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ON A CONJECTURE OF K. OGIUE
FOR KAEHLER HYPERSURFACES**

SHANG WEIMING*
Abstract

An affirmative answer to a conjecture of K. Ogiue formulated in [2] is given, namely, the
following result is proved:
Let M™ (n > 2) be a complete Kaehler hypersurface immersed in a complex projective space
C P71 If every sectional curvature of M™ is positive, then M™ is totally geodesic in CP™+1,
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¢1. Introduction

In [2], K.Ogiue proposed a conjecture that a complete Kaehler hypersurface M™ immersed
in a complex projective space CP"t! with positive sectional curvature is totally geodesic.
In [3], he proved that it is true for n > 4. Moreover, if M" is imbedded in CP"*!, then
it is also true for n > 2. This paper solves completely the conjecture for immersed Kaehler
hypersurfaces for n > 2, namely, we obtain the following

Theorem. Let M™ (n > 2) be a complete Kaehler hypersurface immersed in a complex
projective space CP" 1. If every sectional curvature of M"™ is positive, then M™ is totally
geodesic in C P!,

This theorem is closely related to another Ogiue’s conjecture in [3] which says that a
complete Kaehler submanifold M™ immersed in CP"™ (p < n(n + 1)/2) with positive
sectional curvature is totally geodesic. Our result can be regarded as some evidence that
Ogiue’s conjecture may be true.

§2. Basic Formulas

Let CP""1(1) denote an (n + 1)-dimensional complex projective space with the Fubini-
Study metric of constant holomorphic sectional curvature 1. Let M™ be a Kaehler hypersur-
face immersed in CP"*1(1). The Fubini-Study metric of CP"*1(1) and the induced metric
on M™ both will be denoted by g. The complex structure of CP"*1(1) and the induced com-
plex structure on M both will be denoted by J. Let V and V be respectively the Riemannian
connections of CP""1(1) and M™, and let o be the second fundamental form of M™. By
A and V+ denote the Weingarten endomorphism and the normal connection. Throughout
this paper, X,Y,Z and W will be either vector fields on one of the special neighborhoods
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U(x) of x € M™, or vectors tangent to M at a point of U(z), unless otherwise specified. Let
¢ and J¢ be the unit normal vector fields on U(x) € M. On U(z), we havel”

V.Y =V,Y +0(X,Y) (2.1)
=V.Y + h(X, V)¢ + k(X,Y)JE, (2.2)
where h and k are symmetric covariant tensor fields of degree 2 on U(x) satisfying
hMX,JE) = —k(X,)Y), k(X,JY)=hX,Y), (2.3)
Vol = —Ac(X) + Vy€ = —Ae(X) + s(X) JE, (2.4)

where A¢ and s are tensor fields on U(x) of type (1.1) and (0, 1) respectively. Furthermore
A¢ and JA¢ are symmetric with respect to g, A¢J = —JA¢ and A¢ satisfies

Age = JAe = —AgJ, (2.6)
ViJe = JVic. (2.7)

Let R, R and R' denote respectively the curvature tensors of the connections V, V and
V+. Then we have

R(X,Y)Z =1 {o(V. )X — (X, 2)7) + g(JV, 2)JX

—9(JX,Z)JY +29(X,JY)JZ}, (2.8)
R(X, Y)W =R(X,Y)W — {g(AcY,W)Ac X — g(Ac X, W)A:Y }
—{g(JAY,W)JAcX — g(JAX,W)JAY }. (2.9)

Let P be a 2—plane tangent to M at a point of U(x). Then,
K(P) =K(P) = {g(A¢X, X)g(AeY,Y) — g(AeX,Y)*}
—{9(JAX, X)g(JAYY) = g(JAX, Y )}, (2.10)

where { X, Y} is an orthonormal basis of P and K (P) (resp. K (P)) is the sectional curvature
is P considered as a 2—plane tangent to CP"*! (resp. M).
The Ricci epuation of M is

9(RH(X,Y)E, JE) = g(R(X,Y)E, JE) + g([Ae, Are] X, Y),
which is epuivalent to
1 1
k(A X)Y) = Zg(X, JY)+ 5[—X(S(Y) +Y(s(X)) + s([X,Y])]. (2.11)
From (2.2) and the Codazzi epuation of M ,we can obtain

(V2h)(X,Y, Z,W) — (V*h)(Y, X, Z, W)

= —hR(X,Y)Z,W) - h(Z,R(X,Y)W), (2.12)
(V2E)(X,Y,Z, W) — (V?E) Y, X, Z, W)
= - k(R(X,Y)Z,W) — k(Z, R(X,Y)W). (2.13)

