HOMOLOGICAL PROPERTIES OF TORSION CLASSES UNDER CHANGE OF RINGS

YAO MUSHENG*

Abstract

Let R be a ring with identity, x be a central element of R which is neither a unit nor a zero divisor. S = R/xR is the quotient ring of R and $\varphi : R \to R/xR$ is the natural map. R-Mod (resp. S-Mod) denotes the category of unital left R-modules(resp. S-modules). In this paper, relationships betwee torsion theories on R-Mod and torsion theories on S-Mod are investigated. Properties of the functor $\operatorname{Ext}^n_R(N, -)$ are given. Properties of the localization functor Q_{σ} are also investigated.

Keywords Ring, Torsion theory, Module, Homological propries.1991 MR Subject Classification 16E30.

Let R be a ring with identity, x be a central element of R which is neither a unit nor a zero divisor. S = R/xR is the quotient ring of R and $\varphi : R \to R/xR$ is the natural map. R-Mod(resp. S-Mod) denotes the category of unital left R-modules (resp.S-modules). There is a canonical way to define each left S-module M to be a left R-module:

$$r \cdot a = \varphi(r)a$$
 for any $a \in M, r \in R$.

The family of all hereditary torsion theories defined on R-Mod (resp. S-Mod) will be denoted by R-tors (resp. S-tors). Let T_{τ} (resp. F_{τ}) be the torsion class (resp. torsionfree class) of R-Mod determined by $\tau \in R$ -tors. According to [1], define a map φ_* from R-tors to S-tors: for each $\tau \in R$ -tors, $\varphi_*(\tau) = \sigma$ is defined by the condition that a left S-module M is σ torsion if and only if M is τ -torsion as a left R-module. If τ is perfect, then σ is perfect. In general, the converse is not true. A counterexample will be given in section 2 which is a negative answer to a problem in [1]. Nevertheless, the perfectness of σ does provide information of τ . For instance, we will show in section 1 that the functor $\operatorname{Ext}^2_R(N, -)$ with $N\tau$ -torsion kills all σ -closed left S-modules. Other properties of $\operatorname{Ext}_R(N, -)$ will be given in section 1.

In section 2, we will investigate the properties of the localization functor Q_{σ} and give some interesting results.

Throughout this paper, R is a ring with identity, S = R/xR. The maps φ and φ_* are defined as above. We always assume that $\tau \in R$ -tors, $\sigma = \varphi_*(\tau)$. We say τ is compatible with φ if it happens that any S-module M is τ -torsionfree iff M is σ torsionfree. By [1], every $\tau \in R$ -tors is compatible with the surjective homomorphism φ . As for the notations

Manuscript received November 18, 1991. Revised January 3, 1992.

^{*}Institute of Mathematics, Fudan University, Shanghai 200433, China.

and terminologies of torsion theory we refer to [1]. Notations of spectral sequence are the same as [3].

§1.

Lemma 1.1. Let M be an R-module which is τ -closed, then $(0:x)_M = \{m \in M | xm = 0\}$ is also a τ -closed module.

Proof. Evidently $M/(0:x) \cong xM$. But xM is τ -torsionfree. Therefore (0:x) is a closed submodule of M. Since M is τ -closed, (0:x) is τ -closed.

In the following we will use the trivial fact: $\operatorname{Hom}_R(N, M) = \operatorname{Hom}_S(N, M)$ for S-modules N and M.

Lemma 1.2. Let $\sigma = \varphi_*(\tau)$ and M' be a σ -torsionfree S-module. Then M' is τ -closed (regarding M' as an R-module canonically) if and only if M' is σ -closed as an S-module.

Proof. It sufficies to show that M' is τ -injective iff M' is σ -injective. Let K' be any dense left ideal of S. Then K' = K/xR, where K is a dense left ideal of R which contains xR. Let f be any S-homomorphism from $K' \to M'$, μ be the canonical homomorphism $K \to K'$. We have a diagram as follows:

where j and j' are injections. Since M' is τ -injective, there is a homomorphism $g: R \to M'$ such that $f\mu = gj$. Then g induces an R-homomorphism $\bar{g}: S \to M'$ which is also an S-homomorphism. Since μ is onto, we get $f = \bar{g}j'$, which shows that M' is σ -injective.

