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ON THE FEIGENBAUM’S FUNCTIONAL EQUATION fP (λx)=λf(x)**
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Abstract

The author considers the Feigenbaum’s functional equation fP (λx) = λf(x) for each p ≥ 2.
The existence of even unimodal C1 solutions to this equation is discussed and a feasible method

to construct such solutions is given.
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§1. Introduction

Recently the research for the Feigenbaum phenomenon has been attached importance

to by mathematicians, theoretical physicists and theoretical biologists, etc. The following

functional equation was exactly posed by Feigenbaum[5] himself first for explaining this

phenomenon: {
f(x) = − 1

λ
f2(−λx),

f(0) = 1, −1 ≤ f(x) ≤ 1,
(1.1)

where λ ∈ (0, 1) is to be determined, x ∈ [−1, 1].

A key problem is whether the Equation (1.1) has any solution, in particular, any even

unimodal C1 solution. For this purpose we may consider under a broader sense the equation:{
f(x) =

1

λ
fp(λx),

f(0) = 1, −1 ≤ f(x) ≤ 1,
(1.2)

where λ ∈ (0, 1) is to be determined, x ∈ [−1, 1], p ≥ 2 is an integer, fp the p-fold iteration

of f .

It is easy to see that (1.1) is a special case of (1.2). When p = 2, the existence of even

unimodal C1 solutions to (1.2) was proved by many authors (see [1], [3], [6], [8]). When

p = 3, a method to construct the even C1 solutions of (1.2) was pointed out in [2] essentially.

For p large enough, it was shown in [4] that (1.2) has a solution similar to the quadratic

function f(x) = 1− 2x2.

In this paper, we will not only pose the conditions that (1.2) has even unimodal Ci

solutions for any p ≥ 2 and each i = 0, 1, but also contribute a feasible method to construct
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these solutions. The main results will be given in Theorem 2.1, Theorem 3.1 and Theorem

4.2.

For simplifying the problem, we consider the following equation:{
f(x) =

1

λ
fp(λx),

f(0) = 1, 0 ≤ f(x) ≤ 1,
(1.3)

where λ ∈ (0, 1) is to be determined , x ∈ [0, 1].

The connection between (1.2) and (1.3) will be given in Theorem 4.1.

If f is a solution of (1.3), then it is easy to check

f(x) = λ−nfpn

(λnx) (1.4)

for all n ≥ 0 and each x ∈ [0, 1].

§2. Continuous Single–Valley Solutions

Definition 2.1. We call f a continuous single–valley solution of (1.3), if (1) f : [0, 1] →
[0, 1] is continuous, (2) f(0) = 1, (3) f(α) = 0 for some α ∈ (0, 1) such that f is strictly

decreasing on [0, α] and strictly increasing on [α, 1].

In Lemma 2.1–Lemma 2.7, f is always supposed to be a continuous single–valley solution

of (1.3) with f(α) = 0, where α ∈ (0, 1).

Lemma 2.1. fpn

(0) = λn → 0 as n → ∞. And 0 is recurrent but not periodic.

Proof. It follows immediately by taking x = 0 in (1.4).

Lemma 2.2. f has a unique fixed point e in [0, 1], and 0 < e < α.

Proof. Obviously, f has only one fixed point in (0, α) . If f has another fixed point q,

then by Lemma 2.1 and the fact that f(α) = 0, q ∈ (α, 1). Since f is strictly increasing on

[α, 1], it follows that q = f(q) < f(1). By induction, q = fm(q) < fm(1) for all m > 0. In

particular,

q = fpn−1(q) < fpn−1(1) = fpn−1(f(0)) = fpn

(0).

This contradicts the fact that fpn

(0) → 0 as n → ∞.

Lemma 2.3. Let x ∈ [0, λ] and 0 ≤ i ≤ p− 1. Then f i(x) = α iff x = λα and i = p− 1.

Proof. Suppose f i(x) = α for some x ∈ [0, λ] and 0 ≤ i ≤ p− 1. First we can know from

(1.3) that λα is the only local extremum point of fp in (0, λ). Secondly, since f(α) = 0 is

not periodic, it follows that x ̸= 0 and α is not periodic. Noting that

fp+1(α) = fp(f(α)) = fp(0) = λ,

we must have x ̸= λ. By aperiodicity of α, we know that if j ̸= i then f j(x) ̸= α. Thus x

is an extremum point of fp in (0, λ). By uniqueness, x = λα and i = p− 1. Conversely let

x = λα and i = p − 1. We must show that fp−1(λα) = α. Take x = α in (1.3). We have

fp(λα) = 0, i. e., f(fp−1(λα)) = 0. Hence fp−1(λα) = α.

