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ON A CONJECTURE OF K. OGIUE

FOR KAEHLER HYPERSURFACES**
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Abstract

An affirmative answer to a conjecture of K. Ogiue formulated in [2] is given, namely, the
following result is proved:

Let Mn (n ≥ 2) be a complete Kaehler hypersurface immersed in a complex projective space

CPn+1. If every sectional curvature of Mn is positive, then Mn is totally geodesic in CPn+1.

Keywords Kaehler hypersurfaces, Conjecture of K. Ogiue, Sectional curvature.

1991 MR Subject Classification 58D10, 58D17.

§1. Introduction

In [2], K.Ogiue proposed a conjecture that a complete Kaehler hypersurfaceMn immersed

in a complex projective space CPn+1 with positive sectional curvature is totally geodesic.

In [3], he proved that it is true for n ≥ 4. Moreover, if Mn is imbedded in CPn+1, then

it is also true for n ≥ 2. This paper solves completely the conjecture for immersed Kaehler

hypersurfaces for n ≥ 2, namely, we obtain the following

Theorem. Let Mn (n ≥ 2) be a complete Kaehler hypersurface immersed in a complex

projective space CPn+1. If every sectional curvature of Mn is positive, then Mn is totally

geodesic in CPn+1.

This theorem is closely related to another Ogiue’s conjecture in [3] which says that a

complete Kaehler submanifold Mn immersed in CPn+p (p < n(n + 1)/2) with positive

sectional curvature is totally geodesic. Our result can be regarded as some evidence that

Ogiue’s conjecture may be true.

§2. Basic Formulas

Let CPn+1(1) denote an (n + 1)-dimensional complex projective space with the Fubini-

Study metric of constant holomorphic sectional curvature 1. Let Mn be a Kaehler hypersur-

face immersed in CPn+1(1). The Fubini-Study metric of CPn+1(1) and the induced metric

on Mn both will be denoted by g. The complex structure of CPn+1(1) and the induced com-

plex structure on M both will be denoted by J. Let ∇ and ∇ be respectively the Riemannian

connections of CPn+1(1) and Mn, and let σ be the second fundamental form of Mn. By

A and ∇⊥ denote the Weingarten endomorphism and the normal connection. Throughout

this paper, X,Y, Z and W will be either vector fields on one of the special neighborhoods
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U(x) of x ∈ Mn, or vectors tangent to M at a point of U(x), unless otherwise specified. Let

ξ and Jξ be the unit normal vector fields on U(x) ⊂ M. On U(x), we have[7]

∇xY =∇xY + σ(X,Y ) (2.1)

=∇xY + h(X,Y )ξ + k(X,Y )Jξ, (2.2)

where h and k are symmetric covariant tensor fields of degree 2 on U(x) satisfying

h(X,Jξ) = −k(X,Y ), k(X, JY ) = h(X,Y ), (2.3)

∇xξ = −Aξ(X) +∇⊥
x ξ = −Aξ(X) + s(X)Jξ, (2.4)

where Aξ and s are tensor fields on U(x) of type (1.1) and (0, 1) respectively. Furthermore

Aξ and JAξ are symmetric with respect to g,AξJ = −JAξ and Aξ satisfies

h(X,Y ) = g(AξX,Y ), k(X,Y ) = h(JAξX,Y ), (2.5)

AJξ = JAξ = −AξJ, (2.6)

∇⊥
x Jξ = J∇⊥

x ξ. (2.7)

Let R, R and R⊥ denote respectively the curvature tensors of the connections ∇,∇ and

∇⊥. Then we have

R(X,Y )Z =
1

4

{
g(Y , Z)X − g(X,Z)Y ) + g(JY , Z)JX

− g(JX,Z)JY + 2g(X, JY )JZ
}
, (2.8)

R(X,Y )W =R(X,Y )W −
{
g(AξY,W )AξX − g(AξX,W )AξY

}
−
{
g(JAξY,W )JAξX − g(JAξX,W )JAξY

}
. (2.9)

Let P be a 2−plane tangent to M at a point of U(x). Then,

K(P ) =K(P )−
{
g(AξX,X)g(AξY, Y )− g(AξX,Y )2

}
−
{
g(JAξX,X)g(JAξY, Y )− g(JAξX,Y )2

}
, (2.10)

where {X,Y } is an orthonormal basis of P and K(P ) (resp. K(P )) is the sectional curvature

is P considered as a 2−plane tangent to CPn+1 (resp. M).