Conversely, assume that M' is σ -injective. We have to show that $\operatorname{Ext}^{1}_{R}(N, M') = 0$ for every τ -torsion R-module N (see [1]). There is a spectral sequence

$$\operatorname{Ext}_{S}^{p}(\operatorname{Tor}_{q}^{R}(S,N)) \Longrightarrow_{p} \operatorname{Ext}_{R}^{n}(N,M'), \qquad p+q=n.$$

$$(1.1)$$

Now n = 1.

$$E_2^{1,0} = \operatorname{Ext}_S^1(S \otimes_R N, M'), \ S \otimes_R N = R/xR \otimes_R N \cong N/xN.$$

Since N is τ -torsion, $S \otimes_R N$ is σ -torsion. Thus $E_2^{1,0} = 0$. On the other hand,

$$E_2^{0,1} = \operatorname{Hom}_S(\operatorname{Tor}_1^R(S, N), M').$$

From the short exact sequence

$$0 \longrightarrow xR \longrightarrow R \longrightarrow S \longrightarrow 0, \tag{1.2}$$

we get an exact sequence

$$0 \longrightarrow \operatorname{Tor}_{1}^{R}(S, N) \longrightarrow xR \otimes N \longrightarrow R \otimes N \longrightarrow S \otimes N \longrightarrow 0.$$

Since N is τ -torsion, $xR \otimes N$ is also τ -torsion. Then $\operatorname{Tor}_1^R(S, N)$ is τ -torsion, and hence is σ -torsion. Therefore $\operatorname{Hom}_S(\operatorname{Tor}_1^R(S, N), M') = 0$ for M' is σ -torsionfree. We have already

shown that $E_2^{1,0} = 0$, $E_2^{0,1} = 0$. By Grothendieck cohomology 5-exact sequence, $H' = \text{Ext}_R^1(N, M') = 0$. This is the desired result.

Theorem 1.1. Let $\tau \in R$ -tors, N be any τ -torsion R- module. If $\sigma = \varphi_*(\tau)$ is a perfect torsion theory in S-tors, then $\operatorname{Ext}^2_R(N, M') = 0$ for every σ -closed module M'.

Proof. We use (1.1) again. Let n = 2.

$$E_2^{2,0} = \operatorname{Ext}_S^2(S \otimes N, M')$$

Evidently $S \otimes N$ is σ -torsion. Then $E_2^{2,0} = \operatorname{Ext}_S^2(S \otimes N, M') = 0$ for σ is perfect. Now,

$$E_2^{1,1} = \operatorname{Ext}_S^1(\operatorname{Tor}_1^R(S,N), M').$$

By the proof of Lemma 1.2, $\operatorname{Tor}_1^R(S, N)$ is σ -torsion. Therefore $E_2^{1,1} = 0$ for M' is σ -injective.

Since x is not a zero divisor, xR is a projective R-module. By the long exact sequence induced by (1.2), we get $\operatorname{Tor}_2^R(S, N) = 0$. This implies $E_2^{0,2} = 0$. An easy calculation shows that $\operatorname{Ext}_R^2(N, M') = 0$.

Corollary 1.1. Let K be a dense left ideal of R. Then for any σ -closed module M', $\operatorname{Ext}^{1}_{R}(K, M') = 0.$

Proof. We have a short exact sequence:

$$0 \longrightarrow K \longrightarrow R \longrightarrow R/K \longrightarrow 0, \tag{1.3}$$

where R/K is τ -torsion. By Theorem 1.1, $\operatorname{Ext}^2_R(R/K, M') = 0$. Then the long exact sequence induced by (1.3) gives the desired result.

Corollary 1.2. Let M be any τ -closed R-module. Then xM is also a τ -closed module. Moreover, M/xM is σ -torsionfree as an S-module.

Proof. Evidently $(0:x)_M$ can be regarded as an S-module. By Lemma 1.1, (0:x) is τ -closed, so it is σ -closed as an S-module by Lemma 1.2. Clearly, the following sequence is exact:

$$0 \longrightarrow (0:x) \longrightarrow M \longrightarrow xM \longrightarrow 0.$$
(1.4)

Then for any τ -torsion R-module N, we have the following exact sequence:

$$\cdots \longrightarrow \operatorname{Ext}^1_R(N,M) \longrightarrow \operatorname{Ext}^1_R(N,xM) \longrightarrow \operatorname{Ext}^2_R(N,(0:x)) \longrightarrow \cdots$$

But M is τ -injective. Then $\operatorname{Ext}_{R}^{1}(N, M) = 0$. Therefore $\operatorname{Ext}_{R}^{1}(N, xM) = 0$, which implies that xM is τ -injective. Now xM is a τ -injective submodule of a τ -closed module M. Then xM is τ -closed, i.e., M/xM is τ -torsionfree. Since φ is a surjective map, every $\tau \in R$ -tors is compatible with φ (see [1]). This implies that M/xM is σ -torsionfree.

