% (N, (0:2)) — --- .

But M is 7-injective. Then Exth(N, M) = 0. Therefore Ext},(N,zM) = 0, which implies
that M is 7-injective. Now zM is a 7-injective submodule of a 7-closed module M. Then
xM is T-closed, i.e., M /xM is T-torsionfree. Since ¢ is a surjective map, every 7 € R-tors
is compatible with ¢ (see [1]). This implies that M/xM is o-torsionfree.

Lemma 1.3. Let 7 € R-tors, 0 = p.(T) which is perfect. Assume that N is a T-torsion
R-module, M" is any o-closed S-module. Then Ext%(N, M') = 0.

Proof. We have a spectral sequence:

Ext}(Tor[ (S,N),M') =, Extj(N,M'),  p+q=n=3.
First we want to show
E3? = Ext3(S @r N, M') = 0.

Let Eg(M’) be the injective hull of M’ as an S-module. There is an exact sequence

0— M — Eg(M') — Es(M")/M' — 0. (1.5)
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For any o-torsion module M’, we have an exact sequence
0 =Ext3(N', E(M")) — Ext%(N', E(M')/M") — Ext3(N’, M) — 0.

Since o is perfect, Eg(M')/M’ is o-closed. Then Ext%(N’, Es(M')/M’) = 0. This implies
that Ext%(N’, M') = 0. On the other hand, S ® N is o- torsion. Therefore

E3? = Ext}(S @ N,M') = 0.
Moreover, since o is perfect and Torl*(S, N) is o-torsion, we have
E2' = Ext(Torf (S, N), M") = 0.

In the proof of Theorem 1.1, Tor& (S, N) = 0. Similarly one can easily see that Tor (S, N) =
0. These facts imply

Ey? = Exts(Tork(S,N), M) =0
and
E9® = Homg(Torf (S, N), M) = 0.
Thus we have shown that
By’ =Ey' =By = Ep® =0.
A routine verification shows that Ext™ (N, M’) = 0.

Theorem 1.2. Let 7 € R-tors, 0 = @.(7) which is perfect. Assume that N is any
T-torsion R-module, M is any 7-closed R-module. Then

Ext®(N, M) = Ext}(N,zM).

Moreover, the isomorphism is induced by the multiplication of x.

Proof. For any 7-torsion R-module N, the exact sequence
0— 0:2)yy — M—2M—0 (1.6)
induces a long exact sequence
— Ext®(N, (0 : x)) — Exth(N, M) — Ext%(N,zM) — Exth(N, (0 : ).
Since (0 : x) is 7-closed, we have
Ext®(N,(0:2)) =0
by Theorem 1.1. By Lemma 1.3, Ext%(N, (0 : z)) = 0, therefore
Ext®(N, M) — Ext%(N,zM)

is an isomorphism and it is not difficult to verify that the isomorphism is multiplication by
x.

Corollary 1.3. Let E be T-torsionfree injective R-module. Then Extiz(N, zE) =0 for
every T-torsion R-module N. Moreover, E/xE is a o-closed S-module.

Proof. Exth(N,zE) = 0 is trivial. The short exact sequence

0—2E —FE—E/zE—0 (1.7)
induces an exact sequence for any 7-torsion R-module N:

0 — Extip(N, E/zE) — Ext%(N,zE) — 0.
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Then
Extp(N, E/zE) = Ext3(N, zE) = 0.

This means that E/xE is T-injective. By Corollary 1.2, E/xE is 7-torsionfree. Therefore
E/zE is T-closed, which implies that F/zE is o-closed (Lemma 1.2).
Corollory 1.4. Let N and M be as in Theorem 1.2. Then for any natural number k,

Ext%(N, M) = Ext®(N, 2" M).

So far, we study the properties of the functor EXt%(N ,—) with N7-torsion. Now we turn
to the investigation of the functor Ext%(N’, —) with N’o-torsion (i.e., N’ is a ¢ torsion
S’-module, but it is regarded as an R-module here). We have the following

Theorem 1.3. Assume 7,0 as in Theorem 1.1. Let N’ be a o-torsion S-module. Then
for any T-closed R-module M,

