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HOMOLOGICAL PROPERTIES OF TORSION

CLASSES UNDER CHANGE OF RINGS

Yao Musheng*

Abstract

Let R be a ring with identity, x be a central element of R which is neither a unit nor a

zero divisor. S = R/xR is the quotient ring of R and φ : R → R/xR is the natural map.
R-Mod (resp. S-Mod) denotes the category of unital left R-modules(resp. S-modules). In
this paper, relationships betwee torsion theories on R-Mod and torsion theories on S-Mod are
investigated. Properties of the functor ExtnR(N,−) are given. Properties of the localization

functor Qσare also investigated.

Keywords Ring, Torsion theory, Module, Homological proprties.

1991 MR Subject Classification 16E30.

Let R be a ring with identity, x be a central element of R which is neither a unit nor

a zero divisor. S = R/xR is the quotient ring of R and φ : R → R/xR is the natural

map. R-Mod(resp. S-Mod) denotes the category of unital left R-modules (resp.S-modules).

There is a canonical way to define each left S-module M to be a left R-module:

r · a = φ(r)a for any a ∈ M, r ∈ R.

The family of all hereditary torsion theories defined on R-Mod (resp. S-Mod) will be denoted

by R-tors (resp. S-tors). Let Tτ (resp. Fτ ) be the torsion class (resp. torsionfree class) of

R-Mod determined by τ ∈ R−tors. According to [1], define a map φ∗ from R-tors to S-tors:

for each τ ∈ R-tors, φ∗(τ) = σ is defined by the condition that a left S-module M is σ

torsion if and only if M is τ -torsion as a left R-module. If τ is perfect, then σ is perfect.

In general, the converse is not true. A counterexample will be given in section 2 which

is a negative answer to a problem in [1]. Nevertheless, the perfectness of σ does provide

information of τ . For instance, we will show in section 1 that the functor Ext2R(N,−) with

Nτ -torsion kills all σ-closed left S-modules. Other properties of ExtR(N,−) will be given

in section 1.

In section 2, we will investigate the properties of the localization functor Qσ and give

some interesting results.

Throughout this paper, R is a ring with identity, S = R/xR. The maps φ and φ∗ are

defined as above. We always assume that τ ∈ R-tors, σ = φ∗(τ). We say τ is compatible

with φ if it happens that any S-module M is τ -torsionfree iff M is σ torsionfree. By [1],

every τ ∈ R-tors is compatible with the surjective homomorphism φ. As for the notations
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and terminologies of torsion theory we refer to [1]. Notations of spectral sequence are the

same as [3].

§1.

Lemma 1.1. Let M be an R-module which is τ -closed, then (0 : x)M = {m ∈ M |xm =

0} is also a τ -closed module.

Proof. Evidently M/(0 : x) ∼= xM . But xM is τ -torsionfree. Therefore (0 : x) is a closed

submodule of M . Since M is τ -closed, (0 : x) is τ -closed.

In the following we will use the trivial fact: HomR(N,M) = HomS(N,M) for S-modules

N and M .

Lemma 1.2. Let σ = φ∗(τ) and M ′ be a σ-torsionfree S-module. Then M ′ is τ -closed

(regarding M ′ as an R-module canonically) if and only if M ′ is σ-closed as an S-module.

Proof. It sufficies to show that M ′ is τ -injective iff M ′ is σ-injective. Let K ′ be any

dense left ideal of S. Then K ′ = K/xR, where K is a dense left ideal of R which contains

xR. Let f be any S-homomorphism from K ′ → M ′, µ be the canonical homomorphism

K → K ′. We have a diagram as follows:

0 −−−−→ K
j

−−−−→ R
g

−−−−→ M ′

µ

y yφ

∥∥∥
0 −−−−→ K ′ j′

−−−−→ S
ḡ

−−−−→ M ′

f

y
M ′

where j and j′ are injections. Since M ′ is τ -injective, there is a homomorphism g : R → M ′

such that fµ = gj. Then g induces an R-homomorphism ḡ : S → M ′ which is also an S-

homomorphism. Since µ is onto, we get f = ḡj′, which shows that M ′ is σ-injective.

