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Abstract

The author gives some characterizations of strongly algebraic lattices, and proves that the

category of strongly algebraic lattices is complete and cocomplete. Finally, this paper gives the
complete conditions under which the minimal mapping β : L → 2L on a completely distributive
lattice L preserves finite infs and arbitrary infs.
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Algebraic lattices were first invented in the forties by G. Birkhoff and O. Frink[1] and

L. Nachbin[2]. Now, in universal algebra, algebraic lattices have become familiar objects as

lattice of congruences and lattice of subalgebras of an algebra (see [3]). In [4], L. Geissinger

and W. Graves have studied strongly algebraic lattices and category of strongly algebraic

lattices. In this paper, we give some characterizations of strongly algebraic lattices and

prove that the category of strongly algebraic lattices is complete and cocomplete. In [5],

Wang Guojun has introduced an important mapping β: L → 2L—the minimal mapping on

a completely distributive lattice L. It is easy to see that β preserves arbitrary sups, but in

general, β does not preserve infs. In the last part of this paper, we give a complete answer

to the following question: Under what conditions does the minimal mapping β: L → 2L on

a completely distributive lattice L preserve finite infs and arbitrary infs?

For the definitions and notations used here, see [3, 6–9]. In general, if the proof of a result

is easy, we omit it.

§1. Preliminaries

Definition 1.1[5]. Let L be a complete lattice and x ∈ L. ϕ ̸= A ⊆ L is called a minimal

set of x if
∨

A = x and, for each ϕ ̸= B ⊆ L with
∨
B ≥ x and each a ∈ A, there exists a

b ∈ B such that a ≤ b; ϕ ̸= C ⊆ L is called a maximal set of x if C is a minimal set of x in

L0p. If the minimal sets (resp., maximal sets) of x exist, let β(x) (resp., α(x)) denote the

union of all minimal (resp., maximal) sets of x.
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Theorem 1.1[5]. Let L be a complete lattice. Then the following statements are equiva-

lent:

(1) L is completely distributive;

(2) For each x ∈ L, β(x) is a minimal set of x;

(3) For each x ∈ L, α(x) is a maximal set of x.

Definition 1.2[10]. Let L be a complete lattice. We define two binary relations ▹ and <<
on L as follows : x ▹ y iff for each ϕ ̸= D ⊆ L with y ≤

∨
D there exists a d ∈ D such that

x ≤ d; x<<y iff y ▹ x in L0p. Let |∇x = {y ∈ L : y ▹ x}.
Let L be completely distributive. Then for each x ∈ L, |∇x = β(x) and α(x) = {y ∈ L :

x<<y}[10]. Define β: L → 2L, x 7→ β(x); and α: L → 2L. β and α are called the minimal

mapping and the maximal mapping on L respectively[5].

From Theorem 1.1, we can directly obtain Raney’s intrinsic characterization of complete

distributivity:

Theorem 1.2(Raney)[10,11]. Complete lattice L is completely distributive iff whenever

u ̸≤ v in L there exist elements p and q in L such that u ̸≤ p, v ̸≥ q and, for each x ∈ L,

either x ≤ p or x ≥ q.

Definition 1.3. Let L be a complete lattice. An equivalence relation R ⊆ L×L is called

a congruence of L iff R is a complete sublattice of L× L.

For the definitions and notations of induced mappings in complete lattices, see [8, 9]. It

is easy to get the following (cf. [8, 9]):

Lemma 1.1. Let L be complete. Then we have

(1) If c : L → L is a closure operator preserving arbitrary infs, then c∧1 : L → L is a

kernel operator preserving arbitrary sups, and for x, y ∈ L, c(x) = c(y) iff c∧1(x) = c∧1(y).

(2) If k : L → L is a kernel operator preserving arbitrary sups, then k∨1 : L → L is a

closure operator preserving arbitrary infs, and for x, y ∈ L, k(x) = k(y) iff k∨1(x) = k∨1(y).

Proposition 1.1. Let L be complete and ∆ the diagonal of L × L. For an equivalence

relation R ⊆ L× L, the following conditions are equivalent:

(1) R is a congruence;

(2) There is a closure operator c : L → L preserving arbitrary infs such that R = (c ×
c)−1(∆);

(3) There is a kernel operator k : L → L preserving arbitrary sups such that R = (k ×
k)−1(∆).

