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HOPF ALGEBRAIC APPROACH TO THE
n LINEARLY RECURSIVE SEQUENCES**
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Abstract

It is proved that a linearly recursive sequence of n indices over field F' (n-2 1) is automatically
a product of n linearly recurgive sequences of 1-index over F by the theory of Hopf algebras.
By the way, the correspondence between the set of linearly recursive sequences of l-index and
F[X]° is generalized to the case of n-index. ‘ '
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§1. Introduction

The purpose of the paper is to present a study of linearly récursi\re sequences of n-index
over a field F' from the aspects of Hopf algebras. It is based on the realization, which E.
J. Taft suggested in [1], that there exists a one to one correspondence between the set of
linearly recursive sequences of 1-index over a field F and the continuous dual of polynomial
algebra F[X]°. Since we do not assume one is familiar to the theory of Hopf algebras, in
this section we mainly give a short summary of the terminology and the results which. will
be used in the sequal. First of all, we offef the concept of a linearlyv recursive sequence of
n-index over field F. For the sake of conciseness and convienence, we only mentione the
case when n = 2, B : .

Throughout this paper, we have to mention, algebras and coalgebras are all taken over a
given field -F, N denotes the set of natural numbers and:-Z + the set of non-negative integers.
Linearly recursive sequence always means homogeneous linearly recursive sequence since
each linearly recursive sequence can determine uniquely a homogeneous linearly ‘recursive
sequence. | | o _

Definition 1.1. Suppose S;; € F. {Si;} (i,j € Z%) is called a linedrly recursive
sequence of 2-index over F if it can be obtained by the following relations:

. N ¢ ) : a0 (1) .
Spivmtis = Bgyjy Snbinmebin =1 + 04y 1,3 Sntiz—timin + 000 ¥ 5,05n,ms -

L (2) @ o S ) P
Sntigmtis = B2y Snotiametia=1 + 83— 1,3, Sntia—1mtgs 0 + a5,05n,m;

(1.1)

) ' ) T . )
Sn+7:rym+jr = a"(i,.?j,.sn-_%-imm+jr—1 + _a"g,-ll,jr Sn+7;r“‘1;m+.7'r.+ T + a’((),())s‘nvm’

- Manuscript received February 27, 1992. Revised October 15, 1992. _
*Institute of Mathematics, Fudan University, Shanghai 200433, China.
*¥Project supported by the Natural Science Toundation of Auhui Province, China.



142 CHIN. ANN. OF MATH. - . Vol.15 Ser.B

with the following initial conditions: .
Si; = ki, (4,5) € L x L, kz-,,- € F. (1.2)
Here L x L is a subset of finite sjet;_;,_, ‘ o T
{(1, 1), G =1, 1), (zraJ'r - 1) (Z'r =1, .71') ,(0 0)}

The sequences above are the natural generalization of that of one index. They have the
finite number of linear relations and initial cond1t1ons which decide the whole sequence. The
- example below is a sequence of two-index. '

Snt2,m =28n41,m — Sn,m
Snt1,m+1 =Sp st + 2Sn+1,m — Sn,my

Sn M2 -4Sn m+1 - 3Sn,m,

~ whose 1n1t1a1 condltlons are Sp0 =1, S1,0 =2, Sg1 = 3. . .

Definition 1.2. Let {S;;} (3,5 € Z%) be a lznearl'y recursive sequence of 2- indez over F
described above. We:call the following the set of charactenstm polynomials:associated with
the sequence {S;;} (i,j € Z%): et v e :

fi = X21XJ1 _ (1) 1X X.?'l—l . a(()lt))’

@iy i1~

! 2 % -—-1 2 .

.f :__ X;ngz__ a,gz)?2 1X12X92 e a((,-%, (1.3)
f,. = X“‘X”‘ - a(r’)J _IIX“XJT~1 R a(()r(),

Suppose that F[X 1y Xg,~++ yXp] is the polynomial a,lgebra, of n variables. We know that
F[Xy, Xg, i X, ] is in fact a Hopf algebra, whose comult1phcat10n, counit and ‘antipode
are descrlbed as: : ' '

',A(z’i’,")'—zv_:()X“@X”z T N )

o IR L

L (XM= b0 S(XM) = (-1t

F[Xl,Xz, n]° The continuous. dual-of F[Xy, Xg,: -+ y Xp) is deﬁned as (see 2D .