Conversely, assume that M ′ is σ-injective. We have to show that Ext1R(N,M ′) = 0 for

every τ -torsion R-module N (see [1]). There is a spectral sequence

ExtpS(Tor
R
q (S,N)) =⇒p ExtnR(N,M ′), p+ q = n. (1.1)

Now n = 1.

E1,0
2 = Ext1S(S ⊗R N,M ′), S ⊗R N = R/xR⊗R N ∼= N/xN.

Since N is τ -torsion, S ⊗R N is σ-torsion. Thus E1,0
2 = 0. On the other hand,

E0,1
2 = HomS(Tor

R
1 (S,N),M ′).

From the short exact sequence

0 −→ xR −→ R −→ S −→ 0, (1.2)

we get an exact sequence

0 −→ TorR1 (S,N) −→ xR⊗N −→ R⊗N −→ S ⊗N −→ 0.

Since N is τ -torsion, xR ⊗N is also τ -torsion. Then TorR1 (S,N) is τ -torsion, and hence is

σ-torsion. Therefore HomS(Tor
R
1 (S,N),M ′) = 0 for M ′ is σ-torsionfree. We have already
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shown that E1,0
2 = 0, E0,1

2 = 0. By Grothendieck cohomology 5-exact sequence, H ′ =

Ext1R(N,M ′) = 0. This is the desired result.

Theorem 1.1.. Let τ ∈ R-tors, N be any τ -torsion R- module. If σ = φ∗(τ) is a perfect

torsion theory in S-tors, then Ext2R(N,M ′) = 0 for every σ-closed module M ′.

Proof. We use (1.1) again. Let n = 2.

E2,0
2 = Ext2S(S ⊗N,M ′).

Evidently S ⊗N is σ-torsion. Then E2,0
2 = Ext2S(S ⊗N,M ′) = 0 for σ is perfect. Now,

E1,1
2 = Ext1S(Tor

R
1 (S,N),M ′).

By the proof of Lemma 1.2, TorR1 (S,N) is σ-torsion. Therefore E1,1
2 = 0 forM ′ is σ-injective.

Since x is not a zero divisor, xR is a projective R-module. By the long exact sequence

induced by (1.2), we get TorR2 (S,N) = 0. This implies E0,2
2 = 0. An easy calculation shows

that Ext2R(N,M ′) = 0.

Corollary 1.1. Let K be a dense left ideal of R. Then for any σ-closed module M ′,

Ext1R(K,M ′) = 0.

Proof. We have a short exact sequence:

0 −→ K −→ R −→ R/K −→ 0, (1.3)

where R/K is τ -torsion. By Theorem 1.1, Ext2R(R/K,M ′) = 0. Then the long exact

sequence induced by (1.3) gives the desired result.

Corollary 1.2. Let M be any τ -closed R-module. Then xM is also a τ -closed module.

Moreover, M/xM is σ-torsionfree as an S-module.

Proof. Evidently (0 : x)M can be regarded as an S-module. By Lemma 1.1, (0 : x) is

τ -closed, so it is σ-closed as an S-module by Lemma 1.2. Clearly, the following sequence is

exact:

0 −→ (0 : x) −→ M −→ xM −→ 0. (1.4)

Then for any τ -torsion R-module N , we have the following exact sequence:

· · · −→ Ext1R(N,M) −→ Ext1R(N, xM) −→ Ext2R(N, (0 : x)) −→ · · · .

But M is τ -injective. Then Ext1R(N,M) = 0. Therefore Ext1R(N,xM) = 0, which implies

that xM is τ -injective. Now xM is a τ -injective submodule of a τ -closed module M . Then

xM is τ -closed, i.e., M/xM is τ -torsionfree. Since φ is a surjective map, every τ ∈ R-tors

is compatible with φ (see [1]). This implies that M/xM is σ-torsionfree.