Lemma 2.4. For each i = 1, 2, · · · , p− 1,

(1) f i(λα) > λ,

(2) f i(x) > λ, ∀x ∈ [0, λα],

(3) f i(x) > λα, ∀x ∈ (λα, λ].
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Proof. (1) If f i(λα) = x ≤ λ for some i with 1 ≤ i ≤ p− 1, then

fp−1−i(x) = fp−1−if i(λα) = fp−1(λα) = α.

This contradicts Lemma 2.3.

(2) By Lemma 2.3, f i : [0, λα] → f i([0, λα]) is a homeomorphism. It suffices from

conclusion (1) to show that f i(0) > λ. If f j(0) = x ≤ λ for some j with 1 ≤ j ≤ p− 1, then

fp−j(x) = fp−jf j(0) = fp(0) = λ.

Furthermore

f j(λ) = f jfp−j(x) = fp(x) = λf(
x

λ
) ≤ λ.

Since f j |[0,λ] is also a homeomorphism, we have f j(λα) ≤ λ. This contradicts conclusion

(1). The result then follows.

(3) If f j(x) = y ≤ λα for some j with 1 ≤ j ≤ p− 1 and x ∈ (λα, λ], then

fp−j(y) = fp−jf j(x) = fp(x) ≤ λ.

This contradicts conclusion (2).

Lemma 2.5. For each l = 1, 2, · · · , p− 1, f has no periodic point of period l on [0, λ].

Proof. Assume for contradiction that the conclusion fails, i. e., there were x ∈ [0, λ] and

1 ≤ l ≤ p − 1 such that x were a periodic point of f with period l. By Lemma 2.4, (2),

x ∈ (λα, λ]. Let

y = min{x, f(x), · · · , f l(x) }.

Then by Lemma 2.4, (3), y ∈ (λα, λ]. Since
y

λ
∈ [α, 1) and f(α) = 0 < α, it follows from

Lemma 2.2 that f(
y

λ
) <

y

λ
. Hence

fp(y) = λf(
y

λ
) < λ

y

λ
= y.

This contradicts the property of y.

Lemma 2.6. Let J = [0, λ], J0 = f(J), and Ji = f i(J0). Then

(1) for each i = 0, 1, · · · , p− 2, f i|J0 : J0 → Ji is a homeomorphism.

(2) J0, J1, · · · , Jp−2 ⊂ (λ, 1] are pairwise disjoint.

Proof. By Lemma 2.3, f i+1|J is injective for 0 ≤ i ≤ p − 2, so is f i|J0 . Thus (1) holds

from the continuity of f i. To prove (2), it suffices to show Ji ∩ J = ∅ for 0 ≤ i ≤ p− 2. We

claim that f i+1(λ) > λ. If otherwise, f l(λ) ≤ λ for some l with 1 ≤ l ≤ p−1. Then we know

from Lemma 2.4, (1) that there exists a fixed point of f in [λα, λ]. This contradicts Lemma

2.5. So the claim holds. Now we continue proving the lemma. Noting that f i+1|J : J → Ji
is also a homeomorphism, we get from Lemma 2.4, (2) that Ji ∩ J = ∅.

Lemma 2.7. The equation fp−1(x) = λx has only one solution x = 1 in (f(λα), 1].

Proof. Recall (1.3). Clearly x = 1 is a solution of the equation fp−1(x) = λx. Suppose

x = x0 is an arbitrary solution of this equation. Since f([0, λα]) ⊃ (f(λα), 1], it follows that

f(y0) = xo for some y0 ∈ [0, λα]. So fp−1(f(y0)) = λx0. Furthermore,

λf(
y0
λ
) = fp−1(f(y0)) = λx0,
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i.e., f(
y0
λ
) = x0. Noting that

y0
λ

∈ [0, α] and f is strictly decreasing on [0, α], we have

y0 =
y0
λ
. In other words,

y0(1−
1

λ
) = 0.

Since λ ̸= 1, the only possible case is y0 = 0. Hence

x0 = f(0) = 1.

