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Abstract

The initial-Dirichlet and initial-Neumann problems in Lipschitz cylinders are studied for

the general second order parabolic equations of constant coefficients with squarely integrable
boundary data. By layer potential method developed in the past decade, the author proves
that the double layer potential and the single layer potential operators are invertible and hence
obtains the solvability of the initial boundary value problems. Also, the solutions can be

represented by these operators.
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§1. Introduction

Boundary value problems for partial differential equations and systems on nonsmooth

domains have attracted attentions of many mathematicians in recent years. Based on

Calderon’s theorem on the L2-continuity of the Cauchy integral on Lipschitz curves which

was finally proven by the authors of [1], one applied the classical layer potential method

to the investigation of boundary value preblems of some partial differential equations on

Lipschitz domains. The main difficulty in solving these problems is that the layer poten-

tial operators are no longer Fredholm operators and hence the classical method in solving

the integral equation of Volterra type can not be applied here. In 1983, G. Verchota[2]

studied the Laplace equation by utilizing Nečas-Rellich integral identity[3]. Afterwards,

Dahlberg, Fabes, Kenig and Verchota studied the systems of elastostatics and the Stokes

systems in [4,5]. By adopting a similar idea, R. Brown studied the heat equation in Lip-

schitz cylinders[6,7] and Z. Shen[8] solved some boundary value problems for parabolic Láme

system and a nonstationary linearized system of Navier-Stokes equation. Some other works

can be found in [9–12] and the related papers.

In this paper, we shall study the general parabolic equations in Lipschitz cylinders. We

shall prove the existence of solutions for the initial boundary value problem and show that

these solutions can be represented by layer potentials. We also show that the solution of the

initial-Dirichlet problem with boundary data having first spatial derivatives and 1/2 order

time derivative in L2 can be represented by a single layer potential and hence the nontan-

gential maximum functions of the first spatial derivatives and 1/2 order time derivative of

the solution exist and are squarely integrable.
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The outline of this paper is as follows.

We give some brief definitions and notations in the first section. In Section 2, we will

construct the layer potentials for parabolic equations and state some basic properties of these

potentials. Section 3 contains some fundamental estimates and the invertibility results for

a double layer potential operator constructed in Section 2. The invertibility of the single

layer potential operator will be proven in Section 4, and the solvability and uniquess results

for the initial-boundary value problems will be stated and proven in Section 5.

§1. Definitions and Notations

We will use some well-known notations and definitions without explanation.

Let Ω be a bounded connected open set of Rn, we say that Ω is a Lipschitz domain if for

each point Q ∈ ∂Ω, the boundary of Ω, there is a system of coordinates of Rn, isometric

with the usual coordinate system and a sphere Bδ(Q) with center Q and radius δ > 0 such

that relative to this coordinate system Q is the origin and

Ω ∩Bδ(Q) = {(x, t) : x ∈ Rn−1, t > ϕ(x)} ∩Bδ(Q),

where ϕ is a Lipschitz continuous function on Rn−1 and ϕ(0) = 0. We use ST = ∂Ω× (0, T )

to denote the lateral boundary of the cylinder ΩT = Ω × (0, T ). We denote Ω = Ω+ and

Rn \Ω = Ω−. We denote by u∗ the nontangential maximal function of u on ∂Ω and denote

by u+ and u− the nontangential limits of u on the boundary of the domain from the inside

and the outside of Ω respectively. We write Lp
1(∂Ω) as the space of functions in Lp with

first derivatives in Lp and write Lp

1, 12
(ST ) as the space of functions in Lp with first spatial

derivatives and 1/2 time derivative in Lp. The details of these definitions can be found in

[2, 8].

Let f ∈ C∞(−∞, T ) and f(t) = 0 for t < 0. We use Iσ(f) to denote the fractional

integral of f and define the fractional derivatives as Dσ
t (f)(t) = DtI1−σ(f)(t), 0 < σ < 1.

The properites of Iσ and Dσ
t can be found in [8].

§2. Layer Potentials

We study the general parabolic equation

∂u

∂t
− aij

∂2u

∂xi∂xj
= 0 (2.1)

with constant coefficients aij satisfying aij = aji and

aijξiξj ≥ µ|ξ|2

for any ξ ∈ Rn. We always use the summation convention on repeated indices.