Lemma 1.3. Let $\tau \in R$ -tors, $\sigma = \varphi_*(\tau)$ which is perfect. Assume that N is a τ -torsion R-module, M' is any σ -closed S-module. Then $\operatorname{Ext}^3_B(N, M') = 0$.

Proof. We have a spectral sequence:

$$\operatorname{Ext}_{S}^{p}(\operatorname{Tor}_{q}^{R}(S,N),M') \Longrightarrow_{p} \operatorname{Ext}_{R}^{n}(N,M'), \qquad p+q=n=3$$

First we want to show

$$E_2^{3,0} = \operatorname{Ext}_S^3(S \otimes_R N, M') = 0.$$

Let $E_S(M')$ be the injective hull of M' as an S-module. There is an exact sequence

$$0 \longrightarrow M' \longrightarrow E_S(M') \longrightarrow E_S(M')/M' \longrightarrow 0.$$
(1.5)

For any σ -torsion module M', we have an exact sequence

$$0 = \operatorname{Ext}_{S}^{2}(N', E(M')) \longrightarrow \operatorname{Ext}_{S}^{2}(N', E(M')/M') \longrightarrow \operatorname{Ext}_{S}^{3}(N', M') \longrightarrow 0.$$

Since σ is perfect, $E_S(M')/M'$ is σ -closed. Then $\operatorname{Ext}^2_S(N', E_S(M')/M') = 0$. This implies that $\operatorname{Ext}^3_S(N', M') = 0$. On the other hand, $S \otimes N$ is σ - torsion. Therefore

$$E_2^{3,0} = \operatorname{Ext}_S^3(S \otimes N, M') = 0$$

Moreover, since σ is perfect and $\operatorname{Tor}_1^R(S, N)$ is σ -torsion, we have

$$E_2^{2,1} = \operatorname{Ext}_S^2(\operatorname{Tor}_1^R(S,N), M') = 0.$$

In the proof of Theorem 1.1, $\operatorname{Tor}_2^R(S, N) = 0$. Similarly one can easily see that $\operatorname{Tor}_3^R(S, N) = 0$. These facts imply

$$E_2^{1,2} = \operatorname{Ext}_S^1(\operatorname{Tor}_2^R(S,N),M') = 0$$

and

$$E_2^{0,3} = \operatorname{Hom}_S(\operatorname{Tor}_3^R(S, N), M') = 0.$$

Thus we have shown that

$$E_2^{3,0} = E_2^{2,1} = E_2^{1,2} = E_2^{0,3} = 0.$$

A routine verification shows that $\operatorname{Ext}^3_R(N, M') = 0$.

Theorem 1.2. Let $\tau \in R$ -tors, $\sigma = \varphi_*(\tau)$ which is perfect. Assume that N is any τ -torsion R-module, M is any τ -closed R-module. Then

$$\operatorname{Ext}_{R}^{2}(N, M) \cong \operatorname{Ext}_{R}^{2}(N, xM).$$

Moreover, the isomorphism is induced by the multiplication of x.

Proof. For any τ -torsion *R*-module *N*, the exact sequence

$$0 \longrightarrow (0:x)_M \longrightarrow M \longrightarrow xM \longrightarrow 0 \tag{1.6}$$

induces a long exact sequence

$$\longrightarrow \operatorname{Ext}^2_R(N,(0:x)) \longrightarrow \operatorname{Ext}^2_R(N,M) \longrightarrow \operatorname{Ext}^2_R(N,xM) \longrightarrow \operatorname{Ext}^3_R(N,(0:x)).$$

Since (0:x) is τ -closed, we have

 $\operatorname{Ext}_{R}^{2}(N, (0:x)) = 0$

by Theorem 1.1. By Lemma 1.3, $\operatorname{Ext}_{R}^{3}(N, (0:x)) = 0$, therefore

$$\operatorname{Ext}^2_R(N,M) \longrightarrow \operatorname{Ext}^2_R(N,xM)$$

is an isomorphism and it is not difficult to verify that the isomorphism is multiplication by x.

