
Chin. Ann. of Math.
15B: 1(1994),35-42.

A NEW LAPLACIAN COMPARISON THEOREM

AND THE ESTIMATE OF EIGENVALUES**

Ding Qing*

Abstract

This paper establishes a new Laplacian comparison theorem which is specially useful to
the manifolds of nonpositive curvature. It leads naturally to the corresponding heat kernel
comparison and eigenvalue comparison theorems. Furthermore, a lower estimate of L2-spectrum

of an n-dimensional non-compact complete Cartan-Hadamard manifold is given by (n− 1)k/4,
provided its Ricci curvature ≤ −(n− 1)k (k = const. ≥ 0).
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§1. Introduction

Let M be an n-dimensional Riemannian manifold. It is well known that Ranch, Hessian

and Laplacian comparison theorems on M are important and fundamental results which

have deep applications in Riemannian geometry. Laplacian comparison theorem holds by

assuming that the Ricci curvature is bounded below. Naturally, we want to know what

may happen if we replace the lower bound of Ricci curvature of M by upper bound of

its Ricci curvature. Motivated by this idea and eigenvalue problems, we will study this

interesting problem in this paper. The main result is Theorem 2.1 in section 2. This new

kind Laplacian comparison theorem allows us to compare the Laplacians between Cartan-

Hadamard manifolds, where a so-called Cartan-Hadamard manifold is a manifold of non-

positive curvature. There are lots of Riemannain manifolds which satisfy the assumptions in

our new comparison theorem. So this comparison theorem provides a new tool in studying

the geometry of those manifolds and we believe that the discovery of this new Laplacian

comparison theorem is interesting and useful.

As the applications of Theorem 2.1, in section 3 we will deduce a heat kernel comparison

theorem firstly. In contrast with the result obtained by Debiard, Gaveau and Mazet (see

[4]), we replace their assumptions of upper bound of sectional curvature by upper bound of

Ricci curvature, it may be regarded as a corresponding result to Cheeger and Yau’s (see [3])

in the case that Ric(M) is upper bounded. Secondly, we lead to an eigenvalue comparison

theorem, this is a corresponding result to Cheng’s (see [1]). For the further applications of

those comparison results, we give a lower estimate of L2-spectrum of non-compact complete
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Cartan-Hadamard manifold. Contrasting this estimate with Mckean’s (see [6]), we also

replace the assumption of upper bound of sectional curvature by upper bound of Ricci

curvature. In this sense, we generalize Mckean’s result.

§2. Comparison Theorem

The following new kind Laplacian comparison theorem between two n-dimensional Cartan-

Hadamard manifolds is the main result in this section.

Theorem 2.1. Let M , M̃ be two n-dimensional Riemannian manifolds,

γ : [0, b] → M and γ̃ : [0, b] → M̃

are normal geodesics. Let x = γ(0), x̃ = γ̃(0), ρ and ρ̃ be the distance functions from x,

x̃ in M , M̃ ; ∆ and ∆̃, Ric and R̃ic be the Laplacians, the Ricci curvatures of M and M̃

respectively. Suppose that

(1) For any t ∈ [0, b],Ric(γ̇, γ̇)(t) ≤ 1
n−1Ric(

˙̃γ, ˙̃γ)(t);

(2) M , M̃ are Cartan-Hadamard manifolds.

Then

∆ρ(γ(t)) ≥ 1

n− 1
∆̃ρ̃(γ̃(t)), ∀t ∈ (0, b]. (2.1)

We know that the essential point in proving Rauch, Hessian and Laplacian comparison

theorems is to compare two Jacobi fields which along the geodesic (e.g. see [8], §8). Since

the Jacobi fields are the solutions of Jacobi equation, those comparisonal properties must

be deduced from the equation directly. We would like to prove Theorem 2.1 exactly in this

way. Let us now do some preparations firstly.

Let gl(n−1,R) be the set of all (n−1)×(n−1) matrices, K = (kij) : [0, b) → gl(n−1,R)
be a smooth mapping satisfying KT = K, where KT denotes the adjoint matrix of K, and

A : [0, b) → gl(n− 1,R)

be the solution of the following equation system:{
Att +AK = 0,

A(0) = 0, At(0) = I (the identity).
(2.2)

Here t is the natural parameter of [0, b].

