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Abstract

Let A and B be C*-algebras. Suppose that K is the algebra of all compact operators on a
seperable Hilbert space, and « is an action on the stable algebra K ® A induced by SU (o0).

Tt is proved that if A is a-invariant stable isomorphic to B, then there is a *_jsomorphism
between A and B. An analogous result is obtained by considering On ® K ® A in the place of
KC'® A, where Oy, is the Cuntz algebra (3 <n < o). '
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§1. Introduction

For any unital C*-algebra A, we know that the elements of Ko(A) are the formal difference
~ of equivalent classes of projections in the matrix algebra over A. It is an interesting problem
whether Ko(A) can determine the structure of A. In particular case Elliot proved that if A
and B are AF-algebras and a: Ko(A) — »KO(B).‘i-s an isomorphism of scaled order groups,
then there is an isomorphism ¢: A — B (see [6]). In general case, we can not expect so
nice result, but we can raise a problem: when can the stable algebra K ® A determine the
structure of C*-algebra A? , '
- In [1], we proved that if 9 is an o-invariant affine isomorphism between M, (A)} and

M,(B)} (n>3),4%(0) =0 (aisa natural action induced by SU(n)), then A is *-isomorphic
to B. o

Since K ® A = U, M,(A), we can expect that an o-invariant affine isomorphism between
(K® A)} and (K® B)}. will give rise to a *_jsomorphism between A and B (c is the natural
action induced by SU(c0)). _

In section 2, we show that under a-invariant condition the order of unit ball of the stabl_e
algebra K ® A can determine the'isomorphié class of the C*-algebra A. As a consequence
" of the theorem, we prove that a-invariant stable isomorphism implies *-isomorphism. |

In section 3, replacing B(H) ® A, where A is a von Neumann algebra, instead of K ® A,
we obtain analogous result. ' _ : .

" In section 4, we consider when O, ® K ® A, where O,, is Cuntz algebra, can determine
the *-isomorphic class of A. '

‘Manuscript received February 15, 1992. .
*Institute of Mathematics, East China Normal University, Shanghai 200062, China.
*#*Project supported by the National Natural Science Foundation of China.



164 CHIN. ANN. OF MATH. .- Vol15 Ser.B

§2. Stable Isomorphism and *-isomorphism

In this section,the main result is that o-invariant stable isomorphism implies *-isomorphism.
First of all we give some;notations. ...

Let K be the set of all compact operators on a seperable Hllbert spa.ce IC can be viewed
as the closure of the union of M, (C’), that is, K = Un (M, (C')), with’ embeddmgs from M,
to My,y1 by a — diag(a,0).

KMMh:Ema®A)

K ® A is the closure of Ko, (A). .
SU(o0) is infinite unimodular unitary g group deﬁned by

SU(oo) U SU(n)

with embeddmgs from SU (n) to- SU(n + 1) by a— dlag(a, 1)
Using SU(co), we can define an actlon a'on Ko (A) by =

oy (x) = uzu*, & € ICOO(A), u € SU( ) v ,

which can be extended to an actlon on IC ® A If needed we can Jom an 1dent1ty to IC ® A,
on which a, acts as an automorphism.

Theorem 2.1. Let A and B be C’* algebms Af. 1/) is. an a-invariant affine isomorphism
between (K ® A)} and (K ® B) T 1/)(0) = 0, then A s *—zsomorphzc to B (a -invariance
meais that o = Pa). - ; o S . : :

Proof. Using the affiness of ¢ and «p(o) =0, we can. extend '¢ to an" 1s0metry between
K®Aand K®B., . : g S

Fixing an integer n > 3, there is'an 1somorphlsm & from K to M ®K. We have a dlagram

as follows
Kead —— "ic'®iB -
‘~r‘c‘®I"l s S :ln@I
M, KA ——— M, QQK®B
in which. .. . -

P =(k @)ook ®I).
Since SU(n) ® SU(00) C SU(c0), ¢’ is an « -1nvar1ant map, where o 1s a natural action

1nduced by SU(n) ® SU(oo), that 1s, o ‘

 Gnemie o (ur uz)(“’)(’h 8 u3),

u1€SU(n) uy € SU(0),z €M, @K ® A.- e
Next thing we should prove is ¥'(M,, ® A) C M, ® B. We set o' = oj ® oy in which o}

i an action induced by SU(n), oy is the one induced by SU(c0). of-invariance implies that

(In ® W' (z)(In ® u*) = ¢/ (z).

u € SU(00), € My, ® A (I, is the 1dent1ty in M ((C)) such that 1/)'(3:) €M, ® B as the
identity representatlon of K is 1rreduc1ble .-
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It follows that ¥'(M,, ® A) C M,, ® B and ' is o/ -invariant. By using the argument in-
[1], A is *-isomorphic to B. :

- Definition 2.1.. Suppose that A and B are C* algebras If IC QA IC ® B, then Ais
called stable isomorphic to B. : o

Theorem 2.2. Assume that A and B are C”- algebras. If A is a-invariant stable iso-
morphic to B, then there is a *-isomorphism between A and B.