It is well-known (e.g. see [13]) that the fundamental solution of this equation has the

form

Γ(x, t) = ct−n/2exp{−(aijxixj)/4t},

where aijs are the entries of the inverse of the matrix (aij)n×n.

We shall study the solution of (2.1) with the initial-Dirichlet boundary data

u
∣∣
ST

= g, u
∣∣
t=0

= 0 (2.2)
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or with the initial-Neumann boundary data

∂u

∂ν

def
= aijni

∂u

∂xj
= g, u

∣∣
t=0

= 0 (2.3)

where N(Q) = (n1(Q), · · · , nn(Q)) is the outward unit normal to ∂Ω at Q.

We shall investigate the solution of above problems in the case when g is squarely inte-

grable in ST . As in the classical cases, we define the single layer potential of above parabolic

equation as

Sf(x, t) =

∫ t

0

∫
∂Ω

Γ(x− P, t− τ)f(P, τ) dσP dτ

and the double layer potential as

Df(x, t) =

∫ t

0

∫
∂Ω

aijni(P )
∂

∂xj
Γ(x− P, t− τ)f(P, τ) dσP dτ.

It is clear that for any integrable function f , both Sf(x, t) and Df(x, t) are the solutions

of (2.1) with zero initial values. We shall prove that the solution for (2.1), (2.2) and for

(2.1), (2.3) can be represented by either Sf or Df for some f in L2(ST ). For this purpose,

we must study the behavior of the trace of above operators. We define

K̃f(Q, t) =p.v

∫ t

0

∫
∂Ω

aijni(P )
∂

∂xj
Γ(Q− P, t− τ)f(P, τ) dσP dτ

= lim
ϵ→0

∫ t−ϵ

0

∫
∂Ω

aijni(P )
∂

∂xj
Γ(Q− P, t− τ)f(P, τ) dσP dτ

and

Kf(Q, t) = p.v

∫ t

0

∫
∂Ω

aijni(Q)
∂

∂xj
Γ(Q− P, t− τ)f(P, τ) dσP dτ.

For simplicity, we will write ∥u∥ as the L2(ST ) norm of the function u and write ∥u∥∂ as

the L2(∂Ω) norm of u. In general, we write ∥ · ∥X as the norm in the Banach space X.

The proof of the following theorem is standard by referring to [7, 8, 12], we omit the

details.

Theorem 2.1. The singular integral operators K and K̃ defined as above are bounded

operators in Lp(ST ) and the restriction of S on the boundary of the domain is a bounded

mapping from Lp(ST ) to L
p
1,1/2(ST ) for any p > 1 and

i) ∥(∇Sf)∗∥p + ∥(D
1
2
t Sf)

∗∥p ≤ C∥f∥p;
ii) ∥(Df)∗∥p ≤ C∥f∥p;
iii) (Df)± = (± 1

2 + K̃)f ;

iv)

(
∂

∂v
Sf

)±

=
(
± 1

2 +K
)
f ;

v)
(
D

1
2
t Sf

)+
=
(
D

1
2
t Sf

)−
,

(∇TSf)
+
= (∇TSf)

−
, (Sf)+ = (Sf)−,

where C is independent of f , ∥ · ∥p is the Lp(ST ) norm and ∇Tu is the tangential derivative

of u, i.e.,

∇Tu = ∇u− ⟨∇u,N⟩N,

where ⟨ , ⟩ denotes the usual inner product in Rn.
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As in [6,8], we consider the equation

akj
∂2u

∂xk∂xj
= iτu (2.4)

for each τ ∈ R. It is easy to see that Γ̂(x, τ) =
∫∞
0
e−itτΓ(x, t) dt is a fundamental solution

of the equation (2.4). Define, for h ∈ L2(∂Ω),

uτ (x) =

∫
∂Ω

Γ̂(x−Q, τ)h(Q) dσQ. (2.5)

Then uτ (x) satisfies (2.1) for x in Rn \ ∂Ω. We have

Lemma 2.1. Let h ∈ L2(∂Ω), uτ (x) be defined above. Then

i) ∥(∇uτ )∗∥∂ ≤ C∥h∥∂ ;
ii) (∇Tuτ )