Proof. (1) implies (2): For each x ∈ L, let x = {y ∈ L : yRx} and define c : L → L,

x 7→
∨
x = xR. It is easy to prove that c is a closure operator and preserves arbitrary infs,

and R = (c× c)−1(∆).

(2) implies (3): Let k = c∧1 : L → L. By Lemma 1.1, k is a kernel operator preserving

arbitrary sups, and R = (c× c)−1(∆) = (k × k)−1(∆).

(3) implies (1): Since k: L → L is a kernel operator preserving arbitrary sups, R =

(k× k)−1(∆) is closed with respect to sups of arbitrary sets. If k(xi) = k(yi) for each i ∈ I,

then by Proposition 1.5 of [10], k(
∧
i
Lxi) =

∧
i
K(L)k(xi) =

∧
i
K(L)k(yi) = k(

∧
i
Lyi), it follows

that R is closed with respect to infs of arbitrary sets. Hence, R is a congruence.

Corollary 1.1. Let L be complete and ∆ the diagonal of L× L. Then we have
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(1) c 7→ (c× c)−1(∆) associates with a closure operator its kernel congruence and induces

an isomorphism from the lattice of all closure operators of L which preserves arbitrary infs

(under the pointwise order) onto the lattice of all congruences of L (under the inclusion

order).

(2) k 7→ (k×k)−1(∆) associates with a kernel operator its kernel congruence and induces

a dual isomorphism from the lattice of all kernel operator of L which preserves arbitrary

sups (under the pointwise order) onto the lattice of all congruences of L.

Let L be complete and R a congruence of L, and L/R = {x : x ∈ L} the quotient set.

We define an order on L/R as follows: x ≤ y iff (x ∨ y, y) ∈ R. Under this order, L/R is

called a quotient of L.

Lemma 1.2. (1) x ≤ y iff xR =
∨
x ≤ yR =

∨
y;

(2)
∨
i

xi =
∨
i

xi,
∧
i

xi =
∧
i

xi.

Corollary 1.2. Let L be completely distributive. Then L/R is completely distributive.

§2. Strongly Algebraic Lattices and Their Characterizations

Definition 2.1. Let P be a partially ordered set. x ∈ P is called coprime, if x ≤ a or

x ≤ b whenever a ∨ b exists in P and x ≤ a ∨ b. Prime elements can be defined dually.

Let PRI (P ) and COPRI (P ) denote the sets of prime elements and of coprime elements

respectively.

Definition 2.2.[4] Let L be complete. x ∈ L is called strongly compact (resp., strongly

cocompact) iff x▹x (resp., x<<x) in L. Let Kc(L) and Kc(L) denote the sets of strongly com-

pact elements and of strongly cocompact elements respectively. L is called strongly algebraic

iff, for each x ∈ L, x =
∨
{y ∈ L : y ∈ Kc(L) and y ≤ x}.

Lemma 2.1.[12] L is strongly algebraic iff L is isomorphic to a complete ring of sets.

Corollary 2.1. Let L be strongly algebraic. If L0 ⊆ L is a sub-complete lattice of L,

then L0 is strongly algebraic (relative to the induced order).

Corollary 2.2. Let L be strongly algebraic. Then we have

(1) If c : L → L is a closure operator preserving arbitrary sups, then c(L) is strongly

algebraic (relative to the induced order).

(2) If k : L → L is a kernel operator preserving arbitrary infs, then k(L) is strongly

algebraic (relative to the induced order).

For a partially ordered set P , x ∈ P , and A ⊆ P , let ↓ x = {y ∈ P : y ≤ x, ↑ x = {y ∈
P : x ≤ y}, ↓ A =

∪
x∈A

↓ x and ↑ A =
∪

x∈A

↑ x. A is called a semi–ideal (resp., a semi–filter)

of P iff A =↓ A (resp., A =↑ A). Let Sid (P ) (resp., Sfil (P )) denote the complete lattice of

semi–ideals (resp., semi–filters) of P . M ∈ Sid (P ) is called an ideal of P iff for x, y ∈ P ,

if x ∨ y exists in P , then x ∨ y ∈ M ; filters of P can be defined dually. Let Id (p) (resp.,

Fil (P )) denote the complete lattice of ideals (resp., filters) of P .