Theorem 2.1 Let f0 be a continuous function on [λ, 1], where 0 < λ < 1. If

(1) there exists some α ∈ (λ, 1) such that f0(α) = 0 and f0 is strictly decreasing on [λ, α]

and strictly increasing on [α, 1];

(2) fp−1
0 (1) = λ, fp

0 (λ) = λf0(1);

(3) denote [f0(λ), 1] by J0 and f i(J0) by Ji,

then

(a) J0, J1, · · · , Jp−2 ⊂ (λ, 1] are pairwise disjoint,

(b) f i|J0 : J0 → Ji is a homeomorphism for each i = 0, 1, · · · , p− 2,

(c) α is in the interior of Jp−2;

(4) the equation fp−1
0 (x) = λx has only one solution x = 1 on (α0, 1], where α0 ∈ J0 with

fp−1
0 (α0) = 0,

then the equation (1.3) has exactly one single-valley continuous solution f with f |[λ,1] = f0.

Conversely, if f0 is the restriction on [λ, 1] of a single-valley continuous solution to (1.3),

then (1)–(4) must hold.

Proof. Suppose that f0 is the restriction on [λ, 1] of some single-valley continuous solution

to (1.3). Then it is easy to prove that f0 satisfies (1)–(4). Indeed, (1) follows from Definition

2.1 and Lemma 2.4; (2) can be concluded directly from (1.3); (3) is a direct conclusion of

Lemmas 2.3 and 2.6; And Lemma 2.7 implies (4).

Conversely, suppose that f0 satisfies the conditions (1)–(4). Set

g+ = fp−1
0 |[α0,1], g− = fp−1

0 |[f0(λ),α0].

Then it is easy to see that

g+ : [α0, 1] → g+([α0, 1]) and

g− : [f0(λ), α0] → g−([f0(λ), α0])

are both homeomorphisms and g+ is strictly increasing and g− strictly decreasing. Set

I0 = [λ, 1], Ik = [λk+1, λk], ∀k ≥ 1.

Then f0 is well-defined on I0. For x ∈ I1, we set

f1(x) =

 g−1
+ (λf0(

x

λ
)), x ∈ [λ2, λα],

g−1
− (f0(

x

λ
)), x ∈ [λα, λ].

(2.1)

And then for each k ≥ 1, we define inductively

fk+1(x) = g−1
+ (λfk(

x

λ
)), x ∈ Ik+1. (2.2)

Finally, let

f(x) =

{
1, x = 0,

fk(x), x ∈ Ik.
(2.3)
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We prove that f is exactly what we need.

(1) f is well-defined.

To see this it suffices to show that fk and fk+1 coincide at Ik ∩ Ik−1 = {λk}. We use the

induction. For k = 1,

f1(λ) = g−1
− (λf0(

λ

λ
)) = g−1

− (λf0(1)) = f0(λ).

The last equality holds because

g−(f0(λ)) = fp−1
0 f0(λ) = fp

0 (λ) = λf0(1).

Suppose that for k = n, fn(λ
n) = fn−1(λ

n) has been proved. For k = n+ 1, we have from

(2.2)

fn+1(λ
n+1) = g−1

+ (λfn(
λn+1

λ
)) = g−1

+ (λfn(λ
n))

= g−1
+ (λfn−1(λ

n)) = g−1
+ (λfn−1(

λn+1

λ
)) = fn(λ

n+1).

The induction is complete.

(2) f is continuous.

Since one can see easily that f is continuous on each Ik, it suffices to show that f is

continuous at x = 0. By induction, we can see that f is strictly decreasing on (0, α].

Therefore {fk(λkα)}∞k=2 is a strictly increasing sequence on [α, 1]. Let

lim
k→∞

fk(λ
kα) = β.

Then β ∈ [α, 1]. By (2.2), g+(fk(λ
kα)) = λfk−1(λ

k−1α). Also, it may be written as

fp−1
0 (fk(λ

kα)) = λfk−1(λ
k−1α).

Letting k → ∞, we obtain fp−1
0 (β) = λβ. By condition (4) in Theorem 2.1, β = 1 = f(0).

This proves that f is continuous at x = 0.

(3) f is the unique single-valley solution of equation (1.3) determined by f0.

From the definition of f and (1.3), this can be concluded by induction.

Thus the proof of Theorem 2.1 is complete.

Remark 2.1. When p = 2, the condition (3) in Theorem 2.1 implies λ < f0(λ) < α < 1,

which is identical with the results in [7] and [8]. When p = 3, this condition implies

λ < f2
0 (λ) < α < f0(1) < f0(λ) < 1,

which is just the same as the results in [2].

§3. Piecewise Smooth Single–Valley Solutions

Definition 3.1. A continuous single–valley solution f of (1.3) is said to be piecewise C1,

if f is continuously differentiable on each interval where it is monotone.

