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Abstract

This paper gives several criteria on the oscillatory behavior of solutions of the forced second
order equation x′′ + a(t)f(x) = g(t), where g(t) is oscillatory, by using a geometric idea. As
special cases these results include and improve some recent results, given by J. S. Wong. The

criteria also solve the problem posed by H. Onose in Mathematical Reviews, 1986.
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§1. Introduction

We are concerned here with the second order nonlinear differential equation

x′′ + a(t)f(x) = g(t), t ∈ [0,∞), (1.1)

where a(t), g(t) are real-valued piecewise continuous functions on [0,∞) and f(x) is a con-

tinuous and nondecreasing function of x on (−∞,∞). We assume further that the functions

a(t), g(t) and f(x) are so smooth that Equation (1.1) always has solutions which are con-

tinuable throughout [0,∞). Equation (1.1) is said to be oscillatory if every solution x(t) of

(1.1) is oscillatory, i.e., there is a sequence tn → ∞ such that x(tn) = 0.

There is a lot of work done on the oscillation of Equation (1.1) (see [2-9]). As in many

papers we use Kartsatos’s technique introduced by Kartsatos[2,3], i.e., assume that there

exists a function h(t) such that h′′(t) = g(t), and hence reduce Equation (1.1) to a homoge-

neous equation. There have been some results by Wong[9] which cover and improve a series

of previous results with the same technique, but they are only concerned with the case that

h(t) is oscillatory and some exacting restrictions are posed on h(t). Here from a geometric

thought, rather than an analytic one, we obtain several criteria for the more general case

that g(t) is oscillatory no matter whether h(t) is oscillatory or nonoscillatory.

By examples we see that under the above general assumptions our conditions are sharper

than those by Wong[9]. Just as indicated by Onose, MR86c34133, although equation x′′ +

4x = 1/2+sin t is oscillatory, there are very few results which can be applied to this equation,

we will also show by an example that one of our results applies to it.
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§2. Preliminaries

Assume that h ∈ C2[t0,∞) is oscillatory for t0 ≥ 0, h(t) ̸≡ 0 on any [T,∞) ⊂ [t0,∞).

Let sn (n = 1, 2, · · · , ) be the local maximal points of h on [t0,∞), s1 < s2 < · · · ; and
τn (n = 1, 2, · · · )be the local minimal points of h on [t0,∞), τ1 < τ2 < · · · . We give several

curves related to the function h and their properties which are useful in determining the

oscillation of (1.1).

Definition 2.1. y = ϕ(t), t ∈ [s0,∞), is called the upper broken-line (UBL) of h on

[t0,∞) provided

(i) ϕ(sn) = h(sn), n = 1, 2, · · · ,
(ii) ϕ(t) = ϕ(sn) +

ϕ(sn+1−ϕ(sn)
sn+1−sn

(t− sn), t ∈ (sn, sn+1).

Definition 2.2. y = ϕ(t), t ∈ [s1,∞), is called the increasing upper broken-line (IUBL)

of h on [t0,∞) provided

(i) ϕ(s1) = h(s1);

(ii) suppose ϕ(si) = h(si) for some i ≥ 1; if h(sn) ≤ h(si) for all n > i, then ϕ(t) =

h(si), t > si; otherwise, let sk = min{sn : h(sn) > h(si)}, then

ϕ(t) = ϕ(si) +
ϕ(sk)− ϕ(si)

sk − si
(t− si), t ∈ (si, sk].

Definition 2.3. For any constant α, y = ϕ(t), t ∈ [s1,∞), is called the α-upper broken-

curve (α−UBC) of h on [t0,∞) provided

(i) if sn+1 ≥ sn + α(sn+1 − sn), then

ϕ(t) = max{h(t), h(sn) + α(t− sn)}, t ∈ [sn, sn+1];

(ii) if sn+1 < sn + α(sn+1 − sn), then

ϕ(t) = max{h(t), h(sn+1) + α(t− sn+1)}, t ∈ [sn, sn+1], n = 1, 2, · · · .