Ker [ contains a cofiniite - ). - .~
ul

--F n°= F v..X,._._..,Xyn* T
. [XI,X2, ,X] {fe [‘Xl) 2y " ] Vidveal(‘)fF[Xl,X2,“---,X

Observing that . 3 . . ,
PG, Koy, Xl = F] (Kl (X 1

and F[Xl,Xz,‘ oy Xpl]® is a subalgebra of F[X1; X, n] , We. learn that F[Xl,Xz,
Xn)- The multlphcatlon and antlpode of F[X 1, Xz, X n] are glven by

X} X’“ (l;k)x“f’“ XixX; = X*X(z;éj) (2—12 ,)-,z,~k€Z+,

(S(f), a) = (£, 5(a)).

At the end of this section, we present a proposﬂuon, Wthh Taft suggested 1n [1], as ‘the
initial point of our paper. : '



No.2 2 _ Liang, G. HOPF ALGEBRAIC APPROACH 143 |

-Proposition 1.1. There exists a one to one correspondence between. the set of lznearly
recursive sequences of 1:index over F -and F[X]°. '

- Proof. Suppose that {S;}.(i€ Zt)isa hnearly recursive sequence of 1-index over F' and
f(z) is its associated characteristic polynomlal Clearly f(m) # 0:and the ideal I = (f (a:))
is cofinite. Let - .-+ .- SR : : : o

9(X) = }: S Xt
=0
Now we let g(:t:) correspond to {S:} (z € Z"') It is apparent that 9(X ) € F[X]* Fur-
thermore g(X) € F[X]° since (g(X ), fz)) = 0, and then I C'Ker g(X) Conversely let
9(X) € F[X]°. Then there exists a cofinite ideal of F[X ]y namely I, such that I¢C Ker
g(X ) ‘We could write T =-(f (:c)), where f(z) is a nonzero monic polynomlal over F'since
F[X] is a principal ideal domain. Hence the only thing left is to show {S;} (i € Z*), which
consists of all coefficients of g(X ), is ‘exactly tlie linearly recursive sequence associated with
characteristic polynomlal f=). o '
ri2

Let f(:z:) =g" — @p1x" "t — a,._zac "- R a,o It is easy to see that

S’r+n = ar——ls'r'+n—1 + ar—25r+n—-2 + aOS (n > 0) _ (1-5)
beca.use T f (a:) G I c Ker g(X ) for all n > 0 Thls denves our conclusmn o

§2 Maln Results o

In thls sectlon, we mamly chara.cterlze the lmearly recursive sequences involving multivari-
able relatmns over F. The first thing is to study the famlly of linearly recursive sequences.
Let f(z) be a monic polynomlal of positive degree. We denote the set of all homogeneous
linear recurring sequences over F' with characteristic polynomial f (z) by S(f(x)). In other
words, S(f(z)) consists of all sequences in F' satisfying the homogeneous linear recurrence
relation (1.4) determined by f(w) We have
» Proposxtlon 2.1. -

(1) ( f(z)) = (f(m))-L, where (f(:z:))l means the anmhzlator of zdeal (f(a:)) in F[X]°

- (2) If deg( f(a:)) = k an:d F isa ﬁmte ﬁeld of q elements, then S( f(w)) has emactly q
elements. -

Proof. (1) Let {S; } Gie Z +) be a hnearly recursive sequence Whose monic characteristic
polynomial is f(z). By Proposition 1.1, there exists a g € F[X]° corresponding to {S;} (i €
Z%) such that g(X") = S, and

g((f(w)) —0=g¢ (f(ﬂﬂ))l
The other direction is apparent.