Corollary 1.3. Let E be τ -torsionfree injective R-module. Then $\operatorname{Ext}_{R}^{2}(N, xE) = 0$ for every τ -torsion R-module N. Moreover, E/xE is a σ -closed S-module.

Proof. $\operatorname{Ext}_{B}^{2}(N, xE) = 0$ is trivial. The short exact sequence

$$0 \longrightarrow xE \longrightarrow E \longrightarrow E/xE \longrightarrow 0 \tag{1.7}$$

induces an exact sequence for any τ -torsion *R*-module *N*:

 $0 \longrightarrow \operatorname{Ext}^1_R(N, E/xE) \longrightarrow \operatorname{Ext}^2_R(N, xE) \longrightarrow 0.$

Then

$$\operatorname{Ext}^1_R(N, E/xE) \cong \operatorname{Ext}^2_R(N, xE) = 0$$

This means that E/xE is τ -injective. By Corollary 1.2, E/xE is τ -torsionfree. Therefore E/xE is τ -closed, which implies that E/xE is σ -closed (Lemma 1.2).

Corollory 1.4. Let N and M be as in Theorem 1.2. Then for any natural number k,

$$\operatorname{Ext}_{R}^{2}(N, M) \cong \operatorname{Ext}_{R}^{2}(N, x^{k}M).$$

So far, we study the properties of the functor $\operatorname{Ext}_{R}^{2}(N, -)$ with $N\tau$ -torsion. Now we turn to the investigation of the functor $\operatorname{Ext}_{R}^{2}(N', -)$ with $N'\sigma$ -torsion (i.e., N' is a σ torsion S'-module, but it is regarded as an R-module here). We have the following

Theorem 1.3. Assume τ, σ as in Theorem 1.1. Let N' be a σ -torsion S-module. Then for any τ -closed R-module M,

$$\operatorname{Ext}_{R}^{2}(N', M) \cong \operatorname{Ext}_{S}^{1}(N', M/xM).$$

Proof. There is a spectral sequence of change of rings:

$$\operatorname{Ext}_{S}^{p}(N', \operatorname{Ext}_{R}^{q}(S, M)) \Longrightarrow_{p} \operatorname{Ext}_{R}^{n}(N', M), \qquad p+q=n.$$

For n = 2,

$$E_2^{0,2} = \operatorname{Hom}_S(N', \operatorname{Ext}_R^2(S, M)).$$

Note that xR is projective and the following sequence is exact

$$0 \longrightarrow xR \longrightarrow R \longrightarrow S \longrightarrow 0. \tag{1.8}$$

We have $E_2^{0,2} = \operatorname{Ext}_R^2(S, M) = 0$. Furthermore,

$$E_2^{1,1} = \operatorname{Ext}_S^1(N', \operatorname{Ext}_R^1(S, M)).$$

The short exact sequence (1.8) gives the following exact sequence:

$$0 \longrightarrow \operatorname{Hom}_{R}(S, M) \longrightarrow \operatorname{Hom}_{R}(R, M) \longrightarrow \operatorname{Hom}_{R}(xR, M) \longrightarrow \operatorname{Ext}_{R}^{1}(S, M) \longrightarrow 0.$$

But we have natural isomorphisms

$$\operatorname{Hom}_{R}(S, M) \cong (0:x)_{M},$$
$$\operatorname{Hom}_{R}(R, M) \cong M,$$
$$\operatorname{Hom}_{R}(xR, M) \cong xM.$$

Therefore $\operatorname{Ext}^{1}_{R}(S, M) \cong M/xM$, which means

$$E_2^{1,1} = \operatorname{Ext}^1_S(N', M/xM).$$

On the other hand,

$$E_2^{2,0} = \operatorname{Ext}_S^2(N', \operatorname{Hom}_R(S, M)) \cong \operatorname{Ext}_S^2(N', (0:x)_M) = 0$$

Thus

$$\operatorname{Ext}^2_R(N', M) \cong E^{1,1}_r$$

for sufficient large r. We can calculate $E_r^{1,1}$ as follows

$$0 = E_2^{-1,2} \xrightarrow{d^2} E_2^{1,1} \xrightarrow{d^2} E_2^{3,0},$$

where

$$E_3^{1,1} = \operatorname{Ext}_S^3(N', \operatorname{Hom}_R(S, M)) \cong \operatorname{Ext}_S^3(N', (0:x)) = 0$$