Similarly, let Ã : [0, b) → gl(n− 1,R) satisfy{
Ãtt + ÃK̃ = 0,

Ã(0) = 0, Ãt(0) = I,
(2.2’)

where K̃ : [0, b) → gl(n− 1,R) and K̃T = K̃.

Lemma 2.1.

(1) If A−1 exists in (0, b], then

(A−1At)
T = A−1A;

(2) If both A−1 and Ã−1 exist in (0, b] and K ≥ K̃, then

A−1At ≤ Ã−1Ãt.
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Here C ≥ D for symmetric matrices C,D means that for any (α1, · · · , αn−1), (β1, · · · ,
βn−1) ∈ Rn−1 satisfying

∑
αi =

∑
βi, we have

(α1, · · · , αn−1)C(α1, · · · , αn−1)
T ≥ (β1, · · · , βn−1)D(β1, · · · , βn−1)

T .

The proof of this lemma is referred to [8], pp.163-165.

Lemma 2.2. Suppose that both A−1 and Ã−1 exist in (0, b], A−1At and Ã−1Ãt are

positive definite, and trK ≤ 1
n−1 tr K̃. Then ∀t ∈ (0, b] we have

tr(A−1At) ≥
1

n− 1
tr(Ã−1Ãt). (2.3)

Proof. Because A and Ã are solutions of (2.2) and (2.2′), we get A, Ã ∈ C∞[0, b] from

the linearity of the equations. Noting the initial values of system (2.2), we have A(0) = 0,

At(0) = I, Att(0) = 0, Attt(0) = K(0). Therefore, when t → 0+, A ∼ tI, At ∼ I

and A−1 ∼ I/t − tK(0)/6. Similarly, when t → 0+, we also have Ã ∼ tI, Ãt ∼ I and

Ã−1 ∼ I/t− tK̃(0)/6. So we have

(n− 1)tr(A−1At)− tr(Ã−1Ãt) ∼
{ (n−2)(n−1)

t , when n ≥ 3;

0, when n = 2.

Thus, when n ≥ 3, there exists a small ϵ0 > 0 such that for t ∈ (0, ϵ0)

tr(A−1At) ≥
1

n− 1
tr(Ã−1Ãt). (2.4)

When n = 2, we let ϵ0 = 0. Summarily, when t ∈ (0, ϵ0), (2.4) holds and t = ϵ0,

(n− 1)tr(A−1At)− tr(Ã−1Ãt)|t=ϵ0 ≥ 0. (2.5)

Next, we prove that (2.4) holds in the whole interval (0, b]. For this purpose, we consider:

[(n− 1)A−1At − Ã−1Ãt)]t

=− (n− 1)A−1AtA
−1At + (n− 1)A−1Att + Ã−1ÃtÃ

−1Ãt − Ã−1Ãtt

=K̃ − (n− 1)K + Ã−1ÃtÃ
−1Ãt − (n− 1)A−1AtA

−1At.

Thus, we have

[tr((n− 1)A−1At − Ã−1Ãt)]t

=tr(K̃ − (n− 1)K) + tr(Ã−1ÃtÃ
−1Ãt)− (n− 1)tr(A−1AtA

−1At)

≥tr(Ã−1ÃtÃ
−1Ãt)− (n− 1)tr(A−1AtA

−1At).

(2.6)

Since Ã−1Ãt is a positive definite matrix, we have

tr(Ã−1ÃtÃ
−1Ãt) ≥

1

n− 1
[tr(Ã−1Ãt)]

2,

and A−1At is also a positive definite matrix, so

tr(A−1AtA
−1At) ≤ [tr(A−1At)]

2.

Let p(t) = tr(A−1At), q(t) = tr(Ã−1Ãt) and h(t) = (n − 1)p(t) − q(t). Thus, the above

inequality (2.6) can be rewritten by

ht(t) + h(t)[(n− 1)p(t) + q(t)] ≥ 0. (2.7)

Now, we come to treat the differential inequality (2.7) as follows. Multiply the two sides
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of (2.7) by a positive factor exp( 1
n−1

∫ t

ϵ0
[(n− 1)p(τ) + q(τ)]dτ) (t > ϵ0), we still have

{ht(t) +
1

n− 1
h(t)[(n− 1)p(t) + q(t)]} exp( 1

n− 1

∫ t

ϵ0

[(n− 1)p(τ) + q(τ)]dτ) ≥ 0

or

d

dt
{h(t) exp( 1

n− 1

∫ t

ϵ0

[(n− 1)p(τ) + q(τ)]dτ)} ≥ 0. (2.8)