+ = (∇Tuτ )
−, u+τ = u−τ a.e on ∂Ω;

iii)

(
∂uτ
∂ν

)±

(P ) =
(
±1

2 + K̂(τ)
)
h(P ),

where K̂ is the singular integral operator bounded in L2(∂Ω) with kernal

K̂(P,Q, τ) = akjnk
∂

∂xj
Γ̂(x−Q, τ)

∣∣
x=P

and ∣∣∣K̂(P,Q, τ1)− K̂(P,Q, τ2)
∣∣∣ ≤ C|τ1 − τ2|

|P −Q|n−3

with C independent of τ1, τ2, P,Q.

Proof. In the case of τ = 0, Γ̂(x, 0) is a fundamental solution of equation akj
∂2u

∂xk∂xj
= 0.

i)–iii) follow from the general results in [12] by using Calderon’s Theorem[1]. For τ ̸= 0,

these results follow from the case when τ = 0 and a standard proof as in [8].

§3. Invertibility of Double Layer Potentials

To study the initial boundary value problems stated in Section 2, we need the so-called

Rellich type inequalities. We shall establish these inequalities by using a revision of Nečas-

Rellich integral identity[3] and some estimates for the solutions of (2.4).

Suppose that u = uτ is the function defined by (2.5). Then∫
∂Ω

(
∂u

∂ν

)±

ūdσ = ±
∫
Ω±

(akj
∂

∂xk
ū
∂

∂xj
u+ iτ |u|2)dx. (3.1)

By checking the real part and the image part and using the ellipticity condition of the

equation, we have, for any complex valued C1 function u,

akj
∂u

∂xk

∂ū

∂xj
≥ µ|∇u|2.

Furthermore, for any Lipschitz continuous vector field h, we have

∂

∂xk

[
(hkasj − hsakj − hjask)

∂u

∂xs
· ∂ū
∂xj

]
=bsj

∂u

∂xs
· ∂ū
∂xj

+ 2τ Im(hj
∂ū

∂xj
· u)

(3.2)
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where bsj = ∂
∂xk

(hkasj − hsakj − hjask) with ∥bsj∥L∞ ≤ C < ∞. Integrating both sides of

(3.2) over Ω± and using the Divergence Theorem, we have∫
∂Ω

nk(hkasj − hsakj − hjask)
∂u±

∂xs
· ∂ū

±

∂xj
dσ

=±
∫
Ω±

(
bsj

∂u

∂xs
· ∂ū
∂xj

+ 2τ Im(hj
∂ū

∂xj
· u)
)
dx.

(3.3)

Analogus to the method used in [8], we need the following lemmas:

Lemma 3.1. Let u be the function defined in (2.5). Then∫
Ω±

(|∇u|2 + |τ ||u|2) dx ≤ C

∫
∂Ω

|u|
∣∣∂u±
∂ν

∣∣ dσ
and ∫

Ω±

|τ ||∇u||u| dx ≤ C

∫
∂Ω

|τ | 12 |u|
∣∣∂u±
∂ν

∣∣ dσ.
Proof. A consequence of (3.1) and the Cauchy inequality.

Lemma 3.2. ∫
∂Ω

|u|2dσ ≤ C

∫
Ω±

(|u|2 + |u||∇u|)dx.

Proof. An easy application of the Divergence Theorem.

Lemma 3.3.

i) ∫
∂Ω

|∇u±|2 dσ ≤ C

∫
∂Ω

(
|∇Tu|2 + |τ ||u|2 + |u|2

)
dσ

and

ii) ∫
∂Ω

(|∇u±|2 + |τ ||u|2) dσ ≤ C

∫
∂Ω

(∣∣∂u±
∂ν

∣∣+ |u|2
)
dσ.

Proof. It is easy to prove[12] that for any Lipschitz domain Ω we can find a vector field

h such that ⟨h(P ), N(P )⟩ ≥ C > 0 with C independent of P ∈ ∂Ω. By (3.3)∫
∂Ω

asjnkhk
∂u±

∂xs
· ∂ū

±

∂xj
dσ

=

∫
∂Ω

[
(hkasj − hsakj)nk

∂u±

∂xs

]
∂ū±

∂xj
dσ −

∫
∂Ω

[
(hjask − hkasj)nk

∂ū±

∂xj

]
∂u±

∂xs
dσ

−
∫
Ω±

[
bsj

∂u

∂xs
· ∂ū
∂xj

+ 2τ Im

(
hj ·

∂ū

∂xj
· u
)]

dx.