Definition 2.4. For any constant k > 0, y = ϕ(t), t ∈ [s1,∞) is called the k-upper

parabolic curve (k−UPC) of h on [t0,∞) provided

(i) for n = 1, 2, · · · , there exist bn and cn such that ϕn(t) = kt2/2 + bnt + cn satisfying

ϕn(t) ≥ h(t), t ∈ [sn, sn+1], and y = ϕn(t) is tangent to y = h(t) at two points s′n, s
′
n+1,

where sn ≤ s′n < s′n+1 ≤ sn+1;

(ii)

ϕ(t) =

{
ϕn(t), t ∈ [s′n, s

′
n+1],

h(t), t ∈ [sn, s
′
n) ∪ (s′n+1, sn+1], n = 1, 2, · · · .

Definition 2.5. y = ψ(t), t ∈ [τ1,∞), is called the lower broken-line (LBL), the decreas-

ing lower broken-line (DLBL), the α-lower broken-curve (α−LBC), or the k-lower parabolic

curve (k−LBC) of h on [t0,∞), provided y = ψ(t) is the UBL, the α−UBL or the k−UPC

of −h on [t0,∞), respectively.

Definition 2.6. IUBL y = ϕ(t) or DLBL y = ψ(t) of h on t ∈ [t0,∞) is called eventually

constant if there exists an sn or a τn such that ϕ(t) ≡ h(sn), t ≥ sn, or ψ(t) ≡ h(τn), t ≥ τn,

respectively.

Obviously, except for the IUBL and DLBL of h, every one of UBL, α−UBC, k−UPC,

and LBL, α−LBC, k−LPC intersects y = h(t) infinitely many times.
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Lemma 2.1. Suppose that for any T ≥ t0 the IUBL y = ϕ(t) of h on [T,∞) is eventually

constant and y(t), t ∈ [t0,∞), is a function satisfying y(t) > h(t), y′(t) > 0 eventually.

Then there is a constant c > 0 such that y(t)− h(t) ≥ c eventually.

Proof. Without loss of generality we may assume y(t) > h(t), y′(t) > 0, t ∈ [T,∞), and

ϕ(t) ≡ ϕ(s1) = h(s1), t ∈ [s1,∞), where s1 is the least local maximum point of h. Then

ϕ(t) > h(t), t ∈ [s1,∞). Since y(t) is increasing, y(t) ≥ y(s1) > h(s1), t ≥ s1. Hence for

t ≥ s1,

y(t)− h(t) ≥ y(t)− ϕ(t) = y(t)− h(s1) ≥ y(s1)− h(s1) = c > 0.

Lemma 2.2. Suppose that y = ϕ(t) is the UBL or IUBL (not eventually constant) of h

on [t0,∞) and y(t), t ∈ [t0,∞), is a function satisfying y(t) > h(t), y′′(t) ≤ 0 eventually.

Then y(t) ≥ ϕ(t) eventually.

Proof. If y(t) ≤ ϕ(t) eventually, noting that y = ϕ(t) intersects y = h(t) infinitely many

times, we see that either y(t) ≤ h(t) eventually or y = y(t) intersects y = h(t) infinitely

many times, contradicting the assumption.

If there exist tn → ∞ such that y(tn) < ϕ(tn) and y = y(t) crosses y = ϕ(t) infinitely

many times, then for a sufficiently large n there must be at least two cross points t′n and t′′n
such that

(i) sn < t′n < tn < t′′n < sn+1,

(ii) y′(t′n) ≤ ϕ′(t′n) and y
′(t′′n) ≥ ϕ′(t′′n),

(iii) ϕ′(t) ≡ ϕ′(t′n) for t ∈ [t′n, t
′′
n].

Hence y′(t′n) ≤ y′(t′′n). Noting that y′′(t) ≤ 0 we have y′(t) ≡ y′(t′n) for t ∈ [t′n, t
′′
n], so

y(t) ≡ ϕ(t), t ∈ [t′n, t
′′
n], contradicting y(tn) < ϕ(tn).