(see the proof of Lemma 1.3). Thus $E_3^{1,1} = \operatorname{Ker} d^2 / \operatorname{Im} d^2 \cong E_2^{1,1}$. Similarly, $E_r^{1,1} \cong E_2^{1,1}$. Thus we have

$$\operatorname{Ext}_{R}^{2}(N', M) \cong \operatorname{Ext}_{S}^{1}(N', M/xM).$$

Corollary 1.5. Let N' be σ -torsion S-module. Then for any τ -closed R-module M, $\operatorname{Ext}^2_R(N', M) = 0$ if and only if M/xM is τ -closed (or equivalently, σ -closed).

Proof. Lemma 1.3 shows that M/xM is τ -torsionfree. Then M/xM is σ -injective if and only if $\operatorname{Ext}^1_S(N', M/xM) = 0$ for any σ -torsion S-module N'.

§2.

Lemma 2.1. Let $\tau \in R$ -tors, $\sigma = \varphi_*(\tau)$ which is perfect. Then for any S-module $M, Q_{\sigma}(M) = Q_{\tau}(M)$.

Proof. This is an easy consequence of Lemma 1.2.

When τ is perfect, it is known that $\sigma = \varphi_*(\tau)$ is also perfect. For completeness, we give a simple homological proof here.

Lemma 2.2. Let σ, τ be as above. If τ is perfect then σ is perfect.

Proof. It is sufficient to show that for any σ -torsion module N and any σ -closed module M, $\operatorname{Ext}_{S}^{2}(N, M) = 0$. By Grothendieck cohomology 5-exact sequence

$$0 \longrightarrow E_2^{1,0} \longrightarrow H^1 \longrightarrow E_2^{0,1} \longrightarrow E_2^{2,0} \longrightarrow H^2,$$

where $H^2 = \operatorname{Ext}^2_R(N, M) = 0$ since τ is perfect, we have

$$E_2^{2,0} = \text{Ext}_S^2(S \otimes_R N, M) = \text{Ext}_S^2(N, M),$$

$$E_2^{0,1} = \text{Hom}_S(\text{Tor}_1^R(S, N), M) = 0.$$

Hence $\operatorname{Ext}_{S}^{2}(N, M) = E_{2}^{2,0} = 0.$

The inverse of Lemma 2.2 is not true in general. Here we give a counterexample which is also a negative answer to a problem in [1] (p. 488).

Example. Let R = Z[x], the polynomial ring with integer cofficients. The element x is neither a unit nor a zero divisor. $S = R/xR \cong Z$. Assume that τ is a torsion theory cogenerated by $E(R) \oplus E(R/xR)$, where E means injective hull. It is well known that $Q_{\tau}(R) = R$ and τ is the largest torsion theory for which R is τ -closed (see [4]). By [5], (2, x) is a dense ideal of R. But $(2, x)R \neq R$, which means τ is not a perfect torsion theory. Now S = Z, so every torsion theory in S-tors is perfect. By Lemma 2.1, $Q_{\sigma}(M) = Q_{\tau}(M)$, the condition of Proposition 47.16 in [1] is satisfied. But τ is not perfect.

Next we will study when each of two functors $\operatorname{Hom}_R(S, -)$ and $S \otimes_R -$ commutes with localization functors.

Theorem 2.1. Let $\tau \in R$ -tors, $\sigma = \varphi_*(\tau)$ which is perfect. Then

 $Q_{\sigma}\operatorname{Hom}_{R}(S, M) \cong \operatorname{Hom}_{R}(S, Q_{\tau}(M))$

for any τ -torsionfree R-module M.

Proof. Let M be τ -torsionfree. Since $Q_{\tau}(M)$ is closed, $\operatorname{Hom}_{R}(S, Q_{\tau}(M)) \cong (0:x)_{Q_{\tau}(M)}$ is τ - closed by Lemma 1.1. On the other hand,

$$Q_{\sigma}(\operatorname{Hom}_{R}(S, M)) = Q_{\sigma}((0:x)_{M}).$$

Hence

$$Q_{\sigma}((0:x)_M) \subseteq (0:x)_{Q_{\tau}(M)}$$

Furthermore, for any $a \in (0:x)_{Q_{\tau}(M)}$, xa = 0 and there is a dense left ideal I of R such that $aI \subseteq M$. Then $aI \subseteq (0:x)_M$, which implies that $(0:x)_{Q_{\tau}(M)}/(0:x)_M$ is τ -torsion. Therefore $(0:x)_{Q_{\tau}(M)} \subseteq Q_{\sigma}((0:x)_M)$. Thus

$$Q_{\sigma} \operatorname{Hom}_{R}(S, M) \cong \operatorname{Hom}_{R}(S, Q_{\tau}(M)).$$

The proof is completed.