Using the facts that o(JX,Y) =0(X,JY) = Jo(X,Y) and
(Vo)(JX,Y,Z) = (Vo )(X,JY,Z) = (Vo)(X,Y,JZ) = J(Vo)(X,Y, Z),
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we obtain
(Vo)(Z, X,Y) =[(V-h)(X, V) — h(X, Y)s(2)J¢
+ [(V.E)(X,Y) + h(X Y)s(2)]Jg, (2.14)
(VR)(JX,Y,Z) =— (VE)(X,)Y,Z) — MY, 2)s(X) + k(Y, Z)s(JX), (2.15)
(VE)(JX,Y,Z) =(Vh)(X,Y,Z) — MY, Z)s(JX) — k(Y, Z)s(X). (2.16)
Finally, from (2.3) we obtain easily
(VR)(JX,Y) = —(V,E)(X,)Y), (V.k)(JX,Y)=(V,h)(X,Y). (2.17)

§3. A Lemma

Let M™ be a compact Kaehler hypersurface immersed in CP"*1(1). Let 7 : UM —M"
and UM, be the unit tangent boundle over M" and its fibre at peM, respectively. Then,
we consider the function f: UM — R defined by

flu) = ||a(u,u)H2 = h(u,u)2 + k(u,u)2, Yu € UM,.
We may obtain

Lemma. Let M™ (n>2) be a compact Kaehler hypersurface immersed in CP"*1(1) which
is not totally geodesic. Then there exist some p € M and some vector v € UM, such that

[ Agull*(p) = h(Agu,w) > (3.1)

Jor any unit normal vector €T M and any unit vector ue P*({v, Jv}), where P*({v, Jv})
denotes the orthogonal complement space of the holomorphic plane spanned by v and Jv in
UM,.

Proof. Since M™ is compact, the function f attains its maximum at some vector veU M}
for some pe M. Fixed veUM, for any vector u€ My}, let 7, (t) be the geodesic in M™ deter-
mined by the initial conditions v, (0) = p, ~,,(0) = u. Parallel translation of v along ~,(t)
yields vector field V,,(¢). Let f,(t) = f(Vu(t)). By similar computations as in [6], we obtain

= %fU(O) = 2h(v,v)[(Vh)(u,v,v)] + 2k(v,0)[(VE) (u, v,v)], (3.2)

= L 10(0) = 200, ) (V)T 0] 4 2k ) (V) (Juw )], (3

Now we suppose that u€U M, satisfies the condition that g(u,v) = g(Ju,v) = 0. Thenl(6
h(u,v)h(v,v) + k(u,v)k(v,v) = 0, (3.4)

h(u,v)k(v,v) — k(u,v)h(v,v) = 0, (3.5)

%fU(O) =2[(Vh)(u,v,v)]* + 2h(v,v)[(VZRh)z(u, u,v,v)]

+ 2[(V2E) (u, v, v))* + 2k (v, v)[(V?E) (u, u, v,v)],
fju( ) =2[(Vh)(Ju,v,v)]? + 2h(v,v)[(V2k)(Ju, Ju,v,v)]
[(Vk:)(Ju v,0)]? + 2k(v, v)[(V2k)(Ju, Ju, v, v)],

dt2

d2
)+ o & (<0 (3:6)
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Using (2.15), (2.16), (2.17) and (2.12), we easily obtain
(V2h)(Ju, Ju,v,v)
(V2 (0,0, ) + [V g (0, ) + T, 0))]s ()
+ [Vulk(v,0) = Vyu(h(v,0)]s(w) + kv, 0)[Ju(s(Jw) + u(s(u))]
+ h(v,v)[u(s(Jw) — Ju(s(w))] — h(R)(Ju,uw)Jv,v) — h(Jv, R(Ju, uw)v).
Similarly, using (2.15), (2.16), (2.17) and (2.13), we have
(V2k)(Ju, Ju,v,v)
— (V2k) (u, u,v,0) — [Vu(h(v,v)) + V5 (k(u, u))s(w)
+ [=Vyu(h(v,0)) + Vi (k(v,v))]s(Ju) + k(v,v)[—Ju(s(u)) + u(s(Ju))]
— h(v,v)[Ju(s(Ju)) + u(s(u))] — k(R(Ju, u)Jv,v) — k(Jv, R(Ju, u)v).
Substituting these into (3.6) and using (3.2), (3.3), (2.15) and (2.16), we have
h(v,v)[(V2h)(Ju, Ju,v,v) + (V2h)(u, u, v, v)]
+ k(v,0)[(V2E) (Ju, Ju,v,v) + (V2E) (u, u, v, v)]
—(h

(0,0)% + k(v,0)*)(s(Ju)® + s(u)?)
+ (A(v,0)? + k(v,v)*) (u(s(Ju)) = Ju(s(u)))
— h(v,v)[R(R(Ju, u)Jv,v) + h(Jv, R(Ju,u)v)]

)
+ E(v, 0)[k(R(Ju, u)Jv,v) + k(v, R(Ju, u)v)].
Noticing the Gauss equation and that g(u,v) = g(Ju,v) = 0, one can see that

hMR(Ju,u)Jv,v) =h(Jv, R(Ju,u)v)
:%h(v,v) + 2h(v,v)h(Aeu, v) — 2k(u, v)k(Asu, v),
)

E(R(Ju,u)Jv,v) =k(Jv, R(Ju,u)v)
1

=— ik‘(v, v) + 2k(u, v)k(Aeu, v) + 2h(u, v)k(Aeu, v).