Integrating the two sides of (2.8) over [ϵ0, t] (t > ϵ0), we have

h(t)exp(
1

n− 1

∫ t

ϵ0

[(n− 1)p(τ) + q(τ)]dτ)− h(ϵ0) ≥ 0

or

h(t) ≥ h(ϵ0)exp(−
1

n− 1

∫ t

ϵ0

[(n− 1)p(τ) + q(τ)]dτ). (2.9)

But, we know h(ϵ0) ≥ 0 from (2.5). Thus, (2.9) implies that when t > ϵ0

h(t) = (n− 1)p(t)− q(t) ≥ 0,

i.e.,

(n− 1)tr(A−1At)− tr(Ã−1Ãt) ≥ 0. (2.10)

Combining (2.4) with (2.10), we get the desired inequality:

tr(A−1At) ≥
1

n− 1
tr(Ã−1Ãt), ∀t ∈ (0, b].

Proof of Theorem 2.1. We choose a parallel normalized frame fields {e1(t), · · · , en(t)}
along γ in M such that en(t) = γ̇(t). Let J1(t), · · · , Jn−1(t) be normal Jacobi fields along γ

such that

Ji(0) = 0, J̇i(0) = ei(0), i = 1, · · · , n− 1,

and write {Ji(t)} by 
J1(t)
.
.
.

Jn−1(t)

 = A(t)


e1(t)
.
.
.

en−1(t)

, (2.11)

where A : [0, b] → gl(n− 1,R). Thus the Jacobi field equation becomes{
Att +AK = 0,

A(0) = 0, A(0) = I,
(2.12)

where K = (kij)1≤i,j≤n−1, kij = ⟨R(γ̇, ei)γ̇, ej⟩. Obviously, KT = K.

Similarly, we choose a parallel normalized frame fields {ẽ1(t), · · · , ẽn(t)} along γ̃ in M̃

such that ẽn(t) = ˙̃γ(t), and let J̃i(t), i = 1, · · · , n− 1, be normal Jacobi fields along γ̃, s.t.

J̃i(0) = 0,
˙̃
J i(0) = ẽi(0), i = 1, · · · , n− 1.

We also write {J̃i(t)} by 
J̃1(t)
.
.
.

J̃n−1(t)

 = Ã(t)


ẽ1(t)
.
.
.

ẽn−1(t)

. (2.11’)
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Then Ã : [o, b] → gl(n− 1,R) satisfies{
Ãtt + ÃK̃ = 0

Ã(0) = 0, Ãt(0) = I,
(2.12’)

where K̃ = (k̃ij), k̃ij = ⟨R̃( ˙̃γ, ẽi) ˙̃γ, ẽj⟩ and K̃T = K̃.

For applying Lemma 2.2, we must check if the conditions in Lemma 2.2 are satisfied.

Firstly, we prove that A−1 and Ã−1 exist in (0, b]. With the same argument, one can get Ã−1

exists as we showA−1 exists as following: In fact, we want to prove that ∀t ∈ (0, b], |A(t)| ̸= 0.

If this does not hold, then there is a t0 ∈ (0, b] such that |A(t0)| = 0. From (2.11), we know

that J1(t0), · · · , Jn−1(t0) are linear dependent. Thus, there are n−1 constants a1, · · · , an−1

not all zero such that
n−1∑
1

aiJi(t0) = 0. Let U(t) =
n−1∑
i=1

aiJi(t). Obviously, U(t) ̸≡ 0 and

U(t) is also a normal Jacobi field along γ for Jacobi equation is linear. But U(0) = 0 and

U(t0) = 0, so t0 is a conjugate point on γ. It contradicts the fact that there is no conjugate

point on γ, for M is a Cartan-Hadamard manifold. Hence A−1 exists in (0, b]. Next, from

Riem(M) ≤ 0 and Riem(M̃) ≤ 0, we can see that A−1At and Ã−1Ãt are positive definite

matrices from Lemma 2.1. Finally, it is easy to get trK ≤ 1
n−1

trK̃, from condition (1).

Therefore, by Lemma 2.2, we have

tr(A−1At) ≥
1

n− 1
tr(Ã−1Ãt), ∀t ∈ (0, b].

Calculating directly ( see [8], §8), we have

∆ρ(γ(t)) = tr(A−1At),

∆̃ρ̃(γ̃(t)) = tr(Ã−1Ãt).