Let $\sigma \in S$ -tors. According to [6], we may define a torsion theory $\varphi^e(\sigma) \in R$ -tors as follows. Let E_0 be the injective S-module which cogenerates σ , $E = E(E_0)$, the R-injective hull of E_0 (regarding E_0 as an R-module). Define $\varphi^e(\sigma)$ to be the torsion theory in Rtors which is cogenerated by E. Another torsion theory $\varphi^g(\sigma)$ can be defined as follows: the torsion class of $\varphi^g(\sigma)$ is generated by the torsion class of σ (regarding each σ -torsion S-module as R-module). We denote by Ψ the canonical ring homomorphism $R \to Q_\tau(R)$, J(R) the Jacobson radical of R.

Lemma 2.3. For any $\sigma \in S$ -tors, if $\tau \in R$ -tors and $\varphi_*(\tau) = \sigma$, then

$$\varphi^g(\sigma) \le \tau \le \varphi^e(\sigma).$$

Proof. Let T_{σ} be the σ -torsion class of S-modules. By the definition of φ_* , if we regard every σ -torsion S-module as an R-module, then $T_{\sigma} \subseteq T_{\tau}$. This means $\varphi^g(\sigma) \leq \tau$.

On the other hand, it is not difficult to see that $\varphi^e(\sigma)$ is cogenerated by F_{σ} , the σ torsionfree class of S-modules. Nevertheless, φ is surjective, so every torsion theory in R-tors
is compatible with φ . Let $_SM$ be any σ -torsionfree S-module, then M is τ -torsionfree as an R-module since $\varphi_*(\tau) = \sigma$. Hence we have $\tau \leq \varphi^e(\sigma)$.

Recall that $\varphi_* \varphi^g(\sigma) = \varphi_* \varphi^e(\sigma) = \sigma$ (see [6]). Lemma 2.3 means that $\varphi^g(\sigma)$ is the smallest torsion theory τ in *R*-tors such that $\varphi_*(\tau) = \sigma$ while $\varphi^e(\sigma)$ is the largest torsion theory τ in *R*-tors such that $\varphi_*(\tau) = \sigma$.

Theorem 2.2. Let τ be a torsion theory in *R*-tors which is perfect, $\sigma = \varphi_*(\tau)$. Then (1) $Q_{\sigma}(S) \cong Q_{\tau}(R)/xQ_{\tau}(R)$;

(2)
$$S \otimes_R Q_\tau(R) \cong Q_\sigma(S \otimes_R M) \cong Q_\sigma(S) \otimes_R M;$$

(3) If $\Psi(x) \in J(Q_{\tau}(R))$, then there is only one $\tau \in R$ -tors such that $\sigma = \varphi_*(\tau)$. In other words, $\varphi^g(\sigma) = \varphi^e(\sigma) = \tau$.

Proof. 1. Since τ is perfect, Q_{τ} is exact. Then the exact sequence

$$0 \longrightarrow xR \longrightarrow R \longrightarrow S \longrightarrow 0$$

yields an exact sequence

$$0 \longrightarrow Q_{\tau}(xR) \longrightarrow Q_{\tau}(R) \longrightarrow Q_{\tau}(S) \longrightarrow 0.$$

By Lemma 2.1, $Q_{\tau}(S) = Q_{\sigma}(S)$, so that $Q_{\sigma}(S) = Q_{\tau}(S) \cong Q_{\tau}(R)/Q_{\tau}(xR)$. Now it is sufficient to show that $Q_{\tau}(xR) = xQ_{\tau}(R)$. But the multiplication of x induces an isomorphism

Vol.15 Ser.B

 $\rho: R \to xR$. Hence $Q_{\tau}(\rho)$ is also an isomorphism from $Q_{\tau}(R) \to Q_{\tau}(xR)$. Moreover it is easy to see that $Q_{\tau}(\rho)$ is also a multiplication of x. Thus $Q_{\tau}(xR) = xQ_{\tau}(R)$.