Obviously, Sid (P ) and Sfil (P ) are complete sublattices of 2P , so both of them are

strongly algebraic, Kc(Sid (P )) = {↓ x : x ∈ P}, Kc(Sfil (P )) = {↑ x : x ∈ P}, and

P ∼= Kc( Sid (P )) ∼= Kc(Sfil (P )). For a strongly algebraic lattice L, it is easy to see that

L ∼= Sid (Kc(L)) and L0p ∼= Sfil (Kc(L)). We can easily prove that Id (P ) and Fil (P ) are
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algebraic. For an algebraic lattice L, it is well–known that L ∼= Id (K(L)), where K(L)

denotes the set of compact elements of L[6].

Lemma 2.2. Let S be a sup–semilattice. Then we have

(1) K(Id (S)) = {↓ x : x ∈ S}, and S ∼= K(Id (S));

(2) Kc(Id (S)) = {↓ x : x ∈ PRI (S)}.
Definition 2.1. Let S be a sup–semilattice. S0 ⊆ S is said to be a finite sup–generator

of S iff, for each x ∈ S, there is a finite set A ⊆ S0 such that x =
∨
A.

It is not difficult to get the following

Theorem 2.1. For a sup–semilattice S, the following two statements are equivalent:

(1) Id (S) is strongly algebraic;

(2) COPRI (S) is a finite sup–generator of S.

Corollary 2.3. For a complete lattice L, the following statements are equivalent:

(1) L is strongly algebraic;

(2) There is a partially ordered set P such that L ∼= Sid (P );

(3) There is a sup–semilattice S such that COPRI (S) is a finite sup–generator of S and

L ∼= Id (S).

It follows from Lemma 2.1 that the dual of a strongly algebraic lattice is still one, so by

Theorem I–4.23 of [6] we have

Proposition 2.1. The following conditions are equivalent:

(1) L is strongly algebraic;

(2) L is algebraic and L0p is a Heyting algebra;

(3) L0p is algebraic and L is a Heyting algebra;

(4) L is distributive and both L and L0p are algebraic.

Corollary 2.4. Let L be a finite lattice. Then L is strongly algebraic iff L is distributive.

By Corollary 2.2 and Proposition 1.5 of [10], we get the following

Theorem 2.2. For a complete lattice L, the following statements are equivalent:

(1) L is strongly algebraic;

(2) For some set X, L is isomorphic to the image of some closure operator c : 2X → 2X

which preserves arbitrary sups;

(3) For some set X, L is isomorphic to the image of some kernel operator k : 2X → 2X

which preserves arbitrary infs.

By Theorem 2.2, Lemma 2 of [13], Proposition 1.5 of [10] and the proof of Theorem I–4.16

of [6], we get the following

Theorem 2.3. For a complete lattice L, the following statements are equivalent:

(1) L is complete distributive;

(2) There is a strongly algebraic lattice L and a complete lattice homomorphism f : L → L

such that L = f(L);

(3) There is a set X and a projection operator p : 2X → 2X preserving arbitrary sups

such that L ∼= p(2X);

(4) There is a set X and a projection operator q : 2X → 2X preserving arbitrary infs such

that L ∼= q(2X).
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From Theorem 2.3, it is note worthy that the class of strongly algebraic lattices is not

closed under the formation of complete lattice homomorphic images.

Theorem 2.4. For a complete lattice L, the following conditions are equivalent:

(1) L is strongly algebraic;

(2) Whenever u ̸≤ v in L, there exist p, q ∈ L such that p ∈ Kc(L), q ∈ Kc(L), u ̸≤ p,

v ̸≥ q and, for each x ∈ L, either x ≤ p or x ≥ q;

(3) Whenever u ̸≤ v in L, there exist p, q ∈ L such that q ∈ Kc(L), u ̸≤ p, v ̸≥ q and,

for each x ∈ L, either x ≤ p or x ≥ q;

(4) Whenever u ̸≤ v in L, there exist p, q ∈ L such that p ∈ Kc(L), u ̸≤ p, v ̸≥ q and,

for each x ∈ L, either x ≤ p or x ≥ q.

