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A NOTE ON THE RELATIVE CANONICAL IMAGE OF
A NON-HYPERELLIPTIC FIBRATION OF GENUS 4**

. CHEN ZHLJIE*
Abstract

This paper investigates the relative 1-canonmical images of non-hyperelliptic fibrations of
genus 4. It is proved that if a fibre of the relative 1-canonical image X is not a complete
intersection in P3, then the variety ¥ cannot be smooth on this fibre. Moreover, two examples
are given to show the occurrence of such cases.
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The relative canonical maps and relative canonical images have been successfully used by
Horikawal?! and Xiaol® in studying the fibrations of genus 2. As the canonical curve plays
an important role in the investigation of non-hyperelliptic curves, it seems natural that the
relative 1-canonical images might be useful in studying the non-hyperelliptic fibrations. The
genus 3 fibrations have been studied by Lopes[3] In this paper we will investigate relative
'~ 1-canonical images of non-hyperelliptic fibrations of genus 4. We will prove that if a fibre
of the relative 1-canonical image ¥ is not a complete intersection in 3, then the variety X
cannot be smooth on this fibre (Theorem 1). Finally two examples are given to show the
occurrence of such cases.

The base field is the complex number field C. A ﬁbratlon f:8—Cisa sur_]ectwe
morphism with connected fibres, where S is a smooth projective surface, C is a smooth
projective curve. The genus g of a general fibre of f is called the genus of f. We always
assume that f is a relative minimal fibration, i.e., none of its fibres contains (-=1)-curves.
The invertible sheaf wg/c = ws ® f *wg on S is called. the dualising sheaf of f. Let £ be a
sufficiently ample sheaf on C. The natural morphism f*€ = f* fews)c® fr L — ws/g® L
induces a rational map ®:

C

The rational map @ is called a relative canonical map, the closed subvariety ¥ = ®(S) is
called a relative 1-canonical image. ' '
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A fibration f is non-hyperelliptic if its general fibre is a non-hyperelliptic curve with
g > 3.

From now on, we assume g = 4.

Proposition. 1. Let f':' § '~ C'be a non-hyperellzptzc fibration: of genus 4: When the
wnwvertible sheaf L-on C is sufficiently ample, then for any point.p € C' there éxists a relative
quadratic hypersurface Q and a relative cubic hypersurface V in the projective space bundle
P = P(fswsjc ® L) such that the relative 1-canonical image T C QNV and Q, ¢ V,.

Proof. We set £ = fiwg/c ® L. Let T be the ideal sheaf of ¥. Consider the exact
sequence ‘

0 —)I——~—>(’)p-——> Os — 0.
Tensormg thls sequence w1th (’) p(2) -and: takmg dlrect 1mage we obtam
00— ﬂ'*I(Z) — 71'*(91:(2) — 71'*02(2)
Denote the invertible sheaf 7,Z(2) by M. Then we have an ‘inclusion
T 0 0p(— 2)®7r*M—>I | SR ¢
Since T C Op, we have S
: R - 0—Op — Op(2) @m*M™L, R
Denoéte the image of 1 € H(Op) by ¢ € HY(Op(2) @ m*M~1) and let @ ='Divq. Then @
is a relative quadratic hypersurface in P-and Op(—Q) = Op(—2) ® 7* M. Hence  C Q.
On the other hand tensoring the sequence (1) by Op(3); we obtam another 1nc1u51on
o 0—>(’)p(1)®1r*M—>I(3) | ‘ |
So the sequence e e
0 —&Q M — m.I(3)
is exact as well. Denote the quotlent sheaf by Q, ie.,
_ ' ‘ 0—>8®M—+1r*1(3)———>Q———+0 o ,
Smce the 1nvert1ble sheaf L is: sufﬁmently ample, we may .assume that H 1 (8 ® M) = 0
H°(Q) #i0, and Q is generated by global sections. So.we can find a global section s € H(Q)
such that s, # 0, Let f8%(s) €. H%(w.Z(3)) be the inverse 1mage of s.. . Then §*(s) ¢
a(H°(€ ® M)) and ,3*(.9) defines an inclusion . . . : ; S
0 — Og — 7r,,J(3)__.
This morphism induces an inclusion = h |
00— Op — Op(3)

Let t € H°(Op(3)) be the image of 1 € H°(Op) and let V = Divt which is a relative cubic
hypersurface. Then we have ¥ C V and Q, & V}, because 8*(s), ¢ ap((€ ® M),).
. In fact, for a fixed. ,C the relative quadric @ is unique, but the- relative cubic V need not
be unique just like in the case of canonical curves of genus 4. .
Corollary 1. If Q, is irreducible, then T, is a complete zntersectzon in P 2 ]P’3
Theorem 1. If the ﬁbre Xp of the relative 1- canomdal image is riot a complete mtersectzon
in P, 2 P3, then the 'vamety E cannot be smooth on. thzs ﬁbre »
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Proof. Let (A,u) C C be an analytic neighborhood' centered at p.. Denote the ho-
mogeneous coordinates of the projective space P3 o 7r‘1(A) by ¢ = (z1 : 23 : T3 : 4).
Then glps = gz, u), thpy = t(a: u), and the greatest common divisor (g(z, 0) t(m 0)) is a
homogeneous linear polynomlal There are two possibilities for the. linear factors of g(x,0)