Lemma 2.3. Suppose that y = ψ(t) is the α−LBC of h on [t0,∞) for some α > 0,

and y(t), t ∈ [t0,∞), is a function satisfying y(t) < h(t) and y′(t) < α eventually. Then

y(t) ≤ ψ(t) eventually.

Proof. Without loss of generality we assume y(t) < h(t), y′(t) < α, t ≥ t0. Then

y(τn) < h(τn), n = 1, 2, · · · . In view of that y′(t) < α we see that y(t) < h(τn) + α(t− τn)

and

y(t) < h(τn+1) + α(t− τn+1), t ∈ [τn, τn+1], n = 1, 2, · · · .

Therefore y(t) ≤ ψ(t), t ≥ t0.

Lemma 2.4. Suppose that y = ψ(t) is the k−UBC of h on [t0,∞) for some k > 0,

and y(t), t ∈ [t0,∞), is a function satisfying y(t) < h(t) and y′′(t) ≤ k eventually. Then

y(t) ≥ ϕ(t) eventually.

Proof. Similar to the proof of Lemma 2.2 we see that it is impossible that y(t) ≤ ϕ(t)

eventually.

If there exist tn → ∞ such that y(tn) < ϕ(tn) and y = y(t) crosses y = ϕ(t) infinitely

many times, then for a sufficiently large n there must be at least two cross points t′n and t′′n
such that

(i) sn < t′n < tn < t′′n < sn+1,

(ii) y′(t′n) ≤ ϕ′(t′n) and y
′(t′′n) ≥ ϕ′(t′′n),

(iii) ϕ′′(t) ≡ k for t ∈ [t′n, t
′′
n].
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Hence

ϕ′(t′′n)− ϕ(t′n) = k(t′′n − t′n)

and

y′(t′′n)− y′(t′n) ≥ ϕ′(t′′n)− ϕ′(t′n).

Noting that y′′(t) ≤ k we have

y′(t)− y′(t′n) = k(t− t′n), t ∈ [t′n, t
′′
n].

Thus y′(t) ≡ ϕ′(t) and hence y(t) ≡ ϕ(t), for t ∈ [t′n, t
′′
n], since y(t

′
n) = ϕ(t′n), contradicting

y(tn) < ϕ(tn).

Similarly we can get the corresponding results to Lemmas 2.1-2.4 for DLBL, LBL, α−
UBC, and k−LPC of h on [t0,∞), respectively. We omit them here.

§3. Main Results

Now we turn to the discussion of the oscillation of the forced second order Equation (1.1)

x′′ + a(t)f(x) = g(t), t ∈ [0,∞),

which satisfies the hypothesis given at the beginning of this paper and also the hypothesis

(H0) a(t) is nonnegative but not eventually zero on [0,∞), f(x) is continuous and non-

decreasing satisfying xf(x) > 0, x ̸= 0.

We will give several different oscillation criteria for Equation (1.1) based on different

oscillatory properties of function g. We will discuss three cases for (1.1).

(A) At first we post the following hypothesis:

(H1) There exists an h ∈ C2[0,∞) such that h′′(t) = g(t) and h(t) is oscillatory. Let

x(t) = y(t) + h(t); then Equation (1.1) can be rewritten as a homogeneous equation

y′′ + a(t)f(y + h(t)) = 0. (3.1)

As shown in [9], if x(t) > 0 for t ≥ t0 ≥ 0, then there exists a large t, say t0, such that

y′′(t) ≤ 0, y′(t) > 0 and y(t) > 0 on [t0,∞); and if x(t) < 0 for t ≥ t0 ≥ 0, then there exists

a large t, also say t0, such that y′′(t) ≥ 0, y′(t) < 0 and y(t) < 0 on [t0,∞).