Proof. (1) implies (2): Since strongly algebraic lattices are completely distributive, by

Theorem 1.2, there exist p1, q1 ∈ L such that u ̸≤ p1, v ̸≥ q1 and, for each x ∈ L, either

x ≤ p1 or x ≥ q1. Since L and L0p are strongly algebraic, there are p ∈ Kc(L) and q ∈ Kc(L)

such that p1 ≤ p, q1 ≥ q, u ̸≤ p and v ̸≥ q. It is easy to see that p and q satisfy the conditions

of (2).

(2) implies (3): Trivial.

(3) implies (1): For u ∈ L, let v =
∨
{y ∈ L : y ∈ Kc(L) and y ≤ u}. If u ̸= v, then there

exist p ∈ L and q ∈ Kc(L) such that u ̸≤ p, v ̸≥ q and, for each x ∈ L, either x ≤ p or

x ≥ q. It follows that u ≥ q; hence, q ≤ v, which is contradictory to v ̸≥ q. Whence u = v;

therefore, L is strongly algebraic.

The equivalence of (1) and (2) can be proved similarly.

Theorem 2.5. For two strongly algebraic lattices L1 and L2 and a complete lattice

homomorphism h : L1 → L2, let Eh = {(x, y) ∈ L1 × L1 : h(x) = h(y)}. Then Eh is a

congruence of L1, and the quotien L1/Eh is strongly algebraic.

Proof. Obviously, Eh is a congruence of L1. By Corollary 2.1, h(L1) is strongly algebraic

(relative to the induced order). Define h : L1/Eh → h(L1), x 7→ h(x). It is not difficult to

prove that h is an isomorphism; hence L1/Eh is strongly algebraic.

§3. Completeness and Cocompleteness of
the Category of Strongly Algebraic Lattices

Taking strongly algebraic lattices for objects and complete lattice homomorphisms for

morphisms, we get the category of strongly algebraic lattices[4]. Let SAL denote this cate-

gory. Obviously, SAL is a full subcategory of Lat∗—the category of completely distributive

lattices[9]. In [9], we have proved that Lat∗ has product and coproduct for every family of

objects. In this section, we prove that SAL is complete and cocomplete.

It is not difficult to get the following

Theorem 3.1. {
∏
i

Li, pi | i ∈ I} is the product of {Li : i ∈ I} in SAL, where pi :
∏
i

Li →

Li is the natural projection.

Definition 3.1.[9,14] For a family of complete lattices {Lλ : λ ∈ Λ}, we define a lattice

L = ⊗
λ
Lλ as follows:

The elements of L are the subsets A of
∏
λ

Lλ which satisfy:
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(1) Let Z = {{aλ} ∈
∏
λ

Lλ : (∃λ0 ∈ Λ) (aλ0 = 0)}, then Z ⊆ A;

(2) A =↓ A;

(3) If Bλ ⊆ Lλ and
∏
λ

Bλ ⊆ A, then {bλ} ∈ A, where bλ = supBλ. The order on L is the

ordering of set inclusion.

Lemma 3.1. Let {Lλ : λ ∈ Λ} be a family of completely distributive lattices. Then in

⊗
λ
Lλ,

∧
i

Ai =
∩
i

Ai, and
∨
i

Ai = {{aλ} ∈
∏
λ

Lλ | ∃Bλ ⊆ Lλ such that
∏
λ

Bλ ∈
∪
i

Ai and

aλ = supBλ for each λ ∈ Λ}, where “
∩
” and “

∪
” denote the intersection and union of sets.

Lemma 3.2. Let Lλ be completely distributive for each λ ∈ Λ. Then we have

(1) For A, B ∈ ⊗
λ
Lλ, A ▹ B iff there is {zλ} ∈ B such that A▹ ↓ {bλ} ∪ Z.

(2) For {xλ}, {yλ} ∈
∏
λ

Lλ, ↓ {xλ} ∪ Z▹ ↓ {yλ} ∪ Z iff xλ ▹ yλ for each λ ∈ Λ.