Lemma 1.3. Let τ ∈ R-tors, σ = φ∗(τ) which is perfect. Assume that N is a τ -torsion

R-module, M ′ is any σ-closed S-module. Then Ext3R(N,M ′) = 0.

Proof. We have a spectral sequence:

ExtpS(Tor
R
q (S,N),M ′) =⇒p ExtnR(N,M ′), p+ q = n = 3.

First we want to show

E3,0
2 = Ext3S(S ⊗R N,M ′) = 0.

Let ES(M
′) be the injective hull of M ′ as an S-module. There is an exact sequence

0 −→ M ′ −→ ES(M
′) −→ ES(M

′)/M ′ −→ 0. (1.5)
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For any σ-torsion module M ′, we have an exact sequence

0 = Ext2S(N
′, E(M ′)) −→ Ext2S(N

′, E(M ′)/M ′) −→ Ext3S(N
′,M ′) −→ 0.

Since σ is perfect, ES(M
′)/M ′ is σ-closed. Then Ext2S(N

′, ES(M
′)/M ′) = 0. This implies

that Ext3S(N
′,M ′) = 0. On the other hand, S ⊗N is σ- torsion. Therefore

E3,0
2 = Ext3S(S ⊗N,M ′) = 0.

Moreover, since σ is perfect and TorR1 (S,N) is σ-torsion, we have

E2,1
2 = Ext2S(Tor

R
1 (S,N),M ′) = 0.

In the proof of Theorem 1.1, TorR2 (S,N) = 0. Similarly one can easily see that TorR3 (S,N) =

0. These facts imply

E1,2
2 = Ext1S(Tor

R
2 (S,N),M ′) = 0

and

E0,3
2 = HomS(Tor

R
3 (S,N),M ′) = 0.

Thus we have shown that

E3,0
2 = E2,1

2 = E1,2
2 = E0,3

2 = 0.

A routine verification shows that Ext3R(N,M ′) = 0.

Theorem 1.2. Let τ ∈ R-tors, σ = φ∗(τ) which is perfect. Assume that N is any

τ -torsion R-module, M is any τ -closed R-module. Then

Ext2R(N,M) ∼= Ext2R(N, xM).

Moreover, the isomorphism is induced by the multiplication of x.

Proof. For any τ -torsion R-module N , the exact sequence

0 −→ (0 : x)M −→ M −→ xM −→ 0 (1.6)

induces a long exact sequence

−→ Ext2R(N, (0 : x)) −→ Ext2R(N,M) −→ Ext2R(N, xM) −→ Ext3R(N, (0 : x)).

Since (0 : x) is τ -closed, we have

Ext2R(N, (0 : x)) = 0

by Theorem 1.1. By Lemma 1.3, Ext3R(N, (0 : x)) = 0, therefore

Ext2R(N,M) −→ Ext2R(N, xM)

is an isomorphism and it is not difficult to verify that the isomorphism is multiplication by

x.

Corollary 1.3. Let E be τ -torsionfree injective R-module. Then Ext2R(N, xE) = 0 for

every τ -torsion R-module N . Moreover, E/xE is a σ-closed S-module.

Proof. Ext2R(N, xE) = 0 is trivial. The short exact sequence

0 −→ xE −→ E −→ E/xE −→ 0 (1.7)

induces an exact sequence for any τ -torsion R-module N :

0 −→ Ext1R(N,E/xE) −→ Ext2R(N, xE) −→ 0.
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Then

Ext1R(N,E/xE) ∼= Ext2R(N,xE) = 0.

This means that E/xE is τ -injective. By Corollary 1.2, E/xE is τ -torsionfree. Therefore

E/xE is τ -closed, which implies that E/xE is σ-closed (Lemma 1.2).