Theorem 3.1. Assume that (H1) holds. Then under any one of the following conditions

Equation (1.1) has no eventually positive solution:

(I) For any a > 0, there exist tn → ∞ such that −h(tn) = atn;

(II) There exists an a > 0 such that −h(t) < at for t ≥ t0 ≥ 0, and for any T ≥ t0 the

IUBL of −h on [T,∞) is eventually constant, and∫ ∞

t0

a(t)dt = ∞; (3.2)

(III) There exists an a > 0 such that −h(t) < at for t ≥ t0 ≥ 0, y = ϕ(t) is the IUBL of

−h on [t0,∞) which is not eventually constant, and∫ ∞

t0

a(t)f(ϕ(t) + h(t))dt = ∞. (3.3)

Proof. Assume that x(t) is an eventually positive solution of Equation (1.1). Then

without loss of generality assume y′′(t) ≤ 0, y′(t) > 0 and y(t) > 0 for t ≥ t0.
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(I) There exists an a > 0 such that 0 < y(t) < at, t ≥ t0. Thus

h(t) + at > h(t) + y(t) = x(t) > 0 for t ≥ t0,

contradicting −h(tn) = atn.

(II) Since y(t) ≥ −h(t), y′(t) > 0 for t ≥ t0, according to Lemma 2.1 there exist a c > 0

and a T ≥ t0 such that

y(t) + h(t) ≥ c, t ≥ T. (3.4)

Integrating Equation (2.1) from T to t we have

y′(t)− y′(T ) +

∫ t

T

a(s)f(y(s) + h(s))ds = 0. (3.5)

In view of (3.4) we get

y′(t)− y′(T ) + f(c)

∫ t

T

a(s)ds ≤ 0.

Letting t → ∞ and noting
∫∞
T
a(t)dt = ∞ we obtain y′(t) → −∞ as t → ∞. This

contradicts y′(t) > 0.

(III) Since y(t) ≥ ϕ(t) and y′′(t) ≤ 0, t ≥ t0, according to Lemma 2.2, there exists a

T ≥ t0 such that y(t) ≥ ϕ(t), t ≥ T . Then from (3.5)

y′(t)− y′(T ) +

∫ t

T

a(s)f(ϕ(s) + h(s))ds ≤ 0.

Letting t→ ∞ we also have y′(t) → −∞, as t→ ∞, and this contradicts y′(t) > 0.

Theorem 3.2. Assume that (H1) holds. Then under any one of the following conditions

Equation (1.1) has no eventually negative solution:

(I′) For any b < 0, there exist tn → ∞ such that −h(tn) = btn;

(II′) There exists a b < 0 such that −h(t) > bt for t ≥ t0 ≥ 0, and for any T ≥ t0 the

DLBL of −h on [T,∞) is eventually constant, and∫ ∞

t0

a(t)dt = ∞; (3.6)

(III′) There exists a b < 0 such that −h(t) > bt for t ≥ t0 ≥ 0, y = ψ(t) is the DLBL of

−h on [t0,∞) which is not eventually constant, and∫ ∞

t0

a(t)f(ψ(t) + h(t))dt = −∞. (3.7)

The proof of Theorem 3.2 is similar to that of Theorem 3.1, we omit it here.

Theorem 3.3. Assume that (H1) holds. Then any one of (I), (II) and (III) together

with any of the (I′), (II′) and (III′) guarantees that Equation (1.1) is oscillatory.

Remark 3.1. Theorem 3.3 includes Theorems 1, 2 and 4 and their corresponding corol-

laries in [9] as its special cases.

Besides, Theorem 3.3 also improves the condition and the conclusion of Theorem 3 in [9],

where the oscillation problem is not solved thoroughly.

Furthermore, Theorem 3.3 is a sharper result than Theorems 1-4 in [9]. For example, we

have the following corollary which can not be covered by any result in [9].
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Corollary 3.1. Assume that (H1) holds. If

lim
t→∞

approx h(t) = 0,
1)

lim
t→∞

suph(t) > 0, lim
t→∞

inf h(t) < 0

and ∫ ∞

t0

a(t) = ∞,

then Equation (1.1) is oscillatory.

