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A PICARD TYPE THEOREM AND BLOCH LAW
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Abstract

A‘ picard type theorem is proired, and a counterexample is given to show that the Bloch Law
is not true generally.
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§1.l Introduction

In 1959, W. K. Hayman!!! proved the following theorem: Let f be a transcendental
meromorphic function in the plane. If n is an integer not less than 5 and a is a finite
nonzero complex number, then f' —af™ assumes every finite complex value infinitely often.
According to Bloch Law, which is a well-known heuristic principle in the theory of functions
asserting that a family of holomorphic (meromorphic) functions which have a property Pin
common in a domain D is a normal family in D if P cannot be possessed by non-constant
entire (meromorphic) functions in the plane, the criterion for normality which-corresponds
to the above theorem was recently proved by J. K. Langley!? and Li Xianjinl® respectively.

The further results on this respect were investigated by E. Mues!4 and Pang Xuecheng!®l.

In this paper, we shall show that Bloch Law is not true generally by proving a Picard type
theorem and giving a counterexample.

§2. Statement of Results

Theorem 2.1. a) Let f be a transcendental entire function. If a # 0 is a finite complex
number and n > 2 is an integer, then f+af’ ™ assumes all finite complex. numbers infinitely
often. '

b) Let f be a transcendental meromorphic function. If a # 0 is a finite complex number
and n > 3 is an integer, then f 4 af'™ assumes all finite complez numbers infinitely often.

Example. Let F' = {fn = mz},z € D, where D is a unit disc. Then fr + af'm #

0, z € D, but F is not normal on D. .
The above example shows that Bloch Law is not true. However, if we give an additional
condition, then we have the following
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Theorem 2.2. Let F-be a family of meromorphic functions in a domain D, f#b and
F+af™ #b for every f € F; where n > 2 is an integer and a # 0,b are two finite complex
numbers. Then F is normal.

By the above example, the condition f s b is necessary in a sense.

§3. Some Lemmas and the Proof of Theorems

In the following, we will use the usual Nevanlinna theory, e.g., [6], for notations and
results. In particular S(r, f) denotes any quantity satisfying S(r, f) = o(T(r, f)) as r — +o0
possibly outside a set of values r of finite linear measure.

Lemma 3.1. [ Let f be a transcendental meromorphic function and take any K > 1.
Then there exists a set M x of upper lo_qarzthmzc density TogdesMy < 6k < 1 such that

T(r, f) < 3¢K.
MgSr—oo T(’I‘, f')
- Lemma 3.1 will play an important role in the proof of our theorems.

Lemma 3.2. Let f be a transcendental meromorphic function. If a # 0,b are two finite
complex numbers and n > 2 is an integer, then we have

(0= DT, 1) < AV, 1) 49N (1, grise—y) +5(0.)

Proof. Without loss of generality, we may assume ¢ = 1 and b = 0.
Set ‘ s '

! .
g=f+" ad o=, | (31)
Then it is obvious that ¢ # 0 (otherwise f must be a constant, a polynomial of degree 2 or

an algebraic function ).
By elementary Nevanlinna theory and by (3 1), we deduce that T(r, g) < O(T(r, f)), 'S0

m(r,p) =S8(r, f).
From (3.1) we have

Fanf™ i = o(f 4 Py, (3.2)

We rewrite (3.2) in the form |
| e Y (33
and denote 1/) = nﬂ ‘ ®, 80
b =of - f. S (39

Then 1 sé 0; otherwise by integrating we may obtain f 4 (1 — C) J™ =0, but it is
impossible by the same reasons above.
By differentiation of (3.4), then

"ﬁ,’f,n +-'n'¢f,n_1f” — <P'f+ (Pf, ___ f”- ' v (3.5)

Now we eliminate f between (3.4) and (3.5); we arrive at -
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where
s e (3.7)
Q=1'¢' + f'o? — of". (3.8)

If P =0, then Q = 0. By (3.8), we can easﬂy have f’ n-2 f" = C, but this is 1mpOSS1b1e since
f is transcendental. ‘

Thus from now on we may suppose P # 0. From (3 6) and (3.8), we claim that the poles
of f cannot be the poles of P for n > 2, so by (3.7) the poles of P may be caused by the
zero points of f' and f + f'". Hence

e 1
N('r, P) < 2N(’l", f’) + 3N(’l‘, W). (3,9)
By (3.8), we have
— 1
N(r,Q) < NG, £) +2N(r, )+ 2 (r 5w ) (3.10)
It is easy to see that the following is true:

CmP)=S@f) (311)

~and

m(r,@) < m(r, )+ S, D), - (1)
by the logrithm lemma. |
Hence, by (3.6), (3.9), (3.10), (3.12), we have
wT(r, ') < T(r, @) + T(r, P) + O(1)
| < T(r, f') + 2N, f+ 2N(r; },) +5N (7', 5 f'") +8(r, f).