Corollory 1.4. Let N and M be as in Theorem 1.2. Then for any natural number k,

Ext2R(N,M) ∼= Ext2R(N,xkM).

So far, we study the properties of the functor Ext2R(N,−) with Nτ -torsion. Now we turn

to the investigation of the functor Ext2R(N
′,−) with N ′σ-torsion (i.e., N ′ is a σ torsion

S′-module, but it is regarded as an R-module here). We have the following

Theorem 1.3. Assume τ, σ as in Theorem 1.1. Let N ′ be a σ-torsion S-module. Then

for any τ -closed R-module M ,

Ext2R(N
′,M) ∼= Ext1S(N

′,M/xM).

Proof. There is a spectral sequence of change of rings:

ExtpS(N
′,ExtqR(S,M)) =⇒p ExtnR(N

′,M), p+ q = n.

For n = 2,

E0,2
2 = HomS(N

′,Ext2R(S,M)).

Note that xR is projective and the following sequence is exact

0 −→ xR −→ R −→ S −→ 0. (1.8)

We have E0,2
2 = Ext2R(S,M) = 0. Furthermore,

E1,1
2 = Ext1S(N

′,Ext1R(S,M)).

The short exact sequence (1.8) gives the following exact sequence:

0 −→ HomR(S,M) −→ HomR(R,M) −→ HomR(xR,M) −→ Ext1R(S,M) −→ 0.

But we have natural isomorphisms

HomR(S,M) ∼= (0 : x)M ,

HomR(R,M) ∼= M,

HomR(xR,M) ∼= xM.

Therefore Ext1R(S,M) ∼= M/xM , which means

E1,1
2 = Ext1S(N

′,M/xM).

On the other hand,

E2,0
2 = Ext2S(N

′,HomR(S,M)) ∼= Ext2S(N
′, (0 : x)M ) = 0.

Thus

Ext2R(N
′,M) ∼= E1,1

r

for sufficient large r. We can calculate E1,1
r as follows

0 = E−1,2
2

d2

−→ E1,1
2

d2

−→ E3,0
2 ,
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where

E1,1
3 = Ext3S(N

′,HomR(S,M)) ∼= Ext3S(N
′, (0 : x)) = 0

(see the proof of Lemma 1.3). Thus E1,1
3 = Ker d2/Imd2 ∼= E1,1

2 . Similarly, E1,1
r

∼= E1,1
2 .

Thus we have

Ext2R(N
′,M) ∼= Ext1S(N

′,M/xM).

Corollary 1.5. Let N ′ be σ-torsion S-module. Then for any τ -closed R-module M ,

Ext2R(N
′,M) = 0 if and only if M/xM is τ -closed (or equivalently, σ-closed).

Proof. Lemma 1.3 shows that M/xM is τ -torsionfree. Then M/xM is σ-injective if and

only if Ext1S(N
′,M/xM) = 0 for any σ-torsion S-module N ′.

§2.

Lemma 2.1. Let τ ∈ R-tors, σ = φ∗(τ) which is perfect. Then for any S-module

M, Qσ(M) = Qτ (M).

Proof. This is an easy consequence of Lemma 1.2.

When τ is perfect, it is known that σ = φ∗(τ) is also perfect. For completeness, we give

a simple homological proof here.

Lemma 2.2. Let σ, τ be as above. If τ is perfect then σ is perfect.

Proof. It is sufficient to show that for any σ-torsion module N and any σ-closed module

M , Ext2S(N,M) = 0. By Grothendieck cohomology 5-exact sequence

0 −→ E1,0
2 −→ H1 −→ E0,1

2 −→ E2,0
2 −→ H2,

where H2 = Ext2R(N,M) = 0 since τ is perfect, we have

E2,0
2 = Ext2S(S ⊗R N,M) = Ext2S(N,M),

E0,1
2 = HomS(Tor

R
1 (S,N),M) = 0.