Proof. From lim
t→∞

sup[−h(t)] > 0, we see that there are tn → ∞ such that −h(tn) ≥ a >

0 (n = 1, 2, · · · ). Hence the UBL or IUBL ϕ(t) of −h(t) on [t1,∞) satisfies that ϕ(t) ≥ a, t ≥
t1. In view of lim

t→∞
approx h(t) = 0, we get that mess µ <∞, where set µ = {t : h(t) < −a/2}.

Hence on [t0,∞)\µ, ϕ(t) + h(t) ≥ a/2. Then∫ ∞

t0

a(t)f(ϕ(t) + h(t))dt ≥
∫
[t0,∞)\µ

a(t)f(ϕ(t) + h(t))dt

≥f(a/2)
∫
[t0,∞)\µ

a(t)dt = ∞.

Similarly we can show that if ψ(t) is the LBL or the DLBL of −h(t), then∫ ∞

t0

a(t)f(ψ(t) + h(t))dt = −∞.

By Theorem 3.3 Equation (1.1) is oscillatory.

(B) For the second case we consider Equatioin (1.1) under the hypothesis

(H2) There exist h1, h2 ∈ C2[0,∞) satisfying that

h′′1(t) + h′′2(t) = g(t), h1(t) > 0, h′′1(t) ≤ 0

and

lim
t→∞

inf h2(t) < 0 < lim
t→∞

suph2(t). (3.8)

Without loss of generality we may assume

(a) lim
t→∞

suph1(t) = ∞, and

(b) lim
t→∞

h′1(t) = 0.

Otherwise, if (a) does not hold, lim
t→∞

suph1(t) = a < ∞. Let h∗1(t) = h1(t) − a, then

lim
t→∞

suph∗1(t) = 0. Because lim
t→∞

h2(t)does not exist, h(t) = h∗1(t) + h2(t) is oscillatory and

h′′(t) = g(t). This coincides with hypothesis (H1). Since h
′′
1(t) ≤ 0, lim

t→∞
h′1(t) = b exists. If

h′′1(t) ≡ 0 for t ≥ T ≥ 0, then we can replace h1(t) by 0. If h′′(t) ̸≡ 0 eventually and b ̸= 0,

then h′1(t) > b for t ≥ 0. Define

h∗1(t) = h1(t)− h1(0)− bt.

Then

[h∗1(t)]
′ = h′1(t)− b > 0

1)see [1] for the definition.
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and

lim
t→∞

[h∗1(t)]
′ = 0.

Hence we have h∗1(t) > h∗1(0) = 0, [h∗1(t)]
′′ = h′′1(t) ≤ 0, and

[h∗1(t)]
′′ + h′′2(t) = g(t).

Combining (a) and (b) we get

lim
t→∞

h1(t)/t = 0.

Under hypothesis (H2) Equation (1.1) becomes

x′′ + a(t)f(x) = h′′1(t) + h′′2(t). (3.9)

Letting x = y + h2(t), we replace (3.9) by

(y − h1(t))
′′ + a(t)f(y + h2(t)) = 0. (3.10)

Theorem 3.4. Assume that (H2) holds, y = ϕ(t) is the UBL of −h2 on [t0,∞), and for

a sufficiently small α > 0, y = ψα(t), the α−LBC of −h2 on [t0,∞), exists. If∫ ∞

t0

a(t)f(ϕ(t) + h2(t))dt = ∞ (3.11)

and ∫ ∞

t0

a(t)f(ψ(t) + h2(t))dt = −∞, (3.12)

then Equation (1.1) is oscillatory.

Proof. Assume that x(t) is an eventually positive solution of Equation (1.1). Without

loss of generality we assume x(t) > 0, t ≥ t0. Then from (3.10). (y − h1)
′′ ≤ 0, t ≥ t0.