Hence, we get the desired inequality:

∆ρ(γ(t)) ≥ 1

n− 1
∆̃ρ̃(γ̃(t)), ∀t ∈ (0, b].

Remark 2.1. In contrast to the well known Laplacian comparison theorem, all the

inequalities are inverse in this new Laplacian comparison theorem and now it has two new

characters: i) either M or M̃ needs not to be a space form; ii) there is a constant factor

in comparison inequality and this factor can not be removed essentially even when M̃ is a

space form.

The following Corollary 2.1 was proved sketchily in [5], here it is a direct corollary of

Theorem 2.1.

Corollary 2.1. The assumptions are the same as in Theorem 2.1 except that M̃ is a

space form with constant curvature −k (k ≥ 0), and Ric(M) ≤ −k. Then

∆ρ ≥ 1

n− 1
∆̃ρ̃.

Remark 2.2. There are lots of Cartan-Hadamard manifolds with Ricci curvature ≤ −k

(k = const. > 0) in geometry, which have theoretical and practical sense. For example, from

the theory in several complex analysis, it is well known that a classical domain Ω endowed

with Bergmann metric satisfies Riem(Ω) ≤ 0 and Ric(Ω) = −1 (see [9]). So our theorem is

very useful for those manifolds.
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§3. The Lower Estimate of L2
-Spectrum

Let M be an n-dimensional Riemannian manifold. We define

λ(M) = inf
ϕ∈C∞

0 (M)

∫
M

|∇ϕ|2∫
M

|ϕ|2
.

Then λ(M) ≥ 0 is called the supremum of L2-spectrum of M .

Proposition 3.1.[1] Assume that {Mi} are exhaustion compact domains of M . Then

λ(M) = lim
i→∞

λ1(Mi), (3.1)

where λ1(Mi) is the first Dirichlet eigenvalue of Mi.

For a simply connected complete noncompact Riemannian manifold M , an important

problem is (see [7], pp.117-118): In what weakly conditions does there exist λ(M)? We try

to establish a lower estimate of λ(M) by using the upper bound of its Ricci curvature as

an application of Theorem 2.1. However, we first deduce a heat kernel comparison theorem.

The following statement is, no more than another way of expressing Corollary 2.1, the key

for us to establish the heat kernel comparison theorem.

Theorem 3.2. Assume that M is an n-dimensional Cartan-Hadamard manifold with

Ric(M) ≤ −(n−1)k (k ≥ 0). Let M̃ be an n−dimensional space form of constant curvature

− k
n−1 . Then

∆ρ ≥ ∆̃ρ̃. (3.2)

Proof. Let M1 be an n-dimensional space form of curvature −(n − 1)k. Then ∆ρ ≥
1

n−1∆1ρ1 from Corollary 2.1. One may note that there is a scaling between M̃ and M1, i.e.,

g̃ = (n − 1)g1, where g̃, g1 denote the metrics on M̃,M1 respectively. Calculating directly,

we get

∆̃ρ̃ =
1

n− 1
∆1ρ1.

This proves the above theorem.

Let B(x0, r) be an open geodesic ball in M , Vn(k, r) an open geodesic ball in the space

form M̃ . The heat kernel on B(x0, r) (with boundary condition) is denoted by H(x.y; t).

The heat kernel on Vn(k, r) (with the same boundary condition) is denoted by E(x, y; t) =

E(ρ(x, y); t), it may be regarded as a function on B(x0, r). In 1976, Debiard, Gaveau

and Mazet (see [4]) established the following upper estimate of H(x, y; t) by using Hessian

comparison theorem:

H(x, y; t) ≤ E1(ρ(x, y); t),

provided the sectional curvature of M ≤ k (k ≤ 0). In 1981, Cheeger and Yau (see [3]) ob-

tained the following lower estimate by using the well known Laplacian comparison theorem:

H(x, y; t) ≥ E1(ρ(x, y); t),

provided the Ricci curvature of M ≥ (n − 1)k. Here E1(ρ(x, y); t) is the heat kernel on

Vn(−(n− 1)k, r), and the boundary conditions are Dirichlet or Neumann.

Now, we can prove a heat kernel comparison theorem as follows.

Theorem 3.1. Let M be a Cartan-Hadamard manifold of dimension n with Ric(M) ≤
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−(n− 1)k (k ≥ 0). Then

H(x, y; t) ≤ E(ρ(x, y); t), (3.3)

where the boundary condition is either Dirichlet or Neumann.