Proof. (1) By Theorem 6 of [9], ⊗
λ
Lλ is completely distributive, so B =

∨
{bλ}∈B

↓

{bλ} ∪ Z =
∨

{bλ}∈B

∨ |
∇(↓ {bλ} ∪ Z). Therefore, if A ▹ B, then there is {bλ} ∈ B such that

A▹ ↓ {bλ} ∪ Z. Conversely, if A▹ ↓ {bλ} ∪ Z for some {bλ} ∈ B, then it follows obviously

that A ▹ B.

(2) ↓ {yλ}∪Z =
∨

{uλ}∈
∏
λ

|
∇yλ

↓ {uλ}∪Z, by ↓ {xλ}∪Z▹ ↓ {yλ}∪Z, there is {uλ} ∈
∏
λ

|
∇yλ

such that ↓ {xλ} ∪ Z ≤↓ {uλ} ∪ Z. It follows that xλ ▹ yλ for each λ ∈ Λ. Conversely, for

every family {Ai : i ∈ I} ⊆ ⊗
λ
Lλ such that ↓ {yλ} ∪ Z =

∨
i

Ai, by Lemma 3.1, there exists

Bλ ⊆ Lλ (λ ∈ Λ) such that
∏
λ

Bλ ⊆
∪
i

Ai and yλ = supBλ (λ ∈ Λ). Since xλ ▹ yλ for each

λ ∈ Λ, there is bλ ∈ Bλ with xλ ≤ bλ (λ ∈ Λ). There exists i ∈ I such that {bλ} ∈ Ai;

therefore, ↓ {xλ} ∪ Z ≤ Ai. Hence, ↓ {xλ} ∪ Z▹ ↓ {yλ} ∪ Z.

Corollary 3.1. Let {Lλ : λ ∈ Λ} be a family of completely distributive lattices. Then

A ∈ Kc(⊗
λ
Lλ) iff A =↓ {xλ} ∪ Z such that xλ ∈ Kc(Lλ) for each λ ∈ Λ.

Theorem 3.2. ⊗
λ
Lλ is strongly algebraic iff Lλ is strongly algebraic for each λ ∈ Λ.

Proof. Define qλ0 : Lλ0 → ⊗
λ
Lλ, x 7→↓ {xλ} ∪ Z, xλ =

{
1, λ ̸= λ0

x, λ = λ0.

Let Lλ0 = {qλ0(x) : x ∈ Lλ0}. It is easy to see that Lλ0 is a complete sublattice of ⊗
λ
Lλ

and Lλ0 is isomorphic to Lλ0 . If ⊗
λ
Lλ is strongly algebraic, then by Corollary 2.1, Lλ0

is strongly algebraic; whence, Lλ0 is strongly algebraic (λ0 ∈ Λ). Conversely, for every

A ∈ ⊗
λ
Lλ, A =

∨
{xλ}∈A

↓ {xλ} ∪ Z. Let Bλ = {yλ ∈ Lλ : yλ ∈ Kc(Lλ) and yλ ≤ xλ}. If Lλ

is strongly algebraic for each λ ∈ Λ, then ↓ {xλ} ∪ Z =
∨
{↓ {bλ} ∪ Z : {bλ} ∈

∏
λ

Bλ}. By

Corollary 3.1, A =
∨
{C ∈ ⊗

λ
Lλ : C ∈ Kc(⊗

λ
Lλ) and C ≤ A}. So ⊗

λ
Lλ is strongly algebraic.

By Theorem 3.2 and Theorem 6 of [9], we get the following

Theorem 3.3. {⊗
λ
Lλ : qλ | λ ∈ Λ} is the coproduct of {Lλ : λ ∈ Λ} in SAL, where

qλ0 : Lλ0 → ⊗
λ
Lλ, x 7→↓ {xλ} ∪ Z, xλ =

{
1, λ ̸= λ0

x, λ = λ0

(λ0 ∈ Λ).
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Lemma 3.3. For a pair morphisms L1
f→→
g
L2 in SAL, let L0 = {x ∈ L1 : f(x) = g(x)}.

Then L0
e→ L1

f→→
g
L2 is the equivalizer of ⟨f, g⟩, where e is the injection of L0 into L1.

Proof. The proof is standard and is left as an exercise.