Ext®h(N', M) = Extg(N', M/xM).
Proof. There is a spectral sequence of change of rings:
Extlo(N',Ext% (S, M)) =, Exth(N', M), p+q=n.
For n =2,
EY? = Homg(N', Ext%(S, M)).
Note that xR is projective and the following sequence is exact
0—2R—R— S —0. (1.8)
We have ES* = Ext%(S, M) = 0. Furthermore,
Eyt = Exth(N', Exth(S, M)).
The short exact sequence (1.8) gives the following exact sequence:
0 — Homp(S, M) — Homp(R, M) — Hompg(zR, M) — Extk(S, M) — 0.
But we have natural isomorphisms
Hompg(S, M) = (0: @),
Hompg(R, M) = M,
Homp(zR, M) = aM.
Therefore Ext}, (S, M) = M/xM, which means
Ey' = ExtS(N', M/zM).
On the other hand,
E2° = Ext%(N',Homp(S, M)) = Ext%(N’, (0 : z)as) = 0.
Thus
Ext%(N', M) = E}M
for sufficient large 7. We can calculate E}! as follows

- d? d?
0=E,"* 5 Byt = B3P,
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where
Eg' = Ext§(N', Hompg(S, M)) = Ext$(N’,(0: ) =0

(see the proof of Lemma 1.3). Thus Ey"' = Kerd?/Imd? = Ey"'. Similarly, EM' = By
Thus we have

Ext%,(N', M) = Extg(N', M/zM).
Corollary 1.5. Let N’ be o-torsion S-module. Then for any 7-closed R-module M,
Ext%(N’, M) = 0 if and only if M/xM is T-closed (or equivalently, o-closed).
Proof. Lemma 1.3 shows that M/xzM is 7-torsionfree. Then M /xM is o-injective if and
only if Extg(N’, M/xM) = 0 for any o-torsion S-module N'.

§2.

Lemma 2.1. Let 7 € R-tors, 0 = @.(7) which is perfect. Then for any S-module
M, Qq(M) = Q,(M).

Proof. This is an easy consequence of Lemma 1.2.

When 7 is perfect, it is known that o = @.(7) is also perfect. For completeness, we give
a simple homological proof here.

Lemma 2.2. Let 0,7 be as above. If T is perfect then o is perfect.

Proof. It is sufficient to show that for any o-torsion module NV and any o-closed module
M, Ext%(N, M) = 0. By Grothendieck cohomology 5-exact sequence

0— By — H' — By — EYY — H?,
where H? = ExtzR(N, M) = 0 since 7 is perfect, we have
E2Y = Ext%(S @r N, M) = Ext%(N, M),
EY' = Homg(Tor®(S, N), M) = 0.

Hence Ext%(N, M) = E3° = 0.

The inverse of Lemma 2.2 is not true in general. Here we give a counterexample which is
also a negative answer to a problem in [1] (p. 488).

Example. Let R = Z[z], the polynomial ring with integer cofficients. The element x
is neither a unit nor a zero divisor. S = R/xR = Z. Assume that 7 is a torsion theory
cogenerated by E(R) @& E(R/xR), where E means injective hull. Tt is well known that
Q-(R) = R and 7 is the largest torsion theory for which R is 7-closed (see [4]). By [5], (2, z)
is a dense ideal of R. But (2,z)R # R, which means 7 is not a perfect torsion theory. Now
S = Z, so every torsion theory in S-tors is perfect. By Lemma 2.1, Q,(M) = Q.(M), the
condition of Proposition 47.16 in [1] is satisfied. But 7 is not perfect.

Next we will study when each of two functors Homg(S, —) and S ® g — commutes with
localization functors.

Theorem 2.1. Let 7 € R-tors, o = @.(7) which is perfect. Then
QUHOHIR(S7 M) = HOHIR(S, Q.,-(M))

for any T-torsionfree R-module M .
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Proof. Let M be 7-torsionfree. Since Q(M) is closed, Homg(S, Q-(M)) = (0: x)q. (m)
is 7- closed by Lemma 1.1. On the other hand,

Qo (Hompg(S, M)) = Qo ((0 : ) ar)-

Hence

Qo((0:2)ar) € (0: 2)q, (u)-
Furthermore, for any a € (0 : )q, (a), va = 0 and there is a dense left ideal I of R such
that al € M. Then al C (0 : )y, which implies that (0 : z)q, (ar)/(0 : @) is T-torsion.
Therefore (0: z)q, (amr) € Qo ((0: 2)ar). Thus

QsHomp(S, M) = Hompg(S, Q,(M)).

The proof is completed.

Let ¢ € S-tors. According to [6], we may define a torsion theory ¢°(o) € R-tors as
follows. Let Ey be the injective S-module which cogenerates o, E = E(FE)y), the R-injective
hull of Ey (regarding Fy as an R-module). Define ¢°(o) to be the torsion theory in R-
tors which is cogenerated by E. Another torsion theory ¢9(o) can be defined as follows:
the torsion class of ¢9(0) is generated by the torsion class of o (regarding each o-torsion
S-module as R-module). We denote by ¥ the canonical ring homomorphism R — Q. (R),
J(R) the Jacobson radical of R.