(3.4)

For fixed j, the vector with (hkasj − hsakj)nk as the sth entry is orthogonal to the nor-

mal. Hence, the first two terms on the right hand side of (3.4) can be controlled by

C
∫
∂Ω

|∇u±||∇Tu| dσ with C independent of u and τ . By Lemma 3.1,∣∣∣∣∣
∫
Ω±

[
bsj

∂u

∂xs

∂ū

∂xj
+ 2τ Im(hj

∂ū

∂xj
u)

]
dx

∣∣∣∣∣ ≤ C

∫
∂Ω

(
|u|
∣∣∣∣∂u±∂ν

∣∣∣∣+ |τ | 12 |u|
∣∣∣∣∂u±∂ν

∣∣∣∣) dσ. (3.5)

By the ellipticity and the choice of h, we know from (3.4) and (3.5) that∫
∂Ω

|∇u±|2dσ ≤ C

∫
∂Ω

(
|∇Tu||∇u±|+ |u|

∣∣∣∣∂u±∂ν
∣∣∣∣+ |τ | 12 |u|

∣∣∂u±
∂ν

∣∣) dσ.
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Part i) follows from the inequality ab ≤ 1
ϵa

2 + ϵb2 with suitable choice of ϵ.

An easy computation and (2.4) yield∫
∂Ω

⟨N,h⟩asj
∂u±

∂xs
· ∂ū

±

∂xj
dσ

=2Re

∫
Ω±

hk

[
∂

∂xs

(
asj

∂u

∂xk
· ∂ū
∂xj

)
− iτu

∂u

∂xk

]
dx+

∫
Ω±

(divh)asj
∂u

∂xs
· ∂ū
∂xj

dx.

(3.6)

By Lemma 3.1, the second and the third terms of (3.6) can be controlled by∫
∂Ω

(
|∂u

±

∂ν
|2 + |u|2 + |τ | 12 |u|

∣∣∂u±
∂ν

∣∣) dσ.

Using Lemma 3.1 again, we get∣∣ ∫
Ω±

hkasj
∂

∂xs

(
∂u

∂xk
· ∂ū
∂xj

)
dx
∣∣ ≤ C

∫
∂Ω

(∣∣∂u±
∂ν

∣∣|∇u|+ |u|
∣∣∂u±
∂ν

∣∣) dσ. (3.7)

The second part of Lemma 3.3 follows easily.

Lemma 3.4. The operator ±1
2 + K̂(τ) defined in Lemma 2.1 is invertible from L2(∂Ω)

to L2(∂Ω) and for τ ̸= 0,

∥f∥∂ ≤ C

(
1 +

1

|τ |

)
∥
(
±1

2
+ K̂(τ)

)
f∥∂

for f ∈ L2(∂Ω) with C independent of h and τ .

Proof. For τ ̸= 0, let u = uτ be defined as in (2.5). Then by Lemmas 3.1 and 3.2,∫
∂Ω

|u|2dσ ≤ C

∫
Ω

(|u|2 + |∇u|2) dx ≤ C(1 +
1

|τ |
)

∫
∂Ω

|u|
∣∣∂u+
∂ν

∣∣dσ.
By Lemma 3.3 ∫

∂Ω

∣∣∂u−
∂ν

∣∣ dσ ≤C
∫
∂Ω

(|∇Tu|2 + |τ ||u|2 + |u|2) dσ

≤C
∫
∂Ω

(∣∣∂u+
∂ν

∣∣2 + |u|2
)
dσ

≤C
(
1 +

1

|τ |

)2 ∫
∂Ω

∣∣∂u+
∂ν

∣∣2dσ.
Hence, by the jump relation in Lemma 2.1 iii),

∥f∥∂ ≤ ∥∂u
+

∂ν
∥∂ + ∥∂u

−

∂ν
∥∂ ≤ C

(
1 +

1

|τ |

)
∥
(
1

2
+ K̂(τ)

)
f∥∂ . (3.8)

Thus, for τ ̸= 0, 1
2 +K̂(τ): L2(∂Ω) → L2(∂Ω) is one to one with closed range in L2(∂Ω). To

prove the invertibility, it remains to prove that the range of 1
2 + K̂(τ) is dense in L2(∂Ω).