Lemma 3.4. For a pair morphisms L1
f→→
g
L2 in SAL, let {Ei : i ∈ I} denote the set of

congrunces of L2 such that Ei ⊇ M(f, g) = {(f(x), g(x)) : x ∈ L1} and the quotien L2/Ei is

strongly algebraic (i ∈ I). Let E = ∩
i
Ei. Then L1

f→→
g
L2

q→ L2/E is the coequalizer of ⟨f, g⟩,

where q : L2 → L2/E is the natural projection.

Proof. First, we prove that L2/E is strongly algebraic. Since L2/Ei is strongly algebraic

for each i ∈ I,
∏
i

L2/Ei is strongly algebraic. Let qi : L2 → L2/Ei be the projection (i ∈ I)

and define k: L2 →
∏
i

L2/Ei, x 7→ {qi(x)}. It is easy to see that E = ∩
i
Ei = Ek =

{(x, y) ∈ L2 × L2 : k(x) = k(y)}. By Theorem 2.5, L2/E is strongly algebraic. For every

morphism h : L2 → L in SAL such that h ◦ f = h ◦ g, then there exists i ∈ I such that

Ei = Eh = {(x, y) ∈ L2 × L2 : h(x) = h(y)}. Define h : L2/E → L, x 7→ h(x). We can

easily prove that h is the unique morphism such that h = h · q. Whence, L1
f→→
g
L2

q→ L2/Ei

is the coequalizer of ⟨f, g⟩.
By Theorem 3.1, Lemma 3.3, and Theorem V–1 of [7], we get the following

Theorem 3.4. SAL is complete.

By Theorem 3.2 and Lemma 3.4, we have dually the following

Theorem 3.5. SAL is cocomplete.

§4. Conditions of Minimal Mapping Preserving Infs

Definition 4.1. Let L be a complete lattice. The relation ▹ on L is called multiplicative

(resp., completely multiplicative) iff a ▹ x and b ▹ y imply a ∧ b ▹ x ∧ y for all a, b, x, y ∈ L

(resp., for all {xj : j ∈ J} ⊆ L and {yj : j ∈ J} ⊆ L, xj ▹ yj for each j ∈ J implies

∧
j
xj ▹ ∧

j
yj); the relation << is called co-multiplicative (resp., completely co-multiplicative) iff

for all a, b, x, y ∈ L, a<<x and b<<y imply a ∨ b<<x ∨ y (resp., for all {xj : j ∈ J} ⊆ L and

{yj : j ∈ J} ⊆ L, xj<<yj for each j ∈ J implies ∨
j
xj<< ∨

j
yj).

Proposition 4.1. Let L be strongly algebraic. Then the following statements are equiv-

alent:

(1) Kc(L) is closed under finite infs (resp., under arbitrary infs);

(2) ▹ is multiplicative (resp., completely multiplicative).

Dually, we have

Proposition 4.2. Let L be strongly algebraic. Then the following statements are equiv-

alent:

(1) Kc(L) is closed under finite sups (resp., under arbitrary sups);

(2) << is co–multiplicative (resp., completely co–multiplicative).

Lemma 4.1.[10] For a complete lattice L and I ∈ Sid (L), the following conditions are

equivalent:

(1) I ∈ PRI(Sid (L)) (resp., I ∈ Kc(Sid(L)));
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(2) L\I is a filter (resp., a principal filter, namely, I = L\ ↑ a for some a ∈ L);

(3) The relation x ∧ y ∈ I always implies x ∈ I or y ∈ I (resp., the relation ∧
j
xj ∈ I

always implies xj ∈ I for some j ∈ J).

Dually, we have

Lemma 4.2. For a complete lattice L and F ∈ Sfil(L), the following conditions are

equivalent:

(1) F ∈ PRI(Sfil(L)) (resp., F ∈ Kc(Sfil(L)));

(2) L\F is an ideal (resp., a principal ideal, namely, F = L\ ↓ a for some a ∈ L);

(3) The relation x ∨ y ∈ F always implies x ∈ F or y ∈ F (resp., the relation
∨
j

xj ∈ F

always implies xj ∈ F for some j ∈ J).

