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STABILITY OF A PARABOLIC FIXED
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Abstract

KAM theorem of reversible system is used to prov1de a sufﬁc1ent condition which guarantees |
the stability of a pa.ra.bohc fixed point of reversible mappings. The main idea is to discuss when
the parabolic fixed point is surrounded by closed invariant curves and thus-exhibits stable.
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§1 Introductlon '.

In this paper, we consider a reversible mapplng of the plane Whlch has a ﬁxed pomt and
let A1,A2 be the eigenvalues of its linearization at this point. Since the mapping is real, A
~azid Ay are either both real or complex con_]ugate to each other. If A;'and Xg aré real:and not
41, the fixed point is called hyperbolic:and it cannot be stable. If Ay = )\2 e St /{41}, the
fixed pomt is called elliptic. In this situation, as well as the symplectic mappings, it is well
known that the fixed point is surrounded by closed invariant curves and is stable under some
nonresonance conditions (%71, Finally, if A; = A2 = 1, the fixed point is called parabolic. In
this case, Slmo[8 9, Aharonov and Ehas[1 2] have studled the stablhty of this point when the
mapping is symplectlc In pa.rt1cular, _Slmo obtalned a necessary and sufficient condition for
symplectic mappings. .

In this note, we will study the stability_‘:Of ‘a parabolic fixed point for' réversible mappings.
The main idea in this paper is the same as in the above-mentioned papers. We will discuss
- when the parabolic fixed point'is surrounded by closed invariant curves and exhibits stable
behaviour.

The basic tool to establish the existence of closed invariant curves is KAM theorem of
reversible ma,‘ppmgs[3 7,

Theorem. Let

. A0y =0+vp+ f(0,p), p1=p+9(80),
G:0,=-0, m=p
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be mappings in the annulus a < p < b,0 € S, where f,g are normal (that is, f and g are
holomorphic and real analytic for real arguments ) and periodic in 6.

Assume that AGA = G throughout D, where D is a complex nezghborhood of [a,b] x S*
in C2, :

For € > 0, there e:msts 6> 0 dependzng only on €, D, but not on vy, such that if
|flp + gl <78,

then the mappings A and G have a common invariant. curve

0=¢+3L(4), p=7"'w+d(e),

where w is a Diophantine number and |®}|,|®2| < €,®%,®% are normal and periodic func-
tions.

Remark. The assumption that f and g are norma,l‘is not essential. In [6], it is only
assumed that f,g € C". : ,

Similar to Aharonov and Eliasl!], our study is devided into two parts. In section 2, we
will study the existence of invariant curves around a finite fixed point. In section 3, we will
-deal with a parabolic fixed pdixﬂ; at inﬁnity. '

§2. Invarlant Curves Around a lete leed Point

In this sectlon, we consider a normal mappmg

A:(z,y) = (z+ P(z,9),y + Q(= »9)) o (2.1)
in a nelghborhood of (0,0), where P(z,y),Q(z,y) = o(r) as r = (2 + y?)2 tends to zero.
Assume that A is reversible with respect to G : (z,y) — (~z,y). _

From the equality AGA = G, it follows that , ,
- PoGA=P, QoGA=-Q. ‘ : (2.2)
* We also assume that P and Q can be written in the form '
P(z,y) = p(z,y) + B(z,y),

Qe,y) = a(o, ) + (e, 1), (23)
and there are three posmve constants a, 8,d with d > a + ( such that
p(e*z,e’y) = " op(z,y),
g€z, ePy) = & q(x,y), 24
and
p(e>*xz, ePy) = o(el?=P)?), ' (2.5)

d(e**x,e?y) = o(el*™*),
as 8§ — —00.
Remark. When p and ¢ are homogeneous of degree n > 2, one can take o = 8= 1,d =
n+1 in (2.4).
Now we state our result in this section.
Theorem 2.1. Consider the reversible mapping A defined by (2.1) with the conditions
(2.2)-(2.5). The ﬁa:ed point (0, 0) is stable if the followmg conditions hold:

awq(w,y) Byp(z,y) #0 - - (26)
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for (z,y) # (0,0),
Po+qy =0. (2.7)
Proof. From (2.3)-(2.5), we have A ,
p(-=,9) =p(z,y), ¢(~2,9)=—q(z,9). - (2.8)
Hence the differential equation . - :
Ce=p(zy), i=ay) (2.9)

is reversible with respect to G : (z,y) = (—=,9).