Restricting the initial function f0 by additional condition, we can obtain the piecewise

C1 single–valley solutions of (1.3) which are related to the even unimodal C1 solutions of

(1.2).

Theorem 3.1. Let 0 < λ < 1, α ∈ (λ, 1) and let f0 be continuous on [λ, 1], and be C1

on each of [λ, α] and [α, 1]. If

(1) f0(α) = 0;
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(2) fp−1
0 (1) = λ, fp

0 (λ) = λf0(1);

(3) Denote [f0(λ), 1] by J0 and f i(J0) by Ji, then

(a) J0, J1, · · · , Jp−2 ⊂ (λ, 1] are pairwise disjoint,

(b) f i
0|J0 : J0 → Ji is a diffeomorphism for each i = 0, 1, · · · , p− 2,

(c) α is in the interior of Jp−2;

(4) The equation fp−1
0 (x) = λx has only one solution x = 1 on (α0, 1], where α0 ∈ J0

with fp−1
0 (α0) = 0;

(5) f ′
0(x) > 0 for each x ∈ [α, 1] and f ′

0(x) < 0 for each x ∈ [λ, α]; f ′
0(α+0) = −f ′

0(α−0);

f ′
0(1) = f ′

0(λ)

p−1∏
i=1

f ′
0(f

i
0(λ));

dfp−1
0

dx
(1) > 1,

then there exists an unique piecewise C1 single–valley solution f of equation (1.3) satisfying

(1) f |[λ,1] = f0, (2) f
′(0) = 0, (3) f ′(x) < 0 for each x ∈ (0, λ].

Proof. By Theorem 2.1, we may assume that f is the unique continuous single–valley

solution of (1.3) determined by f0. By induction, it is easy to check that f is C1 and has

negative derivative on each of [λ2, λα], [λα, λ] and I2, I3, · · · . To complete the proof of the

theorem, we shall first prove that f is continuously differentiable at x = λα and f ′(λα) < 0.

Differentiating the equation f(x) =
1

λ
fp(λx) with respect to x, we have

f ′(x) =

p−1∏
i=0

f ′(f i(λx)). (3.1)

It can be written as

f ′(x) = f ′(fp−1(λx))f ′(λx)

p−2∏
i=1

f ′(f i(λx)). (3.2)

Letting x → α+ 0 and x → α− 0 respectively, we have

f ′(α+ 0) = f ′(α± 0)f ′(λα+ 0)

p−2∏
i=1

f ′(f i(λα)), (3.3)

and

f ′(α− 0) = f ′(α∓ 0)f ′(λα− 0)

p−2∏
i=1

f ′(f i(λα)), (3.4)

where f ′(α± 0) = −f ′(α∓ 0).

Comparing (3.3) with (3.4), we can know that f is continuously differentiable at x = λα.

Furthermore from

|f ′(λα)| = |f ′(λα+ 0)| = |f ′(λα− 0)| =
∣∣∣ p−2∏
i=1

f ′(f i(λα))
∣∣∣−1

̸= 0,

f ′(λα) = f ′(λα+ 0) < 0.

Secondly, we prove that f is continuously differentiable at x = λk and f ′(λk) < 0 for each

k = 1, 2, · · · . Letting x → 1− 0 for (3.1), we obtain

f ′(1) = f ′(λ− 0)

p−1∏
i=1

f ′
0(f

i
0(λ)).
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With reference to condition (5) of Theorem 3.1, we know immediately that f is continuously

differentiable at x = λ and f ′(λ) = f ′
0(λ) < 0. Now suppose that f is continuously differen-

tiable at x = λn and f ′(λn) < 0. For (3.1), letting x → λn +0 and x → λn − 0 respectively,

we obtain

f ′(λn+1 + 0) = f ′(λn)
[ p−1∏

i=1

f ′
0(f

i
0(λ

n+1))
]−1

= f ′(λn+1 − 0).

This shows that f is continuously differentiable at x = λn+1. Since

f ′(λn)
[ p−1∏

i=1

f ′
0(f

i
0(λ

n+1))
]−1

̸= 0,

it follows that f ′(λn+1) = f ′(λn+1 + 0) < 0. Thus by induction we have proved that f is

continuously differentiable at x = λk and f ′(λk) < 0 for each k = 1, 2, · · · .