Hence Ext2S(N,M) = E2,0
2 = 0.

The inverse of Lemma 2.2 is not true in general. Here we give a counterexample which is

also a negative answer to a problem in [1] (p. 488).

Example. Let R = Z[x], the polynomial ring with integer cofficients. The element x

is neither a unit nor a zero divisor. S = R/xR ∼= Z. Assume that τ is a torsion theory

cogenerated by E(R) ⊕ E(R/xR), where E means injective hull. It is well known that

Qτ (R) = R and τ is the largest torsion theory for which R is τ -closed (see [4]). By [5], (2, x)

is a dense ideal of R. But (2, x)R ̸= R, which means τ is not a perfect torsion theory. Now

S = Z, so every torsion theory in S-tors is perfect. By Lemma 2.1, Qσ(M) = Qτ (M), the

condition of Proposition 47.16 in [1] is satisfied. But τ is not perfect.

Next we will study when each of two functors HomR(S,−) and S ⊗R − commutes with

localization functors.

Theorem 2.1. Let τ ∈ R-tors, σ = φ∗(τ) which is perfect. Then

QσHomR(S,M) ∼= HomR(S,Qτ (M))

for any τ -torsionfree R-module M .



No.1 Yao, M. S. HOMOLOGICAL PROPERTIES OF TORSION CLASSES 7

Proof. Let M be τ -torsionfree. Since Qτ (M) is closed, HomR(S,Qτ (M)) ∼= (0 : x)Qτ (M)

is τ - closed by Lemma 1.1. On the other hand,

Qσ(HomR(S,M)) = Qσ((0 : x)M ).

Hence

Qσ((0 : x)M ) ⊆ (0 : x)Qτ (M).

Furthermore, for any a ∈ (0 : x)Qτ (M), xa = 0 and there is a dense left ideal I of R such

that aI ⊆ M . Then aI ⊆ (0 : x)M , which implies that (0 : x)Qτ (M)/(0 : x)M is τ -torsion.

Therefore (0 : x)Qτ (M) ⊆ Qσ((0 : x)M ). Thus

QσHomR(S,M) ∼= HomR(S,Qτ (M)).

The proof is completed.

Let σ ∈ S-tors. According to [6], we may define a torsion theory φe(σ) ∈ R-tors as

follows. Let E0 be the injective S-module which cogenerates σ, E = E(E0), the R-injective

hull of E0 (regarding E0 as an R-module). Define φe(σ) to be the torsion theory in R-

tors which is cogenerated by E. Another torsion theory φg(σ) can be defined as follows:

the torsion class of φg(σ) is generated by the torsion class of σ (regarding each σ-torsion

S-module as R-module). We denote by Ψ the canonical ring homomorphism R → Qτ (R),

J(R) the Jacobson radical of R.

Lemma 2.3. For any σ ∈ S-tors, if τ ∈ R-tors and φ∗(τ) = σ, then

φg(σ) ≤ τ ≤ φe(σ).

Proof. Let Tσ be the σ-torsion class of S-modules. By the definition of φ∗, if we regard

every σ-torsion S-module as an R-module, then Tσ ⊆ Tτ . This means φg(σ) ≤ τ .

On the other hand, it is not difficult to see that φe(σ) is cogenerated by Fσ, the σ-

torsionfree class of S-modules. Nevertheless, φ is surjective, so every torsion theory in R-tors

is compatible with φ. Let SM be any σ-torsionfree S-module, then M is τ -torsionfree as an

R-module since φ∗(τ) = σ. Hence we have τ ≤ φe(σ).

Recall that φ∗ φ
g(σ) = φ∗ φ

e(σ) = σ (see [6]). Lemma 2.3 means that φg(σ) is the

smallest torsion theory τ in R-tors such that φ∗(τ) = σ while φe(σ) is the largest torsion

theory τ in R-tors such that φ∗(τ) = σ.