If Ω is a smooth domain, by Lemma 2.1 iii), it is obvious that K̂(τ) − K̂(0) is compact

on L2(∂Ω). Notice that(
1

2
+ K̂(τ)

)
−
(
1

2
+ K̂(τ)

)∗

=
(
K̂(τ)− K̂(0)

)
−
(
K̂(τ)− K̂∗(0)

)
+
(
K̂(τ)− K̂(0)

)∗
.

All the three terms above are compact by the results in [13]. Hence, by Lemma 2.3 in

[5], 1
2 + K̂(τ) is a Fredholm operator with index 0. The invertibility follows. For general
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Lipschitz domain, the results follow from (3.8) and a standard approximation scheme as in

[2]. The invertibility of −1
2 + K̂(τ) may be proven similarily.

Theorem 3.1. The operator ± 1
2 +K : L2(ST ) → L2(ST ) is invertible.

Proof. Again, we only prove the theorem for 1
2 + K. Suppose f ∈ L2(ST ) such that

( 12 +K)f = 0. Let u(x, t) = Sf(x, t). Then (∂u∂ν )
+ = 0 by Theorem 2.1. Hence

±
∫ t

0

∫
∂Ω

u

(
∂u

∂ν

)±

dσdt =

∫ t

0

∫
Ω±

(
asj

∂u

∂xs
· ∂u
∂xj

+
∂u

∂t
u

)
dxdt

≥
∫ t

0

∫
Ω±

µ|∇u|2dxdt+ 1

2

∫
Ω±

|u(t)|2 dx.
(3.9)

Hence u = 0 in ΩT . Therefore u
∣∣
ST

= 0. Again by (3.9) u = 0 in Ω− × (0, T ). By the

jump relation in Theorem 2.1, this implies that f = 0 on ST . Thus,
1
2 +K is one to one in

L2(ST ).

As in [8], let g ∈ L2(ST ). We extend g to ∂Ω×R by letting

h(P, t) =


g(P, t), 0 < t < T,

−g(P, t), T < t < 2T,

0, elsewhere,

then h ∈ L2(∂Ω×R)
∩
L1(∂Ω×R). Let ψ(P, τ) be the partial Fourier transform of h,

ψ(P, τ) =

∫ ∞

0

e−itτh(P, t)dt.

Then ψ(P, 0) = 0 and ψ(P, τ) ∈ L2(∂Ω) for each τ ∈ R. By Parseval’s Theorem

∥ψ∥L2(∂Ω×R) = C∥h∥L2(∂Ω×R) ≤ C∥g∥.

Since 1
2 + K̂(τ) is invertible on L2(∂Ω), there exists ϕ(P, τ) ∈ L2(∂Ω) such that(

1

2
+ K̂(τ)

)
ϕ(P, τ) = ψ(P, τ)

for τ ̸= 0. If τ = 0, we may take ϕ(P, 0) = 0 so that the above equality still holds. It is easy

to check that ∥K̂(τ1) − K̂(τ2)∥ ≤ C|τ1 − τ2| by Lemma 2.1 and that ϕ(P, τ) is measurable

on ∂Ω×R. By Lemma 3.4,∫
∂Ω

|ϕ(P, τ)|2dσP ≤ C

(
1 +

1

|τ |2

)∫
∂Ω

|ψ(P, τ)|2dσP .

An easy computation shows that ϕ ∈ L2(∂Ω×R) and ∥ϕ∥ ≤ C∥g∥.
Let f ∈ L2(∂Ω × R) such that its partial Fourier transform is ϕ. Then for a.e. (P, t) ∈

∂Ω×R,

h(P, t) =
1

2
f(P, t) + p.v

∫ t

−∞

∫
∂Ω

akjnk(P )
∂

∂xj
Γ(P −Q, t− τ)f(Q, τ) dσQdτ.