Finally, we rewrite (3.1) as f ′(x) = f ′(λx)
dfp−1

dx
(f(λx)). Taking absolute value in both

sides of this equality, we have

|f ′(λx)| =
∣∣∣dfp−1

dx
(f(λx))

∣∣∣−1

|f ′(x)|. (3.5)

By condition (5), there are 0 < r < 1 and x0 > 0 such that if x < x0 then∣∣∣dfp−1

dx
(f(λx))

∣∣∣−1

≤ r.

From (3.5), for x < x0

|f ′(λx)| ≤ r|f ′(x)|. (3.6)

Set K = max{|f ′(x)| : λx0 ≤ x ≤ x0}. It is clear that for each x < λx0 there are some

n = n(x) and some x ∈ [λx0, x0] such that x = λnx. Using (3.6) repeatedly, we get

|f ′(x)| = |f ′(λnx)| ≤ r|f ′(λn−1x)| ≤ · · · ≤ rn|f ′(x)| ≤ rnK.

Therefore lim
x→0

f ′(x) = lim
n→∞

rnK = 0. This implies that f is continuously differentiable at

x = 0 and f ′(0) = 0. The proof of Theorem 3.1 is finished.

§4. Even Unimodal C1 Solutions

Definition 4.1. Let f be a continuous map of [−1, 1] into itself. We call f an even

unimodal solution, if (1) f(0) = 1; (2) for each x ∈ [−1, 1], f(x) = f(−x); (3) f is strictly

decreasing for x > 0. If, in addition, f is Ck (k ≥ 0), then f is said to be an even unimodal

Ck solution.

The proofs of the following Lemma 4.1 and Theorem 4.1 are simple, they are omitted

here.

Lemma 4.1. If f is an even unimodal C0 solution of equation (1.2), then f(1) < 0.

Therefore f(α) = 0 for some α ∈ (0, 1).

Theorem 4.1. For fixed p, there are following relations between the solutions of (1.2)

and (1.3):

(1) If g(x) is an even unimodal C1 (or C0) solution of equation (1.2) relative to λ,

then f(x) = |g(x)| (x ∈ [0, 1]) is a piecewise single–valley C1 (C0, respectively) solution of

equation (1.3) relative to |λ|.
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(2) If f(x) is a piecewise single–valley C1 solution of equation (1.3) relative to λ, satisfying

f ′(0) = 0 and f ′(α+ 0) = −f ′(α− 0), then g(x) = Sgn (α− |x|)f(|x|) is an even unimodal

C1 solution of equation (1.2) relative to Sgn (α− fp−2(1))λ.

As a direct conclusion of Theorems 2.1 and 3.1, we give

Theorem 4.2. Let 0 < |λ| < 1, and f0 be a C1 function on [−1, |λ|] ∪ [|λ|, 1]. If

(1) f0(x) = f0(−x) and f0(α) = 0 for some α ∈ (|λ|, 1);
(2) fp−1

0 (1) = λ, fp
0 (λ) = λf0(1);

(3) Denote [f0(λ), 1] by J0 and f i
0(J0) by Ji, then

(a) J0, J1, · · · , Jp−2 ⊂ [−1,−|λ|) ∪ (|λ|, 1] are pairwise disjoint;

(b) f i
0|J0 : J0 :→ Ji is a diffeomorphism for each i = 0, 1, · · · , p− 2,

(c) α is in the interior of Jp−2;

(4) The equation fp−1
0 (x) = λx has only one solution x = 1, where α0 ∈ J0 with

fP−1
0 (α0) = 0;

(5) f ′
0(1) = f ′

0(λ)
p−1∏
i=1

f ′
0(f

i
0(λ)),

dfp−1
0

dx
(1) < −1 and f ′

0(x) < 0 for |λ| ≤ x ≤ 1,

then equation (1.2) has only one even unimodal C1 solution f with f |[−1,−|λ|]∪[|λ|,1] = f0.

Remark 4.1. For making the solution smoother, it suffices to restrict the initial function

f0 further. We can see from the proof of Theorem 2.1 that Theorems 2.1, 3.1, 4.2 not only

reveal the existence of some kind of solutions, but also give a feasible method to construct

such solutions. An interesting problem is if there exist initial functions relative to some

one–parameter families (for example, f(x) = 1 − µx2, etc.). We shall discuss this problem

in another paper.

In addition, the condition (5) of Theorem 4.2 is not necessary to an even unimodal C1

solution f of equation (1.2), but we can conclude from Theorems 4.1 and 3.1 that f must

satisfy the first four conditions. Hence we can check easily that for p = 2 or 3 equation (1.2)

may have some unimodal C0 solutions only if λ < 0.
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