The Ricci epuation of M is

g(R⊥(X,Y )ξ, Jξ) = g(R(X,Y )ξ, Jξ) + g([Aξ, AJξ]X,Y ),

which is epuivalent to

k(AξX,Y ) =
1

4
g(X, JY ) +

1

2
[−X(s(Y ) + Y (s(X)) + s([X,Y ])]. (2.11)

From (2.2) and the Codazzi epuation of M ,we can obtain

(∇2h)(X,Y, Z,W )− (∇2h)(Y,X,Z,W )

=− h(R(X,Y )Z,W )− h(Z,R(X,Y )W ), (2.12)

(∇2k)(X,Y, Z,W )− (∇2k)(Y,X,Z,W )

=− k(R(X,Y )Z,W )− k(Z,R(X,Y )W ). (2.13)

Using the facts that σ(JX, Y ) = σ(X, JY ) = Jσ(X,Y ) and

(∇σ)(JX, Y, Z) = (∇σ)(X, JY, Z) = (∇σ)(X,Y, JZ) = J(∇σ)(X,Y, Z),
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we obtain

(∇σ)(Z,X, Y ) =[(∇zh)(X,Y )− h(X,Y )s(Z)]ξ

+ [(∇zk)(X,Y ) + h(X,Y )s(Z)]Jξ, (2.14)

(∇h)(JX, Y, Z) =− (∇k)(X,Y, Z)− h(Y, Z)s(X) + k(Y,Z)s(JX), (2.15)

(∇k)(JX, Y, Z) =(∇h)(X,Y, Z)− h(Y, Z)s(JX)− k(Y, Z)s(X). (2.16)

Finally, from (2.3) we obtain easily

(∇zh)(JX, Y ) = −(∇zk)(X,Y ), (∇zk)(JX, Y ) = (∇zh)(X,Y ). (2.17)

§3. A Lemma

Let Mn be a compact Kaehler hypersurface immersed in CPn+1(1). Let π : UM−→Mn

and UMp be the unit tangent boundle over Mn and its fibre at p∈M, respectively. Then,

we consider the function f : UM−→R defined by

f(u) = ∥σ(u, u)∥2 = h(u, u)2 + k(u, u)2, ∀u ∈ UMp.

We may obtain

Lemma. Let Mn (n≥2) be a compact Kaehler hypersurface immersed in CPn+1(1) which

is not totally geodesic. Then there exist some p ∈ M and some vector v ∈ UMp such that

∥Aξu∥2(p) = h(Aξu, u) ≥
1

4
(3.1)

for any unit normal vector ξ∈T⊥
p M and any unit vector u∈P⊥({v, Jv}), where P⊥({v, Jv})

denotes the orthogonal complement space of the holomorphic plane spanned by v and Jv in

UMp.

Proof. Since Mn is compact, the function f attains its maximum at some vector v∈UMn
p

for some p∈M. Fixed v∈UM, for any vector u∈Mn
p , let γu(t) be the geodesic in Mn deter-

mined by the initial conditions γu(0) = p, γ′
u(0) = u. Parallel translation of v along γu(t)

yields vector field Vu(t). Let fu(t) = f(Vu(t)). By similar computations as in [6], we obtain

0 =
d

dt
fu(0) = 2h(v, v)[(∇h)(u, v, v)] + 2k(v, v)[(∇k)(u, v, v)], (3.2)

0 =
d

dt
fJu(0) = 2h(v, v)[(∇h)(Ju, v, v)] + 2k(v, v)[(∇k)(Ju, v, v)]. (3.3)