We will show (y − h1)
′′ ≥ 0, t ≥ 0. Otherwise, there exists a t1 ≥ t0 and constants c and

d, c < 0, such that (y − h1)
′
t0 = c, and

y(t)− h1(t) ≤ d+ ct, t ≥ t1.

Hence

x(t) ≤ d+ ct+ h1(t) + h2(t), t ≥ t1,

which would contradict x(t) > 0 since lim
t→∞

h1(t)/t = 0 and h2(t) is oscillatory.

Noting that y′′ = (y − h1)
′′ + h′′1 ≤ 0 and y(t) ≥ −h2(t), t ≥ t0, according to Lemma 3.2

there is a T ≥ t0 such that y(t) ≥ ϕ(t) for t ≥ T. From Equation (3.10), we have

(y − h1)
′ − (y − h1)

′
T +

∫ t

T

a(s)f(y(s) + h2(s))ds = 0. (3.13)

Hence

(y − h1)
′ − (y − h1)

′
T +

∫ t

T

a(s)f(ϕ(s) + h2(s))ds ≤ 0, t ≥ T.

Letting t→ ∞ and noting (3.11) we get (y−h1)′ → −∞ as t→ ∞, contradicting (y−h1)′ ≥
0.

Similarly, we can show that Equation (1.1) has no eventually negative solutions.

(C) At last consider Equation (1.1) with the hypothesis

(H3) There exist h1, h2 ∈ C2[0,∞) satisfying

h′′1(t) + h′′2(t) = g(t), h1(t) > 0, 0 ≤ h′′1(t) ≤ k
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for some k > 0, and h2(t) is oscillatory.

Theorem 3.5. Assume that (H3) holds, y = ψ(t) is the LBL of −h2 on [t0,∞), and for

the constant k given by (H3), y = ϕk(t), the k-UPC of −h2 on [t0,∞), exists. If

lim
t→∞

[∫ t

t0

∫ s

t0

a(τ)f(ϕ(τ) + h2(τ))dτds− h1(t)
]/
t = ∞ (3.14)

and ∫ ∞

t0

a(s)f(ψ(s) + h2(s))ds = −∞, (3.15)

then Equation (1.1) is oscillatory.

Proof. Assume that x(t) is an eventually positive solution of Equation (1.1). Without

loss of generality we assume x(t) > 0, t ≥ t0. Then from (3.10), (y − h1)
′′ ≤ 0, t ≥ t0.

Hence y(t)′′ ≤ h′′1(t) ≤ k, t ≥ t0. Noting that y(t) > −h2(t), t ≥ t0, according to Lemma

2.4, there is a T ≥ t0 such that y(t) ≥ ϕk(t) for t ≥ T. Integrating both sides of (3.13) from

T to t we have

(y − h1)− (h− h1)T − (y − h1)
′
T (t− T ) +

∫ t

T

∫ t

T

a(τ)f(y(τ) + h2(τ))dτds = 0.

Hence

(y − h1)− (h− h1)T − (y − h1)
′
T (t− T ) +

∫ t

T

∫ t

T

a(τ)f(ϕk(τ) + h2(τ))dτds ≤ 0.

Dividing both sides by t and letting t → ∞ from (3.14) we get lim
t→∞

y(t)/t = −∞, hence

lim
t→∞

y(t) = −∞, contradicting the assumption that y(t) > −h2(t) and h2(t) is oscillatory.
Assume that x(t) is an eventually negative solution of Equation (1.1). Without loss of

generality we asumme x(t) < 0, t ≥ t0. Then from (3.10), (y − h1)
′′ ≥ 0, t ≥ t0. We

will show that (y − h1)
′ ≤ 0, t ≥ t0. Otherwise, there exist t1 ≥ t0 and c > 0 such that

(y − h1)
′
t1 = c. Hence (y − h1)

′ ≥ c, t ≥ t1. Integrating both sides we see that there is a

constant d such that

y − h1 ≥ d+ ct, i.e., y ≥ d+ ct+ h1, t ≥ t0.