Since h(P, t) = 0 for t < 0, an argument similar to that in proving that 1
2 +K is one to one

shows that f(P, t) = 0 for t < 0. Hence for a.e. (P, t) ∈ ST

g(P, t) =
1

2
f(P, t) + p.v

∫ t

0

∫
∂Ω

akjnk(P )
∂

∂xj
Γ(P −Q, t− τ)f(Q, τ) dσQdτ.

This proves that 1
2 +K is onto and hence invertible. The proof is complete.
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§4. Invertibility of Single Layer Potential

As in [14], the invertibility of the single layer potential operator gives regularity results for

the solution of the initial Dirichlet problem and also guarantees the existence of a Green’s

function with better properties than what we obtained for the solution of the Dirichlet

problem in the class of L2(ST ). We will state these results in next section. The main result

in this section is

Theorem 4.1. The single layer potential operator defined in Section 2 is invertible from

L2(ST ) to L
2
1, 12

(ST ).

The following lemmas will be needed in proving this theorem, Lemma 4.1 is a consequence

of (3.9) and the proof of Lemma 4.2 can be found in [6].

Lemma 4.1. Let u = Sf , for f ∈ L2(ST ). Then∫ T

0

∫
Ω±

∣∣∇u∣∣2dxdt ≤ C∥u∥∥∂u
±

∂ν
∥.

Lemma 4.2. Let f , g ∈ C∞(−∞, T ) and f(t) = g(t) = 0 for t < 0. Then

|
∫ T

0

D
1
4
t (f)gdt| ≤ C

(∫ T

0

|f |2dt

) 1
2
(∫ T

0

|D
1
4
t g|2dt

) 1
2

with C independent of T , f and g.

Lemma 4.3. Let u be defined as above, h a vector field on ∂Ω with ⟨h,N⟩ > 0. Then∫ T

0

∫
Ω±

(∣∣D 1
4
t ∇u

∣∣2 + ∣∣D 3
4
t u
∣∣2)dxdt ≤ C∥D

1
2
t u∥∥

∂u±

∂ν
∥

and ∫ T

0

∫
Ω±

hj
∂u

∂t
· ∂u
∂xj

dxdt ≤ C∥D
1
2
t u∥∥

∂u±

∂ν
∥.

Proof. Let W , Z be solutions of (2.1) with initial data 0. Integrating by parts, we get∫ T

0

∫
∂Ω

W
∂Z±

∂ν
dσdt =±

∫ T

0

∫
Ω±

∂

∂xs

(
Wasj

∂Z

∂xj

)
dxdt

=±
∫ T

0

∫
Ω±

(
∂W

∂xs
· asj ·

∂Z

∂xj
+W · ∂Z

∂t

)
dxdt.

(4.1)

Setting W = Z = D
1
4
t u and using Lemma 4.2, we obtain∫ T

0

∫
Ω±

∣∣D 1
4
t ∇u

∣∣2dxdt ≤ ∫ T

0

∫
∂Ω

D
1
4
t

(
∂u

∂ν

)±

D
1
4
t udσdt

≤C
∫
∂Ω

(∫ T

0

∣∣D 1
2
t u
∣∣2dt) 1

2
(∫ T

0

∣∣ (∂u
∂ν

)± ∣∣2dt) 1
2

dσ.

If we set Z = I 1
4
u and W = D

3
4
t u, then∫ T

0

∫
Ω±

∣∣D 3
4
t ∇u

∣∣2dxdt ≤ ∥D
1
2
t u∥∥

∂u±

∂ν
∥.

The first part of the lemma follows. The second part follows from Lemma 4.2 and the first

part.
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Lemma 4.4. Let u = Sf , for f ∈ L2(ST ). Then

∥∂u
±

∂ν
∥ ≤ C

{
∥∇Tu∥+ ∥u∥+ ∥D

1
2
t u∥

}
.