Proof. If 1 is an a-invariant *-isomorphism between K ® A and K ® B, then z/)(O) =0
and v is an isometry between KX ® A -and K ® B. By Theorem 2.1, A is *-isomorphic to B.

§3. von Neumann Algebra Case

In this section, we discuss what will happen if A is a von Neumann algebra. B(H)® A
is the tensor product of B(H) and A.

In the same way we can define a natural action a on B(H) ® A induced by SU(00).

Theorem 3.1. Let A and B be von Neumann algebms P is an a- znvarzant affine
isomorphism between (B(H )®A) i and B(H ) ®B) + wzth 1,&(0) =0. Then Ais -zsomorphzc
to B.

Proof. can be v1ewed as an isometry from B(H ) ® A to B(H) ® B. Sincé B(H ) is
a factor and for some integer n >3, M, ® B(H ) B(H), like Theorem 2.1, we can prove
that there is a *-isomorphism between A and. B. :

. §4. Cuntz Algebra Opn Case

We have already studled when the tensor products X®A and M(noo) ®A [4] can determine
the structure of C*-algebra A, where K i is a compact operator algebra on a separable Hilbert
space and M0y is a UHF algebra of type n®. It is natural to ask a questlon whether or
not we can discuss O,, ® K instead of K and M(noo), where O,, is a Cuntz algebra (n < +00),
and .obtain similar results. : :

. We. will review some notations and properties of Cuntz algebra O _

Let O, be the C*—algebra generated by n isometries 51,82,. .. ,8n with sjs; = 1, 8;sf =
Pi, P1+p2+...+pp = 1. O, were first studied by Cuntzl". : o :

Fix n with 1 <n < 00.-Let M(poo):be the. UHF algebra with dlmensxon group- Z(noa)
There is an automorphism @ of M(,e) ® K with (M(ne) ®K) X8 Z = O, ® K, where ® is an

automorphism of M) ®K 1nduced by the shift to the left, such that ®(X) =UXU* (X €
Mnee) ® K): | :
Set SU (M(noo)) = U¢k(SU(nk)), Where qSk is the embeddmg from Mnk to M(noo) (see

By use of SU (M(0)) ® SU(c0) we can define a natural action on' M) ® K. Then the |

group G generated by SU (M(noo)) ® SU(co) and U can induce an action on O, ® IC which

is denoted by a. - : :

" Theorem 4.1. Let A and B be C* —algebms If 1 is an a-invariant affine zsomorphzsm

between (0, @ K ® A)+ and (0, ® K ® B)+ with %(0) =0, then A=B (3 < n < 00).
Proof. Suppose that = is an irreducible representation of O, so that = is falthful since

O, is simple. Since the identity representation of K is irreducible, 7 @ I is an irreducible
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representation of O, ® K.

By [6, p.104], M,,(Oy,) 2 O, , so that ¢ can be viewed as an a-invariant affine isomorphism
' from (0, ® K ® M,, ® A)} to (0, ® K ® M,, ® B)L. Extend ¢' as an a-invariant linear
isometry from O, ® K ® M,, ® A to O0,, ® K ® M,, ® B with 1(0) = 0. We have

l&@ll | : 'la@m
. o . /
0, KM, QA — 0, 3KQM,®A

.J’T®Iz. ' l’7'®12
. 1/,1' )
(M(noo')®’C) Xo Z@M, @A (M(noo)®’C) X@Z@M ® B
where o -is an isomorphism from O, to Mn(On), T is an 1som0rphlsm from O, ® K to
(M(n»y ® K) X¢ Z, I and I, are identity maps.

Since G ® SU(n) C G (for M,(0,) = On), suppose that o' is a natural action on
Mn=) ® K X0 Z® My, ® A‘mduced by G ® SU(n), o) is an action on M(p~) ® K Xg Z
induced by G, and o/, is another action on M, ® A induced by SU (n), such that &’ = o} ®a)
and ' is an o'-invariant affine isometry from i(M(noo)_ ®K)xs ZQ@ M, ® A to

(M) ® K) X2 ZQ M, ® B. '
‘of-invariance means that
V' (UzU*) = Uy (2)U*, z€ M.®4, Ue G,
that is , ¥'(z)U = U¢'(z), Ve € M, ® A, U€G. . o |
Without loss of generality, we can view O, ® K and 7(0,) ® K as the same. Since
(m(On) ® K) N (7(0n) ® K)' = CI,
¢ (2)U = U4’ (x) implies that ¢¥'(z) € M,, ® B. Now we have ¢'(M,,® A) C M,,® B, and 7'
is an ay-invariant affine isomorphism from M, ® A to M,, ® B, ¢'(0) = 0. From [1], A2 B,
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