Proof. Following the ideas used in [3], we have

H(x, y; t)− E(ρ(x, y); t)

=

∫ t

0

∫
B(x0,r)

[E(ρ(x, z); t− s)H(z, y; s)]sdzds

=

∫ t

0

∫
B(x0,r)

[E(ρ(x, z); t− s)]sH(z, y; s)dzds

+

∫ t

0

∫
B(x0,r)

E(ρ(x, z); t− s)[H(z, y; s)]sdzds

=−
∫ t

0

∫
B(x0,r)

∆̃E(ρ(x, z); t− s)H(z, y; s)dzds

+

∫ t

0

∫
B(x0,r)

E(ρ(x, z); t− s)∆H(z, y; s)dzds

=

∫ t

0

∫
B(x0,r)

[(∆− ∆̃)E(ρ(x, z); t− s)]H(z, y; s)dzds,

(3.4)

where the last equality is obtained by using Green formula and the boundary conditions.

Choose a normalized geodesic coordinates (ρ, ξ) at x, ξ ∈ Sn−1
0 . Then

∆̃ =
∂2

∂ρ2
+ m̃(ρ)

∂

∂ρ
, m̃(ρ) =

d log
√
g̃

dρ
;

∆ =
∂2

∂ρ2
+m(ρ, ξ)

∂

dρ
, m(ρ, ξ) =

d log
√
g

dρ
,

where g̃, g are metrics on M̃, M respectively. Because of (3.2), similar to [3], it is easy to

carry out that

m(ρ, ξ) ≥ m̃(ρ).

From the Lemmas 1.1 and 2.3 in [3], we have H(x.y; t) > 0 and ∂
∂ρE(ρ; t) < 0. Thus

m(ρ, ξ)
∂E

∂ρ
≤ m̃(ρ)

∂E

∂ρ
or

(∆− ∆̃)E(ρ; t− s) ≤ 0.

Substituting this into (3.4), we obtain (3.3).

It is not difficult to carry out eigenvalue comparison theorem from the above heat kernel

comparison.

Theorem 3.2. Let M be a Cartan-Hadamard manifold of dimension n with Ric(M) ≤
−(n− 1)k (k ≥ 0). Then, for the first eigenvalue with Dirichlet condition, we have

λ1(B(x0, r)) ≥ λ1(Vn(k, r)).

Proof. With the same argument as in [7], pp. 115-116, we can obtain the above result.
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Remark 3.1. Cheng in [1] showed that λ1(B(x0, r)) ≤ λ1(Vn(−(n − 1)k, r)), provided

Ric(M) ≥ (n−1)k. Theorem 3.2 may be regarded as a corresponding result in case Ric(M) ≤
−(n− 1)k (k ≥ 0).

Return to the problem discussed at the beginning of this section. Now we have

Theorem 3.3. Let M be an n-dimensional non-compact complete (simple connected)

Cartan-Hadamard manifold, and Ric(M) ≤ −(n− 1)k (k ≥ 0). Then

λ(M) ≥ n− 1

4
k.

Proof. Since M is complete, we see that B(x0, R), R = 1, 2, · · · , are exhausting compact

domains of M , x0 ∈ M . From (3.1), we know

λ(M) = lim
R→∞

λ1(B(x0, R)),

but we have

λ1(B(x0, R)) ≥ λ1(Vn(k,R))

by Theorem 3.2. From [2], pp. 95-96, we get

λ1(Vn(k,R)) ≥ (n− 1)2

4

k

n− 1
=

n− 1

4
k.

Therefore, λ(M) ≥ n−1
4 k.

Remark 3.2. H. P. Mckean[6] obtained: If Riem(M) ≤ −k (k ≥ 0), then

λ(M) ≥ (n− 1)2

4
k.

For the existence of a lower bound of L2-spectrum, Theorem 3.3 is more general than that

of Mckean’s, e.g., for a classical domain Ω in Remark 2.2 we only get λ(Ω) ≥ 0 by Mckean’s

result, but we have λ(Ω) ≥ 1
4 by our Theorem 3.3. And the following corollary is a startpoint

for us to discuss the existence of Martin boundary of manifolds.

Corollary 3.1. Let M be a complete Cartan-Hadamard manifold with Ric(M) ≤ −k

(k = const. > 0). Then there exist gloabl Green functions on M .
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