Now we suppose that u∈UMp satisfies the condition that g(u, v) = g(Ju, v) = 0. Then[6]

h(u, v)h(v, v) + k(u, v)k(v, v) = 0, (3.4)

h(u, v)k(v, v)− k(u, v)h(v, v) = 0, (3.5)

d2

dt2
fu(0) =2[(∇h)(u, v, v)]2 + 2h(v, v)[(∇2h)z(u, u, v, v)]

+ 2[(∇2k)(u, v, v)]2 + 2k(v, v)[(∇2k)(u, u, v, v)],

d2

dt2
fJu(0) =2[(∇h)(Ju, v, v)]2 + 2h(v, v)[(∇2k)(Ju, Ju, v, v)]

+ 2[(∇k)(Ju, v, v)]2 + 2k(v, v)[(∇2k)(Ju, Ju, v, v)],

d2

dt2
fu(0) +

d2

dt2
fJu(0)≤0. (3.6)
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Using (2.15), (2.16), (2.17) and (2.12), we easily obtain

(∇2h)(Ju, Ju, v, v)

=− (∇2h)(u, u, v, v) + [∇Ju(k(v, v)) +∇u(h(v, v))]s(Ju)

+ [∇u(k(v, v))−∇Ju(h(v, v))]s(u) + k(v, v)[Ju(s(Jw) + u(s(u))]

+ h(v, v)[u(s(Jw)− Ju(s(w))]− h(R)(Ju, u)Jv, v)− h(Jv,R(Ju, u)v).

Similarly, using (2.15), (2.16), (2.17) and (2.13), we have

(∇2k)(Ju, Ju, v, v)

=− (∇2k)(u, u, v, v)− [∇u(h(v, v)) +∇Ju(k(u, u))s(u)

+ [−∇Ju(h(v, v)) +∇u(k(v, v))]s(Ju) + k(v, v)[−Ju(s(u)) + u(s(Ju))]

− h(v, v)[Ju(s(Ju)) + u(s(u))]− k(R(Ju, u)Jv, v)− k(Jv,R(Ju, u)v).

Substituting these into (3.6) and using (3.2), (3.3), (2.15) and (2.16), we have

h(v, v)[(∇2h)(Ju, Ju, v, v) + (∇2h)(u, u, v, v)]

+ k(v, v)[(∇2k)(Ju, Ju, v, v) + (∇2k)(u, u, v, v)]

=− (h(v, v)2 + k(v, v)2)(s(Ju)2 + s(u)2)

+ (h(v, v)2 + k(v, v)2)(u(s(Ju))− Ju(s(u)))

− h(v, v)[h(R(Ju, u)Jv, v) + h(Jv,R(Ju, u)v)]

+ k(v, v)[k(R(Ju, u)Jv, v) + k(v,R(Ju, u)v)].

Noticing the Gauss equation and that g(u, v) = g(Ju, v) = 0, one can see that

h(R(Ju, u)Jv, v) =h(Jv,R(Ju, u)v)

=
1

2
h(v, v) + 2h(v, v)h(Aξu, v)− 2k(u, v)k(Aξu, v),

k(R(Ju, u)Jv, v) =k(Jv,R(Ju, u)v)

=− 1

2
k(v, v) + 2k(u, v)k(Aξu, v) + 2h(u, v)k(Aξu, v).

Then (3.6) is equivalent to

(h2 + k2)[1− (s(Ju))2 − (s(u))2 + u(s(Ju))− (Ju)(s(u))]

− 4[h(u, v)h(v, v) + k(v, v)k(u, v)]h(Aξu, v)

+ 4[h(v, v)k(u, v)− k(v, v)k(u, v)]k(Aξu, v)

≤0.