Theorem 2.2. Let τ be a torsion theory in R-tors which is perfect, σ = φ∗(τ). Then

(1) Qσ(S) ∼= Qτ (R)/xQτ (R);

(2) S ⊗R Qτ (R) ∼= Qσ(S ⊗R M) ∼= Qσ(S)⊗R M ;

(3) If Ψ(x) ∈ J(Qτ (R)), then there is only one τ ∈ R-tors such that σ = φ∗(τ). In other

words, φg(σ) = φe(σ) = τ .

Proof. 1. Since τ is perfect, Qτ is exact. Then the exact sequence

0 −→ xR −→ R −→ S −→ 0

yields an exact sequence

0 −→ Qτ (xR) −→ Qτ (R) −→ Qτ (S) −→ 0.

By Lemma 2.1, Qτ (S) = Qσ(S), so that Qσ(S) = Qτ (S) ∼= Qτ (R)/Qτ (xR). Now it is suffi-

cient to show that Qτ (xR) = xQτ (R). But the multiplication of x induces an isomorphism
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ρ : R → xR. Hence Qτ (ρ) is also an isomorphism from Qτ (R) → Qτ (xR). Moreover it is

easy to see that Qτ (ρ) is also a multiplication of x. Thus Qτ (xR) = xQτ (R).

2. By Lemma 2.1, Qσ(S ⊗M) = Qτ (S ⊗M), we need only to show

S ⊗Qτ (M) ∼= Qτ (S ⊗M) ∼= Qσ(S)⊗M. (2.1)

Since τ is perfect,

Qτ (M) = Qτ (R)⊗M,Qτ (S ⊗M) = Qτ (R)⊗ (S ⊗M). (2.2)

Since x is a central element,

S ⊗Qτ (R) = R/xR⊗Qτ (R) ∼= Qτ (R)/xQτ (R)

∼= Qτ (R)⊗R/xR = Qτ (R)⊗ S. (2.3)

Therefore

S ⊗Qτ (M) = S ⊗Qτ (R)⊗M

∼= Qτ (R)/xQτ (R)⊗M ∼= Qσ(S)⊗M, (2.4)

Qτ (R)⊗ (S ⊗M) ∼= (Qτ (R)⊗ S)⊗M)

∼= Qτ (R)/xQτ (R)⊗M = Qσ(S)⊗M. (2.5)

Combining (2.2), (2.3), (2.4), (2.5), we get (2.1).

3. Let x̄ = Ψ(x). Then x̄ ∈ J(Qτ (R)), the Jacobson radical of Qτ (R). First we show

that a left ideal I of R is τ -dense iff I +xR/xR is σ-dense in S. Clearly, if I is a dense ideal

of R, then I + xR/xR is σ dense since R/xR/I + xR/xR ∼= R/I + xR which is τ -torsion or

equivalently σ-torsion. Conversely, if I + xR/xR is dense in S, then I + xR is dense in R.

Therefore Qτ (I + xR) = Qτ (R). Since τ is perfect, Qτ (I) + Qτ (xR) = Qτ (R). However,

Qτ (xR) = xQτ (R), x̄ ∈ J(Qτ (R)). By Nakayama Lemma, Qτ (I) = Qτ (R). Hence I is a τ

dense left ideal of R.

Now we can prove that φe(σ) = τ . Let E0 be an injective S-module which cogenerates

σ. E = E(E0), the R-injective hull of E0. Let I be a φe(σ)-dense left ideal of R. Then

HomR(R/I,E) = 0. Since σ = φ∗ φ
e(σ) and I +xR/xR is σ-torsion, R/I +xR is τ -torsion.

Hence I + xR is a τ -dense left ideal of R. Thus φe(σ) ≤ τ . According to Lemma 2.3,

τ ≤ φe(σ). Therefore τ = φe(σ). Since φ∗ φ
g(σ) = σ, the last statement follows from the

fact φg(σ) = φe(σ).
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