Proof. As in the proof of Lemma 3.3∫ T

0

∫
∂Ω

nk(hkasj − hsakj − hjask)
∂u±

∂xs
· ∂u

±

∂xj
dσdt

=±
∫ T

0

∫
Ω±

bsj
∂u

∂xs
· ∂u
∂xj

− 2hj
∂u

∂t
· ∂u
∂xj

dxdt,

(4.2)

where bsj =
∂

∂xk
(hkasj − hsakj − hjask). Similar to (3.3), we get∫ T

0

∫
∂Ω

∣∣∇u∣∣2dσdt
≤C

{∫ T

0

∫
∂Ω

∣∣∇Tu
∣∣|u|dσdt+ ∫ T

0

∫
Ω±

∣∣∇u∣∣2dxdt+ ∫ T

0

∫
Ω±

hj
∂u

∂t
· ∂u
∂xj

dxdt

}

≤C
{
∥∇Tu∥∥u∥+ ∥u∥∥∂u

±

∂ν
∥+ ∥D

1
2
t u∥∥

∂u±

∂ν
∥
}
.

The Lemma follows easily.

Proof of Theorem 4.1. Note that for any f ∈ L2(ST ), by Lemma 4.4,

∥f∥ ≤ ∥∂u
+

∂ν
∥+ ∥∂u

−

∂ν
∥ ≤ C

{
∥∇Tu∥+ ∥D

1
2
t u∥+ ∥u∥

}
≤ C∥Sf∥L2

1, 1
2

(ST ). (4.3)

Hence, the single layer potential operator S is one to one with closed range in L2
1, 12

(ST ). We

only need to show that the range is dense.

If Ω is smooth and g ∈ C∞, by the results in [13, Chapter 5], there exists a u such that

u
∣∣
ST

= g
∣∣
ST
, u
∣∣
t=0

= 0 and u ∈ C∞(Ω× [0, T ]).

Hence ∂u+

∂ν exists and belongs to L2(ST ). By Theorem 3.1, we can find an f ∈ L2(ST ) such

that ∂(Sf)+

∂ν = ∂u+

∂ν . Hence u = Sf by the uniqueness results in [13, Chapter 5]. Therefore

Sf
∣∣
ST

= g
∣∣
ST

. This proves that the single layer potential operator is invertible if the domain

is smooth. For general Lipschitz domain, the theorem can be proven by the standard method

in [2] and the inequality (4.3).

§5. Results for Initial Boundary Value Problems

In the first four sections, we constructed the layer potential operators for the parabolic

equation (2.1) and studied the properties of these operators. In this section, we will sum

up the results and apply these results to the parabolic equation. The invertibility of these

operators guarantees the existence of solutions for the initial boundary value problems. We

have

Theorem 5.1. There exists a unique solution for the initial-Dirichlet problem with

boundary data g in L2(ST ) and the solution u can be written as u = Df for some f ∈
L2(ST ), ∥f∥ ≤ C∥g∥ with C independent of g.

For the initial-Neumann problem, we have
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Theorem 5.2. There exists a unique solution for the initial-Neumann problem with

boundary data g in L2(ST ) and the solution u can be written as u = Sf for some f ∈
L2(ST ), ∥f∥ ≤ C∥g∥ with C independent of g.

The invertibility of the single layer potential operator gives

Theorem 5.3. For g ∈ L2
1, 12

(ST ), the unique solution of the initial-Dirichlet problem

with boundary data g can be written as u = Sf for some f ∈ L2(ST ), ∥f∥ ≤ C∥g∥L2

1, 1
2

with

C independent of g. Hence ∥ (∇u)∗ ∥+ ∥
(
D

1
2
t

)∗
∥ ≤ C∥g∥.

Proof of the Theorems. Theorem 5.2 is a consequence of Theorem 4.1 and Theorem

2.1. The uniqueness follows by a standard procedure. To prove Theorem 5.1, we only need

to note that if we define Rf(t) = f(T − t), then R
(
1
2 −K

)∗
R = 1

2 + K̃. Therefore the

invertibility of 1
2 − K implies the invertibility of 1

2 + K̃ and hence the solvability of the

initial-Dirichlet problem. The uniqueness follows by first constructing a Green’s function G

with property that ∥(∇G)∗∥ + ∥(D
1
2
t G)

∗∥ < ∞ and then following the standard argument

as in [15].

Theorem 5.3 is a combination of Theorem 4.1 and Theorem 5.1.

For the initial-boundary value problems in exterior domain, we may obtain similar results

by using the results in Sections 3 and 4. We omit the details.
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