Then (3.6) is equivalent to
(h? + k)1 = (s(Ju))? = (s(w))® + u(s(Ju)) — (Ju)(s(u))]
— 4[h(u,v)h(v,v) + k(v, v)k(u, v)]h(Acu, v)
+ Ah(v,v)k(u, v) = k(v, v)k(u, v)]k(Agu, v)
<0.
Substituting (3.4), (3.5) and (2.11) into the above, we finally obtain
1

(h(v,v)? + k(v,v)Q)[§ — 2h(Agu,u) — (s(u))? — (s(Ju))? — s([Ju, u])<0. (3.7
In the neighborhood U(p) of p, o(X,Y) = h(X,Y )¢ + k(X,Y)JE, where o is a unit normal
vector field, which can be obtained by parallelly translating the unit normal vector £, at
p in the normal bundle along the geodesics on M™ starting from the point p. So, we have
1
%
that

- 0, where (t) is any geodesic on M™ through p. Then it is easily seen from (2.4)

s(u) = s(Ju) = s([Ju,u]) =0
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at the point p. Thus it follows from (3.7) that
1
[h%(v,v) + Kk (v, v)][§ — 2h(A¢u,u)]<0 (3.8)

at p. Since M™ is not totally geodesic, h?(v,v) + k?(v,v) # 0. At the point p we have from
(3.8)

h(Agu,u)>~, YucP*({v, Ju}).

> =

The Lemma is proved.

t4. Proof of Theorem

At first, by Proposition 6.12 in [3], we note that M™ is compact under the hypothesis as
in theorem.

We assume that the function f defined as in §3 attains its maximum at v € UM, for
some p € M. All computations below will be restricted at the point p. From (3.4) and (3.5)
we have

h(v,v)g(Aeu,v) + k(v,v)g(JAgu,v) =0,
—k(v,v)g(Aeu, v) + h(v,v)g(JAcu,v) =0

for any u € M, such that g(u,v) = g(u, Jv) = 0.
Now suppose that M™ would be not totally geodesic so that h?(v,v) + k?(v,v)#0. Then,

g(Aeu,v) = g(JAgu,v) =0,
ie.,
h(u,v) = k(u,v) = 0.
Therefore,

Aev = h(v,v)v, JAev = k(v,v)v,

Agwmyt = h(v,v)Agu + k(v,v)J Acu, (1)
AgopyJu = k(v,v)Agu — h(v,v)J Agu. '
If we take an eigenvector u€ P+ ({v, Jv}) of Ag(v), then
Ao’('u,v)u = [h(vv U)h(uv U) + ]41(1}, U)k(u7 u)]u
It is clear that A, (, ,)u#0. From the Gauss equation we have
1
Ag (o)t = §(R(u, v)v — R(u, Jv)Jv)
1
= i(K(u,v) — K(u, Jv)). (4.2)

By similar arguments, we obtain

1
Aoy Ju = i(K(Ju,v) — K(Ju, Jv))Ju. (4.3)
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From (4.1), (4.2) and (4.3) we can find

Acu :ﬁ[h(v,v)ﬂ((u, v) — K(u, Jv))u
+ E(v,v)(K (Ju,v) — K(Ju, Jv))Ju],
h(Agu, ) zm[h(v,v)h(u,u)ﬂ((u,v) — K(u, Jv))
- k(v,v)k‘(u, u)(K(Ju,v) _K(Juv JU))]v (44)

where

K(u,v) = K(Ju, Jv) = i + h(u,w)h(v,v) + k(u, u)k(v,v) > 0, w5
K(u,Jv) = K(Ju,v) = i — h(u,u)h(v,v) — k(u,u)k(v,v) > 0.

Then, (4.4) yields

h(Ag¢u,u) :ﬁ(h(u, w)h(v,v) + k(u, u)k(v,v))?

oo, oy M W, v) + k(w, w)k(v, v)] - o (w, Wl - flo (v, v)l

1
S|h(u7 u)h(v, U) + k(u7 U)k(l], U)| < Za
where the first inequality is from the Schwarz inequality, the second is due to
lo(w, w) 2>l (u, w)|1%,

and the third is from (4.5). This contradicts the Lemma. Hence, M™ must be totally
geodesic in CP"*!. Our theorem is proved.
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