Let H(z,y) = Szq(z,y)— yp(:c, y). Then the system (2.9) is a Hamlltoman system w1th
H. Indeed, from (2.4), we have :

azps(z,y) + Bypy(z, y) ='(d - ﬂ)p(-w, ),

| (2.10
owgy (2, y) + Byay(2,y) = (d — a)a(z, ), (2.10) |
and by (2.7), - |
S |
OH B
b = dq(w,y) + - wqm(w,y) dypm(w,y) »
= zq(w' y) + —(awqm(w,-y) + Byay(z,v))
d—
= ( + ——)q(w,y) = q(w,y),
OH _ -
6y =P
,Fro’m“(2.6% we may assume that - ‘ . »
| | H(z,y)>0 N | (2:11)

for (w,y) # (0,0).
Without loss of generahty, we assume that the: solution of (2 9) Wlth initial condition
(0,1) exists and is denoted by (S(t) C’(t))

Since H (e**x,eP%y) = ¥ H(z, y), and H (w,y) >0, Hz,y) =¢c¢>0 are closed curves.
Hence (S(t),C(t)) is'a penodlc solution of (2. 9) and let Ty > 0 be its minimal period.

Now we give some propertles of’ (S (t) C(t)):.

() S, C e C, S(t+To) = S(t), Clt+Ts) = Ct);

(ii) O(~t) = C(¢), S(—1) = =S(t);

(iii) H(S(t),C(t)) = ~4p(0,1) > 0.

We define a dlffeomorphlsm ¥ RJr X .5'1 R2 by

V:z= °‘S(0T0), y = pPC(0T).

Then we have G o U(p,—0) = ¥(p, 0) Hence ¥~ 1o A o ¥ is also revers1ble with respect to
the involution J : (p,0) — (p,—0). : :

Let (p1,91) = \Il ~16 Ao ¥(p,0) and Ap = py — p, Af = 6, — 0. From the deﬁmtmn of
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¥, we have

W@pl(ﬁ“)ﬂl-a—ﬂmpﬂq(S(oTo),C(OTO))ﬁ(w,y) }

— Topap(S(oTo), C(OTQ))qA(m, y)] + O(pfiﬂ;l—a—ﬁ) .
—o(ptHi=ap), | | |
Ab=— oD ﬂpl(o’ e (™1 S(0T0) (oo, ) + 4(w:w)), .

— BpPT1C(0T0) (p(=,y) + B(x, y))] + o(p*>F)

=g P T o).

" Let us define ®': R x §1' — R* x SV by =9, p = (Top)d =) and (u1,01) =
P 1o¥lodoTod(u,b), Ap=p —p.
One can easily see that Aj = o(u?) for p > 0.is sufficiently small. Hence we have
=W+ f(u,0), " 0r=0+p+g(u0), (2.12)
where f(u,, 0) = o(,u,z), g(p,, 6) = o(u) are 1-periodic in 6. Moreover, the mapping (2: 12) is
reversible with respect to the involution J : (g, 0) — (s —0)

Ap=—

From the standard arguments, we can prove that there is'a closed invariant curve of A in
every small neighborhood of the. origin and the. fixed point, is stable The proof of Theorem
2.1 is completed.

§3. Invariant Curves Around a Fixed:‘Poirhlrt, at Infinity

This section deals with the stability of a parabolic fixed point at infinity for reversible
diffeomorphism. :
Consider the mapping

A:(z,9) = (& + P(z,y),y + Q(x,v)), (3.1)
where P( 5 Y), Q(:z:, y) — 0.as z? + y ~ 00, that is, when mﬁmty is a parabohc ﬁxed pomt.

Like the | previous section, we assume that A is revers1ble w1th respect to G: (:L', y) ——> (—— ,y)
and P(:z:, y) Q(:I;, y) can be Wntten in the followmg form:

P(m y) p(:z:,y +P(-’L',y), (32)

Qz,y) = q(w,y) + q(w Y),
where v
p(e**z, ePoy) = 'e(d—ﬁ)sp(a:,y), ' o
-(3.3)
Q(easwa eﬁsy) = e(d—a)Sq(w’ y)a - .
for some «, f > 0,d < 0. Moreover, , o “
A s, ﬁs. _ v (d—ﬁ)s
e "x,e =ole ’
B(e**x, e”y) = of ) (3.4)

"'qn(e'asw"e,@sy) z;'o*(e‘(d—‘a)s)‘,
as § —00.. . . : T : . o

Theorem 3.1. Let the normal mapping (3. 1) be given in a nezghborhood of znﬁmty and
d <.0. Suppose that the conditions (3.2)-(3.4) are satisfied and AGA = G for G ; w(zyy) —
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(— ,y). The fized point. at infinity is: surrounded by closed invariant curves promded the
following assumptions hold: '

(i) . pm(w,y)+qy(w,y) =d, | | - (3-5)
(ii) awq(w,y) —ﬁ:up(w,y)ﬁaé o - o (36)
near infinity. ’ L N