(2) By (1), we have S(f(z)) = (f(x))L. This means that (f(m))J- is a subcoalgebra of
F,[X]° and of course a vector space over Fj. Since deg(f (a:)) = k, the codimension of (f(z))
must be - - : : -

k= dimF'S(f(ar:)‘)‘ =-k.
But F, is a finite field of ¢ elements, this implies that the:vector space S(f (:1:)) has exactly
q* elements.. ' : . = - ;
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Since (f(z)) is an ideal of F[X], (f(z))' must be a.subcoalgebra of F,[X]° (see [4] Chapter
2). The proposition above tells us that S(f()) is indeed a subcoalgebra, by this realiza-

tion, we can establish the following theorems concerning the product of families of linearly

recursive sequences of 1-index, which generalizes the Theorem 8.65 in [3] to an arbitrary
field F. If o is the sequence of elements sq, sy,--- of F and 7 is the sequence of elements
to,t1,- -+ of F, then the product o7 has terms soto, slil, .+-. Analougously, one defines the
product of any finite number of sequences. Let S be the vector space over F consisting of
all sequences of elements of F', under the usual addition and scalar multiplication of the
sequences. For nonconstant. monic polynomials fi, fo, -« , fa, let S(fu(x))--- 8( fn(z)) be
the subspace spanned by all products oy - o"hbwlth o; € 5( f,(a:)) (1<i<h). ‘

Theorem 2.1. If f (w), -, fu(z) are nonconstant monic polynomials over F, then there
ezists a nonconstant monic polynomial g(z) € F[X] such that |

S(f1()) - S(fu()) = S(g(=)).
Before we prove the theorem, we first define another coalgebralc structure on F (X ] Set,
A(XY) = Xz ®X‘, e(XH =1
for i€ Zt,ie. the elements of F[X ] are all group-like elements.” One could prove that F[X]
is a coalgebra under this structure and furthermore a blalgebra with the original algebra,lc

structure. Suppose that f, g are two elements of F[X]°, which correspond to the linearly
recursive sequences {sz} (z € Z +) and {t,} (¢ € Z™) respectively by Proposition 1.1. Then

smtz = (f, Xt)<ga X%) '

=(f®g,X @ X%

= (f® 9, A(XY))

= (fg,X").
So the product of linearly recursive sequences coheres with that of a,lgebra F[X ]°.

- Proof of Theorem 2.1. By the remark above, F[X]° is a bialgebra and is closed under

the product of algebra. Thus S( f,(w))S( fi (w)) C F[X)°. Hence the only remammg thing
is to prove that S( f1 (z))--- S(fn(x)) is also a subcoalgebra of F[X]° when kh = 2. In this
case, because S(f1(z)), S(fa(x)) are subcoalgebra of F[X]°, we obtain

A(S(fi(#) € S(fa(=)) ® S(A(e)),
A(S(fa(2))) € S(12(2))® S(f2(2))

Theorefore,

A(S(f1($))_35(f2_($)))
=A(S(f1(2))A(S(f2(x))) .
C(S(f1(=)) ® S(f1(2))) - (S(fa(2)) ® S(f2()))
=S(f1(=))S(f2(2)) ® 5(f1(=))S(f2(a)).

Thus S(f1(2))S(f2(x)) is a subcoalgebra of F[X]° and by Proposition 2.1 there exists an
1deal I of F[X] such that S(f1(z))S(f2(x)) = I'*. But F[X]is ap.id, there exists a monic
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| polynomlal g(z) such that g(z) # 0 and I = (g(m)), ie., A‘
5(f1(2))5(fa(e)) = I" = (9(2))* = S(g(=))

and this completes our proof.

The product of linearly recursive sequences deﬁned above is so-called Hadarmard product.
Larson and Taft studied this kind of products of linearly recursive sequences by the method
of Hopf algebras in [4]. Now we consider another kind of products. of linearly recursive
sequences, called Hurwitz product. If o is a sequence of elements g, 81,:+- of F and 7 is a
sequence of elements to,t1,+ -+ of F, then the Hurwitz product of o and 7, 0 o7 has elements
{sit;}. One can find it is a linearly recursive sequence of 2-index. Our next theorem shows
that every linearly recursive sequence of n-index is a Hurwitz product ofn 11nearly recursive
sequences of 1-index.