Lemma 2.3. For any o € S-tors, if 7 € R-tors and ¢.(7) = o, then

p?(0) <7 < ¢%(0).

Proof. Let T, be the o-torsion class of S-modules. By the definition of ¢,, if we regard
every o-torsion S-module as an R-module, then T, C T.. This means ¢9(c) < 7.

On the other hand, it is not difficult to see that ¢°(o) is cogenerated by F,, the o-
torsionfree class of S-modules. Nevertheless, ¢ is surjective, so every torsion theory in R-tors
is compatible with . Let ¢ M be any o-torsionfree S-module, then M is 7-torsionfree as an
R-module since ¢, (7) = 0. Hence we have 7 < ¢¢(0).

Recall that ¢, p9(0) = @.p®(0) = o (see [6]). Lemma 2.3 means that ¢9(c) is the
smallest torsion theory 7 in R-tors such that ¢.(7) = o while ¢°(0) is the largest torsion
theory 7 in R-tors such that ¢.(7) = 0.

Theorem 2.2. Let 7 be a torsion theory in R-tors which is perfect, 0 = p.(7). Then

(1) Qo (S) = Q- (R)/2Q-(R);

(2) S®RrQr(R) = Qs(S®r M) = Qo (5) ®r M;

(3) If ¥(z) € J(Q-(R)), then there is only one T € R-tors such that o = p«(T). In other
words, p9(o) = (o) =T.

Proof. 1. Since 7 is perfect, Q, is exact. Then the exact sequence

0—2R—R—S5—0
yields an exact sequence
0 — Q- (zR) — Q-(R) — Q,(S) — 0.

By Lemma 2.1, Q,(S) = @, (S), so that Q,(5) = Q-(S) 2 Q-(R)/Q,(xR). Now it is suffi-
cient to show that Q,(zR) = xQ,(R). But the multiplication of z induces an isomorphism
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p: R — zR. Hence Q.(p) is also an isomorphism from @Q.(R) — Q.(xR). Moreover it is
easy to see that Q- (p) is also a multiplication of z. Thus Q,(zR) = Q- (R).
2. By Lemma 2.1, Q,(S® M) = Q-(S ® M), we need only to show

SRQ;(M)2Q(S®OM)=2Q,(5) @M. (2.1)
Since 7 is perfect,
Qr(M) = Q-(R) @ M, Q- (S @ M) = Q-(R) @ (S © M). (2.2)
Since x is a central element,
S®Q-(R) = R/zR® Q-(R) = Q-(R)/zQ-(R)
~Q,(R)®R/zxR=Q-(R)® S. (2.3)
Therefore
S®Q(M)=S®Q-(R)®M
= Q- (R)/2Q-(R) © M = Q,(5) @ M, (2.4)

Q-(R) @ (S®@ M) = (Q-(R)®©5) @ M)
= Q-(R)/zQ-(R) © M = Qo (5) ® M. (2.5)
Combining (2.2), (2.3), (2.4), (2.5), we get (2.1).

3. Let = ¥(z). Then z € J(Q-(R)), the Jacobson radical of Q,(R). First we show
that a left ideal I of R is 7-dense iff I + R/« R is o-dense in S. Clearly, if I is a dense ideal
of R, then I +xR/xR is o dense since R/xR/I + xR/xR = R/I + xR which is 7-torsion or
equivalently o-torsion. Conversely, if I + xR/xR is dense in S, then I + xR is dense in R.
Therefore Q,(I + xR) = Q-(R). Since 7 is perfect, Q,(I) + Q-(zR) = Q-(R). However,
Q-(zR) = 2Q-(R), T € J(Q,(R)). By Nakayama Lemma, Q,(I) = Q-(R). Hence [ isa 7
dense left ideal of R.

Now we can prove that ¢°(c) = 7. Let Ey be an injective S-module which cogenerates
0. E = E(Ey), the R-injective hull of Ey. Let I be a ¢°(0)-dense left ideal of R. Then
Homp(R/I,E) = 0. Since 0 = ¢, ¢°(0) and I + zR/xR is o-torsion, R/I + xR is T-torsion.
Hence I + zR is a 7-dense left ideal of R. Thus ¢°(c) < 7. According to Lemma 2.3,
7 < ¢¢(0). Therefore 7 = p°(0). Since ¢, ¢9(c) = o, the last statement follows from the
fact p9(o) = p°(0).
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