Case I. The quadratic polynomial.g(z,0) has two different linear factors. By coordinate
transformation, we can assume

q(:z: U) = 1T + Z a,(a:)u ,

1>1

t(z,u) = z1bo(x) + Zb (a:)u y .

z>1

where x5 and bg(z) are coprime. All the homogeneous polynomlals a;(z) (resp bi(x)) are
of degree 2 (resp. 3). Let I, denote the homogeneous ideal of X, in P3." Then zixs,
#1bo(z) € I,. If there are homogeneous polynomials (w1th respect to z)

S o me1
a(m’u) zzak(iv)uk,
k=0 N
1 "
ﬂ(w u) Zﬁk(w)u, e
k_o o ». _f o

such that -
ump(e,u) = a(z, Wz, w) = Hz WP ),

and p(z,0) £ 0, ‘then we have p(:v 0) €1, It is not ' difficult to seé that in’ thls case there
are polynomials 7z (:L') (k 0,. - 1) such that for k=0,--- ,m — 1,

a:lak(m) Z wk_z—lbk—z’)'z(m) + bo’Yk(w)
z—O

w1ﬂk($ Zwl - lak z'y'c(m) + m27k(m),
=0

m—1

p(z,0) = Z(bo(m)am_,(a:) —mzbm— (w))%(w)/wl
1=0
Hence any element in I, can be generated by z1, z2 and bo(x). This implies that any point
(zy : xo : T3 : z4,u) € PA satisfying 21 = 23 = u = bp(z) = 0 must be in-X. Moreover,
since 3, must be connected, we can always find a p(€,u) such that X is defined by q(z,v),
t(z,u) and p(z, u). “

Sy,

Now let us suppose
gz, u) = =i (22 + u™ fl(:z:, u)) + U™ fo(wa, T3, 4, ), (2)

t(m u) == (9(z2, 23, %4) +u 2h1(a’ u)) +um2h2($2,$3, zeu), - (3)

where m,, mg >0 and either fj (z,u) = (resp hi(z,u) = 0) or n1 > 0 f1 (a: 0) # 0 (resp
ng > 0, hy(z,0) # 0).

* We distinguish four cases. - - . i v S
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(i) my, mg > 1. Then the jacobian matrix

8(g, t)

O(z,u)

Thus ¥ is singular on these points. :
(ii) mg = 1 and my > 1. If deg(g(0, z3, 1), hz(O 3,24,0)) > 0, then

- 9(g,t)
O(z,u)

In this case, the thlrd equation is
p(z, u) =mahg(z,u) + u™ he(z, u) f1(z,u) — g L fo(z, u)g(x)
- m1+"?“1f2(a:,u)h1(a:,u).

= (0).

T1=22 =u=y(m)=0

= (0).
mlzmzzuzg(m)f—:hz(m,()):o a

If my > 2, then

d -
.a(q,p) = (0).
‘ ((L‘,'L&) m1=w2=u=h2(az,0)=0
If m; =2 and deg(fz(O, Z3, 4, 0), ha(0, 3, m4;_0)) > 0, then -
9(g,p) = (0). |
a(w u) z1=zg=u=f3(x,0)=ha(=, 0) 0 1
(iii) my =1 and mg > 1. If deg(g(O x3,24), f2(0, :1:3,:::4,0)) >0, then
- (g,t).
5u = (0).
((B,'U;) m1=m2=u=g(m)=f2(m,0)=0

Now assume (g(0, =3, z4), f2(0,'a:3,a:4,0)) = 1, hence g(0, z3,z4) # 0. In this-case, the third
equation is . L - _ .
p(z,u) =g(z) f2(2,u) — u™ Laghy(z,u) — u”’fz(:n, u)h-l (z,u)
— (2, u)fy (=, ). B (4)
If fz(a: 0) has a singularity at any point satisfying z; = z2 = u = fa(z,0) = 0, then
a(q, \
a((: Z)) =(0).
* If g(x) has a singularity at any point satisfying z; =23 =u=g (a:) 0, then
o(t,p) |
Bz, u)

m1~—m2—u—fz(m 0)“‘0

= (0).

m1=wg;—-u=g(m)=0

(iv)ymi=ma=11If ,
9(0, x5, 24) f2 (w2, 3, 4, 0) — Z3ha(z2, T3, 24,0) = 0,
then we have a:2-| fg(wg,w3,w4,0) and ¢(0, 3, x4) I ha(z2, 3, 24,0). Hence