We first glve a propos1t10n concernmg the charactristic polynomial set of lmearly recurswe _
sequences of n-index.

Proposition 2.2. If {Sisi,} (i1,42 € Z“') is a linearly recursive sequence with charac-
tristic polynomsial set fi, fa,+++ , fn, then the ideal generated by fi, far+++  fn 48 a cofinite
~ ideal of F|X;, Xa). - ' o '

Proof. Let I = (fi,fa,+- +fn). For every Siy € {Sui} (inia € Z%), by observing
(1.1), we learn that each Si; can be represented as a linear combination of its initials
{sz} (41,45 € Z7). But

Swi="Y B iSi; <= XX{,_ 3 k,,XAl{zeI
("'J)GL (%J)GL \

this shows that F[Xy, X3]/I is spanned by {XiX3\(i,5) € L x L}. Since we only have finite
number of initial conditions, dimyF[X1,X2]/I < oo, i.e., I is a cofinite ideal of F[X1,X3)
and this completes our proof

By the proposition above we can establish the followmg

Theorem 2.2, ~There is a one to one. correspondence between the set of lznearly recursive
sequences of n- zndea: over field F and F[X1, X2, ,Xal°

Proof. We only consider the case n = 2.

First, for each f € F|X1, Xal°, one can write f as f = zswxl)ﬂ since
FlX1,X3]° C FlIXu], [Xa]] = FlX1, Xo*.
But
FX1, X5] & F[X] ® F[X] and (F[X]® F[X])° & F[X]° ® F[X]°.
Thus _ -
FX1, Xa]° & FIX]° ® FIX]°

and thereby there exist fi, fo € F[X]° such that f = fi ® f2. By Proposition 1.1, we can
assume that fi, fo correspond to linearly recursive sequences of 1-index {s;} (i€ Z%) and
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{t:} (i € Z), respectively. Then _
Si5 =(f, X1X3)
=(f1 ® f2, X' ® X7)
=(f1, X")(f2, X7)
=8;t;.
Thus if we set f to: correspond to {Si;i, };, then . -
{Szﬂz} {S'ut'tz} fl o fa.

: Clearly {811 12} 1s a linearly recurswe sequence Suppose that {s;} (z 3 Z +) has the charac-

teristic polynomlal hi(z) and 1n1t1al condltlons si=1; (z € L1), and {tz} (z 6 Z "‘) has the
characteristic polynomial hg(cc) and initial conditions t; = m; (i € Ly), Where Ly, Ly are
finite label sets. Then the character1st1c polynomlal set of f is h1( ) h2 (:z:) and the initial
conditions of f are : S

s’l,l 7.2 - l?.lm'l,z (1’1 E Ll,zz E LZ)

; Conversely, 1f {sz} (11,22 € Z +) is a hnearly recursive sequence of 2—1ndex whose
set of characteristic polynomials is fi, fa, fa, -+ , fr, let I = (f1, f2, fay0 e fr) t_hen by
Propos1t1on 2. 2 I is a cofinite ideal of F[X3, Xz] Let |
f= Z 8, ,XlX’
(m)eZ+
Thus it suffices to show that for each pair (s,t) € Z+ x Zt,
(f’XfXé fiy =0 (i=1,2,-+ "’")".
By computatlon, we have , o B L
(XIS fz) = Sepintiie— D GuwSatinitin =0
- (#,w)<(i1,71) oo
Since this is our recursive relations described in. (1. 1), and then = f G F[Xl, Xz] .
From the proof of Theorem 2. 2 we obtain
‘Theorem 2:3. If {Siyizin} 18 a linearly recursive sequence of n-indez over' F, then
there must exsit n linearly recursive sequences of 1- indez f1, fo, fa," fn over F such that
{1122 zn} fiofaofzo---o fy. ‘ - i
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