Proof. Like Theorem 2.1 of the previous Sectmn, one can prove that the system o

: '(E —-'-»,p(il:, y)’ Y= g(a;, y)a SRR ‘ \ (37)

is reversible with respect to G : (z,y) — (~=,¥). ‘
" Let H (z,y) = da:q(:l; y)— yp(a:, y) From (3 6), without loss of generahty, we can assume
H(z,y) > 0. R : o ; S s

Suppose that (S(t);C(t)) is the solution.of (3.7) with- the initial value (0,1). Since
H(e**z,ePy) = e H(x,y), (S(t) C’(t)) is ‘a periodic solution of (3.7). Let To > 0 be
its minimal period.

Now we define a diffeomorphism @ : Rt x S — R? by

@:a=p=S(OT), = paF8 C(0Th).
Like the proof of Theorem 2. 1 we have | _
Apf_‘ o(pa+ﬁ) Ag pa+ﬁ + o(paL-Ha"l),

as p — +00. ' . ‘ _

Let p'= pa¥p~1, = 0. Note that y — 0 as p — +oo. Hence we have

- Ap= o(p?), A0 =p+o(u).

The followmg proof is the same as that of Theorem 2.1. We omit'it here.

Now, we study the case d = 0. In this case, under the conditions (3.3)-(3.6), we cannot
confirm that the solutlons of (3 7) are periodic.

Theorem 3.2. Gwen the normal mappmg (3. 1) ina nezghborhood of znﬁmty, under
the conditions (3.3)- (3 6) and'd = "0 the fized point at infinity is surrounded by closed

invariant curves provided the system (3.7) has ‘a periodic solution (S(t),C(t)) with initial

value (S(0),C(0)) = (0,1).
Proof. We introduce a diffeomorphism @ : R* x 81 — R? by

Biz=p a+ﬁS(0T0), iq: p—z-’i‘ﬁc(oTo). (38)

Clearly, ,o—-)OJr as z? +y — 00,
Under this dlffeomorphlsm, the mapping (3.1) is transformed into the form

| 1 |
p=p+fp, 0), Op=0+m7p+ 9(p,9),

where f(p,8) =.0(p%), 9(p,8) = o(p) as p — O*.

The rest of the proof is the same as that of Theorem 2. 1 We omit. 1t here

We give now a sufficient condition for the existence of perlodlc solutlons of the system
(3.7). Since the mapping.(3:1) is normal, from (3.3), we can take two p051t1ve 1ntegers m,n
such that g . Consider the followmg system

@ =ny? 1, y=—mar:2 -1, : "-(3.9)
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It is-a Hamlltoman system and a reversible system with respect to G : (x,y) — (—=,y).
Suppose that (u(t),v(t)) is the solution of (3 9) with the initial value (0,1) and T' > 0 is its
minimal period.

‘From (3.9), we have u?™(t) + vzn(t) =1.

Proposition. Under the conditions (3.3) and (3.6) with d = g ™, the solutions of
the (3.7) are periodic if the following assumption holds: s

e

/ol{mdzm—l(mp(u(oz’), o(0T)) + ™ )a(u(e), wOT}a0 = 0.

Proof Define dlﬁ'eomorphlsm ®:Rt xS - R?by @ :z = p"u(fT), y= p"™v(0T). .
Under this diffeomorphism ®, the system (8.7) is transformed into the form: R
mu?™ 1 (0T)p(u(8T),v(6T)) +nv*"~1(6T)g (U("T), (9T))

. mnpm+n-—

B p, =
_ .
where

= nu(0T)g(w(6T),v(0T)) — mv(OT)p(u(BT) 'v(0T)) constant #0.
Hence p(t) = p(0)eX Jo W(O)dd where |
wW(8) = muzm—l(GT)p(u(ﬂT) 'v(OT)) + nvzn‘l(BT)q(u(OT),'v(HT))

Clearly, if fo W(6)d# = 0, the solutions of (3.7) are periodic. This proves the Propos1t1on
Remark. Usmg the method in this paper, we can also prove the Lyapunov stability of
the fixed point (0 0) of the following area-preserving mappmg ®: R? - R?

@z = +y*", 1—y—‘>_:($+?/2‘n)2m,

where m,n € N and m,n > 2.
The stability of the equ111br1um point (O 0) of the followmg reverfnble equa.tlon

& =4y% + 225y + a:4y p(t) | § = —625y% + 12:1:11 + w3y3q(t) _
can be obtained, where p(t), ¢(t) are penodlc int w1th penod 1, and p(—t) = p(t), q(-t) =

—q(t).
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