2. By Lemma 2.1, $Q_{\sigma}(S \otimes M) = Q_{\tau}(S \otimes M)$, we need only to show

$$S \otimes Q_{\tau}(M) \cong Q_{\tau}(S \otimes M) \cong Q_{\sigma}(S) \otimes M.$$

$$(2.1)$$

Since τ is perfect,

$$Q_{\tau}(M) = Q_{\tau}(R) \otimes M, Q_{\tau}(S \otimes M) = Q_{\tau}(R) \otimes (S \otimes M).$$
(2.2)

Since x is a central element,

$$S \otimes Q_{\tau}(R) = R/xR \otimes Q_{\tau}(R) \cong Q_{\tau}(R)/xQ_{\tau}(R)$$
$$\cong Q_{\tau}(R) \otimes R/xR = Q_{\tau}(R) \otimes S.$$
(2.3)

Therefore

$$S \otimes Q_{\tau}(M) = S \otimes Q_{\tau}(R) \otimes M$$
$$\cong Q_{\tau}(R) / x Q_{\tau}(R) \otimes M \cong Q_{\sigma}(S) \otimes M, \qquad (2.4)$$

$$Q_{\tau}(R) \otimes (S \otimes M) \cong (Q_{\tau}(R) \otimes S) \otimes M)$$
$$\cong Q_{\tau}(R) / x Q_{\tau}(R) \otimes M = Q_{\sigma}(S) \otimes M.$$
(2.5)

Combining (2.2), (2.3), (2.4), (2.5), we get (2.1).

3. Let $\bar{x} = \Psi(x)$. Then $\bar{x} \in J(Q_{\tau}(R))$, the Jacobson radical of $Q_{\tau}(R)$. First we show that a left ideal I of R is τ -dense iff I + xR/xR is σ -dense in S. Clearly, if I is a dense ideal of R, then I + xR/xR is σ dense since $R/xR/I + xR/xR \cong R/I + xR$ which is τ -torsion or equivalently σ -torsion. Conversely, if I + xR/xR is dense in S, then I + xR is dense in R. Therefore $Q_{\tau}(I + xR) = Q_{\tau}(R)$. Since τ is perfect, $Q_{\tau}(I) + Q_{\tau}(xR) = Q_{\tau}(R)$. However, $Q_{\tau}(xR) = xQ_{\tau}(R), \ \bar{x} \in J(Q_{\tau}(R))$. By Nakayama Lemma, $Q_{\tau}(I) = Q_{\tau}(R)$. Hence I is a τ dense left ideal of R.

Now we can prove that $\varphi^e(\sigma) = \tau$. Let E_0 be an injective S-module which cogenerates σ . $E = E(E_0)$, the R-injective hull of E_0 . Let I be a $\varphi^e(\sigma)$ -dense left ideal of R. Then $\operatorname{Hom}_R(R/I, E) = 0$. Since $\sigma = \varphi_* \varphi^e(\sigma)$ and I + xR/xR is σ -torsion, R/I + xR is τ -torsion. Hence I + xR is a τ -dense left ideal of R. Thus $\varphi^e(\sigma) \leq \tau$. According to Lemma 2.3, $\tau \leq \varphi^e(\sigma)$. Therefore $\tau = \varphi^e(\sigma)$. Since $\varphi_* \varphi^g(\sigma) = \sigma$, the last statement follows from the fact $\varphi^g(\sigma) = \varphi^e(\sigma)$.

Acknowledgement. This paper was inspired by a discussion with Dr. Sen Daqing when he was studying the theory of algebraic microlocalization. He provided me the background of this paper. I would like to express his thanks for my help.

References

- [1] Golan, J. S., Torsion theories, Longman, 1986.
- [2] Oystaeyen, F. V. & Sallam, R., A micro-structuresheaf and quantum sections over a projective scheme (preprinted paper).
- [3] Rotmann, J., An introduction to homological algebra, Academic Press, 1979.
- [4] Stenstrom, B., Rings of quotients, Springer-Verlag, 1975.
- [5] Wu, Q. S., On an open problem of Albu and Nastasescu, Kexue Tongbao, 33: 20 (1988).
- [6] Yao, M. S., Ring epimorphisms and torsion theories, Proc. of the 22th. Symposium on Ring Theory, (1989).