By (3.2) we have

f 1 1 1 ~
W b) <) + 8 g
: : 1 _
< Ng)+N(rpm) +50.0)
_ 1 - | _
S N(’I‘,f)+2N(’I‘, m‘,‘ﬁ) +S(7‘,f)
Thus we immediately have the assertlon by above two mequahtles

. Lemma 3.3. Let f be a transcendental meromorphic function, n > 2 be an integer. If
Nl)(r, -f) = S(r, f), then f + f'™ assumes zero value infinitely.
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Proof. By FFT and SFT, we have
m(fr, f—}ﬁ) Sm(’r, 7‘%) +mir, %)

) + m(r, %) +8(r, f). (3.13)

N(rx)
N(n LHD) <w(r L),
N(’r, I+ f’n)

N(n L) 28 (5 ) = N (5. (310

Hence by (3.13), (3.14) and FFT, we have
=)+ NN+ N (r,

nT(r, f') 5‘1\7(

7 7 77)
1

1 ol By
+N(7’,W) +N1)(7', ‘—f-) +m(r, fl)+S'(r,f) .
<T(r, ") + N, f) + 28 (r, 7 f,n) + 5(r, f). (3.15)
If f+ f'™ assumes zero value finitely, then N (r, W) = 8(r, f). By (3.15), bt’hevnwe have

(n—1- DT, ) < S, ). (3.10

But by Lemma 3. 1, (3.16) is impossible and we have the assertion.

Proof of Theorem 2.1. If f+af'™ assumes some finite complex number b finitely, then
N(r, ﬁm) = S§(r, f). For the sake of convenience, we assume a = 1 and b = 0. If f
is an entire function, then by Lemma 3.2 we see that (n — 1)T(r, ) = 8(r,f). Butitis
impossible by Lemma 3.1. If » > 3 and f is a transcendental meromorphic function, then,
from Lemma 3.2, we have

(n— UTU,)<4NW,)+S&,)<2NU,)+S@,) (3.17)

50 (n 3)T(r, f) < S(r, f). But it is also 1mposs1ble by Lemma 3.1. Now it remains to
prove the case when n.= 3-and f is a transcendental ‘meromorphic function.. By (3.17) we
easily have m(r, f') = S(r, f).
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Rewriting (3.3) in the form
Fof™ " —ef" = f=f (318)

and denoting H = nf’ ?—2 f'—of! "1 from (3.18) we see that the poles of f cannot be the
poles of H. Hence N(r,H) = N(r, f+f,n) S(r, f), and

T(r,H) = m(r,H) + N(r,H)
< mfr, ") +m(r, nff—, — @)+ N(r,H) = 5(r. ).

By rewritting (3.18) in the form f'(1+4 H) = ¢f, we see that the simple zero points. of f
must be the zero points of H + 1, since such points cannot be the poles of .
Hence

Nl) (7‘, , ;—) < N(r, _I;%—_l) <T(r,H)+0@1) = 8(r, f)

and we have the assertion by Lemma 3.3. -

Corollary 3.1. Let f be a meromorphic function, n > 3 be an znteger anda #£ 0 be a
finite complex number. If f +af' ™ £ b for some finite complex number, then f must be a
constant. |

Corollary 3.2. Let f be a meromorphzc functzon, a#0 be a ﬁmte comple:z: number. If
f satisfies the following conditions

i) f+af? £,

ii) Nl)("', f—}-l;) = 8(r, ), _
then f must be a constant.

Corollary 3.3. Let f be an entire function and a # 0 be a finite complez number. If
f+af 2 # b for some finite complex number b, then f is either a constant or a polynomial
of degree 2.

The Corollaries 3.1, 3.2, 3.3 are obvious according to the proof of above lemmas.

To prove Theorem 2.2 we need the following

Lemma 3.4.81  Let F = {f} be a family of meromorphic functions defined on unit disc
D. If F is not normal on D and f # 0 for all f € F, then for every given real number
k(k < 1) there exist

(1) a real number 7,0 <7 <1,

(2) complex numbers zn,|2n| < T,

(3) functions f, € F,n=1,2,---,

(4) positive numbers py, which satisfy

lim p, =0 and lim Z————‘Zn—l
n—00 n—+oo Pn

= 400

such that pf fn(2n + pn¢) — 9((), spherically on compact subsets of @, where g is a non-
constant meromorphic function on C.

Proof of Theorem 2.2. Without loss of generahty, we may assume that e = 1,b=0
and D is unit disc. If F is not normal on D, then for k = 1%~ < 1 there exist 7, zm, frms Pm
by Lemma 3.4 such that g,,(¢) = OF fim(Zm + pmC) is convergent to g(¢) uniformaly on
compact subsets of € where g({) is a non-constant meromorphic function.
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Therefore, g, + (g;,)" is also convergent to g + g’ uniformly on compact subsets of @,
On the other hand

G+ 9'm = O S + pFFI 0 = ok (fr + 1) # 0, |
8o either g+¢'" has no zero points or g+g¢'" is identical zero by Hurwitz theorem. But by our
Corollaries 3.1 and 3.2 these two cases cannot takeplace if g is a non-constant meromorphic
function and we have the assertion.
Remark. It remains open whether or not Theorem 2.1 is true if » = 2 and f is mero-
morphic. -
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