8(a,1) = (0).

a(d:’ 'u) a:1=.mg=u=g(:c)‘=0

.Now assume
g(O w3,w4)f2($2,w3,w4,0) — zghg(®g, 3, %4,0) # 0
+ Then the third equation is
p(z,u) = g(z)f2(z, v) — z2ha(z, u) + u™ foz, u)hy (2, u) ~u™ fi (z, u)hg(w uw). - (5)
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If g() f2(z,0) — z2ha(x, 0) has a singularity at any poiht satisfying z; = 2 = u = g(z) = 0,
then .
ank M : <1
a(m’ u) ©1 =wp=u=g(z)=0
Therefore three cases remain to be checked. Suppose that ¥ is smooth at any point of
¥,. Then the corresponding fibre S, of f is a blowing down of 3, ‘
(a) my =2, mg=1and ‘
(9(0, I3, 1174), hZ(Oa T3, T4, 0)) = 1.

Let I'y, 'y and I's denote the curves defined by the following equations respectively

zg = u =0, 1 =u=0, u =0, '
9=0, hy =0, - z1 =z =0.

By the assumption, we have
Yp=T14T2+47T5,
and o
s =2, I'sIg = 3, Iy =0.
Since I'3X, = 0 and pa(['3s) =0, we obtain
2 = 5, K5 s = 3.

- Moreover, as I'? = =2, TZ = -3, if 3, is reduced, then X, = S,. If 2y, is 2-connected, then
the canonical divisor Kg is base-point-free on S, = X, (see e.g. [3]). Hence KsI's =1, a
contradiction. This means X, is not reduced. Since I'? = —2and I'4 = —3, these components
are not multiples. Thus the only. possibility is I'p = 2I'% +I'j, T'y # I';. Since 2 = -1,
TU% = =5, pa(I%) = pa(T%) = 0, we get szr' = -1, Ky, r" o._ As Kz, T1 =0, we get
K5, ¥, = 2 # 6, a contradiction. :

(b) my = 1, mg > 1, g(x) is smooth at points &; = x3 = u = g(m) =0, fa(z,0) is smooth
at points 3 = x3 = u = fa(z,0) = 0, and

(f2(0 $3,$4,O),g(0 a73,m4)) = 1.

In this case the third equation p(z,u) is given in formula (4). Let I'y, I' and I's denote the
curves defined by the following equations respectively

2y =u =0, z1=u=0, 1 =u=0,
{g=0, - {9=0, , {f2=0-
By the assumption, we have ‘
| S, =T1+T5+Ts
and |
'y =2, o'y =4, I''T's =0.

By the assumption, g(z) is not a square of a linear polynomial. Therefore I'; and T'p are
reduced, po(I'1) = pa(l'2) = 0. An easy computation yields r? =-2,T%=-6,T; = —4.
If X3 is reduced, then S, = ¥,. Since K3, T'z = 4, ¥, cannot be 2-connected. This implies
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I'3 = 2. By computation we get Ky I's = —1, Kz, I'1 = 0. Thus Kg %, = 2 # 6, a
contradiction. :

(c) my = my = 1, g(x) f2(2,0) — z2hs(z,0) is smooth at points z; = x5 = u = g(z) = 0.
In this case the third equation p(z,u) is given in formula (5) Let I';, I'; denote the curves
defined by the following equations respectively

ZTg=u=0, | 1 =u=0,
g=0, gf2 — z2hy = 0.
Sp=T1+Ty, Dlp=2  T2=I2=-2
If the divisor X, is reduced, then S, = %, and ¥, is 2-connected. That means KgI'y = 2,
KsTy = 4. But po(T1) = 1+ (KsT'1 +I'%)/2 = 1, a contradiction.

Now suppose that %, is not reduced. Since I'? = I'} = -2, the divisors I'; or I'; cannot
be multiple divisors. Assume I'y = 3T, + I'). Then - '

I2 = T2 4+ T2 4 65Ty = 902 + T2 4+ 6 < —4,

Then

which is impossible.

If 'y = 20 + I + T4 with T/ # Y, then

| T2 =4T'? + T4 + T9"? + 10 = —2. , _
Since pa(I'y) = pa(l'y) = pa(I'y’) = 0, in any case we cannot obtain the equality Kx X, = 6.
" If Ty = 2T + 'Y, then the equality
I3 = 41“'22»+ Iy +8=-2

also yields a contradiction. . ) _ A - ,

Case II. The quadratic polynomial g(x,0) is a.square. By coordinate transformation,
Wwe can assume - »
q(z, u) =21 (21 + v™ fi(z, u)) + u™ f2(22, T3, T4, ),
t(z,u) =z1(g9(22, 3, T4) + v 2 hy(,w)) + ™ ho(z2, T3, T4, u).
Then we distinguish two cases. o ’

(i) m1 < my. In this case the third equation is

p(z,u) =fa(®2, T3, T4, u)g(22, T3, T4) — U™ ™ x1he(z, u)
+ u™hy (2, w) fa(z, u) — u™ ™2™ £ (@ uYho (2, u).