Definition 4.2. Let L be a complete lattice and p ∈ L. p is called quasiprime (resp.,

strongly quasicocompact) iff p = supP for some P ∈ PRI(Sid(L)) (resp., P ∈ Kc(Sid(L)));

q ∈ L is called quasicoprime (resp., strongly quasicompact) iff q = inf Q for some Q ∈
PRI(Sfil(L)) (resp., Q ∈ Kc(Sfil (L)). Let QPRI(L), QCOPRI(L), QKc(L) and QKc(L)

denote the sets of quasiprime elements, of quasicoprime elements, of strongly quasicompact

elements and of strongly quasicocompact elements, respectively.

p ∈PRI(L) (resp., p ∈ Kc(L)) gives rise to ↓ p ∈ PRI(sid(L)) (resp., ↓ p ∈ Kc(Sid(L)),

so PRI(L) ⊆ QPRI(L) and Kc((L) ⊆ QKc(L). Dually, we have COPRI(L) ⊆ QCOPRI(L)

and Kc(L) ⊆ QKc(L).

Theorem 4.1.[10] Let L be completely distributive and p ∈ L. Then the following condi-

tions are equivalent:

(1) p ∈ QPRI(L) (resp., p ∈ QKc(L));

(2) The relation x∧ y ▹ p (resp., ∧
j
xj ▹ p) always implies x ≤ p or y ≤ p (resp., xj ≤ p for

some j ∈ J);

(3) The filter generated by L\ ↓ p (resp., the principal filter ↑ a, a =
∧

L\ ↓ p) does not

meet |∇p.

Dually, we have

Theorem 4.2. Let L be completely distributive and q ∈ L. Then the following conditions

are equivalent:

(1) q ∈ QCOPRI(L) (resp., q ∈ QKc(L));

(2) The relation q<<x∨ y (resp., q<<
∨
j

xj) always implies q ≤ x or q ≤ y (resp., q ≤ xj for

some j ∈ J);

(3) The ideal generated by L\ ↑ q (resp., the principal ideal ↓ a, a =
∨
L\ ↑ q) does not

meet {z ∈ L : q<<z}.
Theorem 4.3.[10] Let L be completely distributive. Then the following conditions are

equivalent:

(1) The relation ▹ is multiplicative (resp., completely multiplicative);

(2) PRI(L) =QPRI(L) (resp., Kc(L) = QKc(L)).

Dually, we have

Theorem 4.4. Let L be completely distributive. Then the following conditions are equiv-

alent:
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(1) The relation << is co-multiplicative (resp., completely comultiplicative);

(2) COPRI(L) =QCOPRI(L) (resp., Kc(L) = QKc(L)).

By Proposition 4.1 and Theorem 4.3, we get the following two results:

Theorem 4.5. Let L be completely distributive. Then the following statements are

equivalent:

(1) The minimal mapping β : L → 2L preserves finite infs;

(2) The relation ▹ is multiplicative;

(3) PRI(L) =QPRI(L).

Theorem 4.6. Let L be completely distributive. Then the following statements are

equivalent:

(1) The minimal mapping β : L → 2L preserves arbitrary infs;

(2) The relation ▹ is completely multiplicative;

(3) L is strongly algebraic and Kc(L) is closed under arbitrary infs;

(4) L is strongly algebraic and Kc(L) = QKc(L).

Dually, we have the following two results:

Theorem 4.7. Let L be completely distributive. Then the following conditions are equiv-

alent:

(1) The maximal mapping α : L → 2L is a finite ∧ − ∨ mapping;

(2) The relation << is co–multiplicative;

(3) COPRI(L) =QCOPRI(L).

Theorem 4.8. Let L be completely distributive. Then the following conditions are equiv-

alent:

(1) The maximal mapping α : L → 2L is an arbitrary ∨ − ∧ mapping;

(2) The relation << is completely co–multiplicative;

(3) L is strongly algebraic and Kc(L) is closed under arbitrary sups;

(4) L is strongly algebraic and Kc(L) = QKc(L).

From Theorems 4.6 and 4.8, it follows that Theorems 2.7, 2.9, 3.12 and 3.13 in [15] are

not correct.

Acknowledgement. The author is grateful to Prof. Liu Yingming for his generous help.
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