Thus

x = y + h2 ≥ d+ ct+ h1 + h2, t ≥ t0.

Since there are tn → ∞ such that h2(tn) = 0, we have x(tn) > 0 as n is sufficiently large,

contradicting x(t) < 0, t ≥ t0. Noting that y ≤ −h2(t) and

y′′ = (y − h1)
′′ + h′′1 ≥ 0,

according to the result for LBL of −h2 similar to that of the UBL of −h2 in Lemma 3.2,

there is a T ≥ t0 such that y(t) ≤ ψ(t) for t ≥ T. From (3.13) we have

(y − h1)
′ − (y − h1)

′
T +

∫ t

T

a(s)f(ψ(s) + h2(s))ds ≥ 0.

Letting t→ ∞, from (3.15) we get (y(t)−h1(t))′ → ∞ as t→ ∞, contradicting (y−h1)′ ≤ 0.

§4. Examples

Here we apply the above theorems to some particular equations.
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Example 4.1. Consider the equation

x′′ + a(t)f(x) = 2 cos t− t sin t, (4.1)

where (H0) is satisfied. For any ε > o denote E =
∞∑

n=1
(nπ

2 − ε, nπ
2 + ε). If for a sufficiently

small ε > 0 ∫
[0,∞)\E

a(t) = ∞, (4.2)

then Equation (1.1) is oscillatory.

Proof. Let h(t) = t sin t. Then (H1) holds and y = ϕ(t) = t and y = ψ(t) = −t are the

UBL and LBL of −h on [0,∞), respectively. We see that for the ε in E there is a δ > 0

such that the set

E0 = {t0 : t ∈ [0,∞) and t+ h(t) ≤ δ} ⊂ E.

Then on [0,∞)\E0, f(t + h(t)) ≥ f(δ) > 0, so (4.2) implies that (3.3) holds. In the same

way, (4.2) also implies that (3.7) holds. By Theorem 3.3 we know that Equation (4.1) is

oscillatory.

Example 4.2. Consider the equation

x′′ + 4x = 1/2 + sin t. (4.3)

We know that this equation is oscillatory. But before this paper there is almost no oscillation

criterion to assure this fact. Now we show that Theorem 3.5 will do this. Here h1(t) =

t2/4, h2(t) = − sin t, a(t) = 4 and f(x) = x. Hence (H3) holds with k = 1/2 and y = ψ(t) =

−1 is the LBL of −h2 on [0,∞). Obviously, y = ϕ1/2(t), the (1/2)−UPC of −h2 on [0,∞)

exists, and

u(t) = ϕ1/2(t) + h2(t) = ϕ1/2(t)− sin t.

Let v(t) = t2/4 + cos t. Then v(0.65π) ≈ 0.246, and∫ 0.65π

−0.65π

[v(t)− v(0.65π)]dt ≈ 1.623.

It is easy to see that for n = 0, 1, 2, · · · ,∫ (2n+1)π

2nπ

a(t)f(ϕ1(t) + h2(t))dt

=4

∫ π

−π

(ϕ1/2(t)− sin t)dt

≥4

∫ 0.65π

−0.65π

[v(t)− v(0.5π)]dt

≈4× 1.623 = 6.492.

For any t ≥ 2π, there is an n > 0 such that t ∈ [2nπ, 2(n+ 1)π). Thus∫ t

0

a(t)f(ϕ1/2(t) + h2(t))dt

≥
n−1∑
i=1

∫ 2(i+1)π

2iπ

a(t)f(ϕ1/2(t) + h2(t))dt

≥6.492n ≥ 6.492(t/2π − 1) ≈ 1.033t− 6.492.
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Hence ∫ t

0

∫ s

0

a(τ)f(ϕ1/2(τ) + h2(τ))dτds ≈ 0.517t2 − 6.492t,

and this means that (3.14) holds.

It is clear that (3.15) holds also. Therefore we obtain the oscillatory property of Equation

(4.3) by Theorem 3.5.
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