If mg > 1, we have '

6(g;) = (0).
3(.’13,’11,) z3=u=g(z)=f2(z,0)=0 ' v
If m;y = my = 1 and degd(z2,z3,24) > 0, where d(z) = (g(wz,wa,m),f2($2,-’lf'3,$4;0)),

then

o(z, u) o1 =u=d(z)=hg(z,0)=0 .
(i) my > mg. In this case, we can show that any homogeneous polynomial r(z,0)
satisfying

u™r(z, u) = q(z, w)a(z, u) — t(z;u)B(z,u)
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with m < my must be generated by z2? and z19(z). Wher m = my, we obtain

r(z,u) =(1ha(, u) + v ha(x, w) fi(z, w) ~ W™ 7™ fa(w, v)g(z)
w2t £ (g, u)hy (2,0)) ().
Thus we can see that the elements of the ideal I, can be generated by z1, g(z) and hy(x,0).
This implies that any point (z : z2 : @3 : ©4,u) € P3 satisfying z1 = u = g(x) = ha(z,0) =
0 must be in . Moreover, since 3, is connected, we can always find a p(z,u) such that 3
is defined by g(z,u), ¥z, u) and p(cc u). The followmg equahty ‘

8(:1: 'U,) x3 =u=g(x)=hz(x,0)=0
shows that X cannot be smooth in this case.

Now there remains only one case to-be checked. That is, m3 =mg =1 and
w  (9(z2,T3,24), fa(ma; T3,24,0)) = 1.
In this case, the third equation is
p(z,u) =g(x2, 3, 24) f2(x2, T3, :ﬁ;, u) — w1hy(z, u) + u™ by (z, ) f2(z, w)
W™ fi (2, u)ha(z, ). |
Let Ty and T denote the curves deﬁned by the followmg equat1ons respectlvely
ml-—'u,—-O wl—u-—O'
{ g=0, { fo=0.
By the assumption, we ha\-re ) ‘
Yp =201 + T, |
and
=4, Ti=-2 T;=-8

Hence T'; and I'y cannot be multiple divisors. Then we can check that S, = X, is 2-
connected. But KgI'y = 0 and KgI's = —6, this contradicts K 5Sp = 6.

Now we will give two examples showing that 3, need not be a complete intersection in
P o p3, 3 .

Example 1. Let C = P* = CU{oo}, £ = OF*. Then P = P(£) = P3 x P! and
7 : P —> C is the projection. Let p =0 € C. The following global sections:
g(z,u) = z122 + u(a} + 23 + 23) € H(0p(2) @ 7" 0c(p)),
t(.’l) u) = .’L'vliL'g + uwg(ng -+ :L‘Z) € HO('OP(3)‘®'7T*Oc(p)),
h(m) = :122(21172 + .'1:4) wg(wl -+ mg -+ w4) € HO(OP(4))
"define a subvariety & C P. Outs1de the singular line u = = go = x4 = 0, the projective
variety % is smooth. After desingularization, we obtain a non-hyperelliptic fibration of

genus 4 f : S — C whose relatlve 1-canonical image is ¥. The singular fibre S), has the

configuration
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I, I's
where g :
KsT'y =4,  TI?=-2 Pa(T1) =2,
KTy =2, I3 = —4, pa(T2) =0,
KsI'3 =0, I2=-2, . pu(l3)=0
Note that the general fibre of f is a non-hyperelliptic curve with two gi’s.

Example 2. The notations are the same as in Example L We take global sections
q(z,u) = z123 + u(z} + 23) € H'(Op(2) ® 7 0Oc(p)),
t(z,u) = 2173 + u(ziz2 + 23 + 23) € H*(Op(3) @ 7*Oc(p)),
h(z) = 2(2izs + 2§ + 2f) ~ @(af + a3) € H(Op(4)).
These global sections define a subvariety X C P. The only singular line of ¥ is u = x5 =

x4 = 0. After desingularization, a non-hyperelliptic fibration of genus 4 f : S — C is
obtained and the relative 1-canonical image of f is X. The singular fibre Sp looks like

~ )
— 2I'3
./ —
ry I
where .
KS]-‘l =‘4a I‘% = _4, pd(rl) - 17
KgT'y = 2, 2= —4, pa.(FZ) =0,

Kgl's =0, Pz = -2, pa(F3) =“‘0./

Note that the general fibre of f is a non-hyperelliptic curve with one g3.
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