Substituting (3.4), (3.5) and (2.11) into the above, we finally obtain

(h(v, v)2 + k(v, v)2)[
1

2
− 2h(Aξu, u)− (s(u))2 − (s(Ju))2 − s([Ju, u])≤0. (3.7)

In the neighborhood U(p) of p, σ(X,Y ) = h(X,Y )ξ + k(X,Y )Jξ, where σ is a unit normal

vector field, which can be obtained by parallelly translating the unit normal vector ξp at

p in the normal bundle along the geodesics on Mn starting from the point p. So, we have

∇⊥
γ′ξ

∣∣
p
= 0, where γ(t) is any geodesic on Mn through p. Then it is easily seen from (2.4)

that

s(u) = s(Ju) = s([Ju, u]) = 0
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at the point p. Thus it follows from (3.7) that

[h2(v, v) + k2(v, v)][
1

2
− 2h(Aξu, u)]≤0 (3.8)

at p. Since Mn is not totally geodesic, h2(v, v) + k2(v, v) ̸= 0. At the point p we have from

(3.8)

h(Aξu, u)≥
1

4
, ∀u∈P⊥({v, Jv}).

The Lemma is proved.

§4. Proof of Theorem

At first, by Proposition 6.12 in [3], we note that Mn is compact under the hypothesis as

in theorem.

We assume that the function f defined as in §3 attains its maximum at v ∈ UMp for

some p ∈ M. All computations below will be restricted at the point p. From (3.4) and (3.5)

we have

h(v, v)g(Aξu, v) + k(v, v)g(JAξu, v) = 0,

−k(v, v)g(Aξu, v) + h(v, v)g(JAξu, v) = 0

for any u ∈ Mp such that g(u, v) = g(u, Jv) = 0.

Now suppose that Mn would be not totally geodesic so that h2(v, v) + k2(v, v) ̸=0. Then,

g(Aξu, v) = g(JAξu, v) = 0,

i.e.,

h(u, v) = k(u, v) = 0.

Therefore,

Aξv = h(v, v)v, JAξv = k(v, v)v,

Aσ(v,v)u = h(v, v)Aξu+ k(v, v)JAξu,

Aσ(v,v)Ju = k(v, v)Aξu− h(v, v)JAξu.

}
(4.1)

If we take an eigenvector u∈P⊥({v, Jv}) of Aσ(v,v), then

Aσ(v,v)u = [h(v, v)h(u, u) + k(v, v)k(u, u)]u.

It is clear that Aσ(v,v)u ̸=0. From the Gauss equation we have

Aσ(v,v)u =
1

2
(R(u, v)v −R(u, Jv)Jv)

=
1

2
(K(u, v)−K(u, Jv)). (4.2)

By similar arguments, we obtain

Aσ(v,v)Ju =
1

2
(K(Ju, v)−K(Ju, Jv))Ju. (4.3)
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From (4.1), (4.2) and (4.3) we can find

Aξu =
1

2(h2 + k2)
[h(v, v)(K(u, v)−K(u, Jv))u

+ k(v, v)(K(Ju, v)−K(Ju, Jv))Ju],

h(Aξu, u) =
1

2(h2 + k2)
[h(v, v)h(u, u)(K(u, v)−K(u, Jv))

− k(v, v)k(u, u)(K(Ju, v)−K(Ju, Jv))], (4.4)

where

K(u, v) = K(Ju, Jv) =
1

4
+ h(u, u)h(v, v) + k(u, u)k(v, v) > 0,

K(u, Jv) = K(Ju, v) =
1

4
− h(u, u)h(v, v)− k(u, u)k(v, v) > 0.

 (4.5)

Then, (4.4) yields

h(Aξu, u) =
1

h2 + k2
(h(u, u)h(v, v) + k(u, u)k(v, v))2

≤ 1

∥σ(v, v)∥2
|h(u, u)h(v, v) + k(u, u)k(v, v)| · ∥σ(u, u)∥ · ∥σ(v, v)∥

≤|h(u, u)h(v, v) + k(u, u)k(v, v)| < 1

4
,

where the first inequality is from the Schwarz inequality, the second is due to

∥σ(u, u)∥2≥∥σ(u, u)∥2,

and the third is from (4.5). This contradicts the Lemma. Hence, Mn must be totally

geodesic in CPn+1. Our theorem is proved.
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