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some previous existence theorems are extended.
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§1. Introduction

Consider the following boundary value problems

x′ = f(t, x), (1.1)

B(x) = r (1.2)

and

y′ = g(t, y), (1.3)

B(y) = r, (1.4)

where f, g: [a, b] × Rn → Rn and B is a mapping from the space of continuous functions

C([a, b], Rn) into Rn.

One interesting problem is the following:

Under what conditions can the existence of solutions to BVP (1.1), (1.2) imply the exis-

tence of solutions to BVP (1.3),(1.4) ?

The aim of this paper is to prove some comparison theorems which provide some affir-

mative answers to the above question. Here one special result is the following

Theorem 1.1. Suppose that

(i) f, g: [a, b] × Rn → Rn are continuous and the solution of the Cauchy problem to

Equation (1.1) is unique,

(ii) there is an l > 0 such that for all p ∈ Rn, and any possible solution x(t) of Equation

(1.1) and y(t) of Equation (1.2) with the same initial data p at t = t0 ∈ [a, b], one has

|x(t)− y(t)| ≤ l, for t ∈ [a, b],
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(iii) B:C([a, b], Rn) → Rn is continuous and satisfies

|B(x+ h)−B(x)| ≤ M, for x, h ∈ C([a, b], Rn) and ∥h∥ < l + d,

for suitable constants M,d > 0,

(iv) for every r ∈ Rn, BVP (1.1)(1.2) has a unique solution.

Then BVP (1.3), (1.4) has at least one solution.

With these basic results, we can generalize many results of [1, 4, 5, 7–12].

Our consideration is motivated from Lakshmikantham’s paper [3] on the existence of

periodic solutions and the arguments are based on the continuity of the Brouwer degree.

We shall first prove Theorem 1.1 in section 2 and then provide a more general result in

section 3. Some applications will be given in section 4. Finally in section 5, we shall present

general comparison theorems along the line of the nice paper of Lasota and Opial[5].

§2. Proof of Theorem 1.1

We first prove the theorem under the additional assumption that for every p ∈ Rn, there

exists a unique solution y(t, t0, p) of Equation (1.3) such that y(t0) = p.

Define a homotopy H(p, λ) on Rn × [0, 1] by

H(p, λ) = B(x(·, t0, p)) + λ[B(y(·, t0, p))−B(x(·, t0, p))]− r.

Take m > M and set

S(r,m) =
{
p ∈ Rn: |p− r| < m

}
,

and

D =
{
p ∈ Rn: p = B−1

0 (q), q ∈ S(r,m)
}
,

where B0(p) ≡ B(x(·, t0, p)). From (iv) it follows that D ⊂ Rn is open, and from (ii) we see

that for every p ∈ D the solution y(t, t0, p) exists on [a, b], since x(·, t0, p) exists on [a, b].

From the choice of m and (iii) we get

H(p, λ) ̸= 0, for (p, λ) ∈ ∂D × [0, 1]. (2.1)

Obviously H(p, λ) is continuous on D× [0, 1], since x(t, t0, p) and y(t, t0, p) are continuous in

p. Hence deg(H(·, λ), D, 0) is well defined. From (2.1) and the continuity of Brouwer degree

we have deg(H(·, 1), D, 0) = deg(H(·, 0), D, 0). According to Theorem 3.3.3 of Lloyd [6], we

get from (iv), deg(H(·, 0), D, 0) = ±1 and then deg(H(·, 1), D, 0) = ±1. Therefore, there is

p0 ∈ D such that B(y(·, t0, p0)) = r, i.e., BVP (1.3), (1.4) has at least one solution.

To prove the general case, we use an approximation procedure.

Set

E =
∪

t∈[a,b]

{
z ∈ Rn: z = x(t, t0, p), p ∈ D

}
and

S(E, l) =
{
p ∈ Rn : dist(p,E) < l

}
.

By virtue of the Weierstrass theorem, there is a sequence {gk(t, x)} of C1 functions such

that gk(t, x) → g(t, x) uniformly on [a, b]× S̄(E, l). According to a well known theorem (see
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[2], Chapter II, Theorem 3. 2) and (ii) , we assume that for each k the following holds:

|x(t, t0, p)− yk(t, t0, p)| ≤ l + d,

where yk(t, t0, p) is a solution of y′ = gk(t, y) with y(t0) = p. By previous arguments, for

each k the BVP y′ = gk(t, y), B(y) = r has at least one solution yk(t) with yk(t0) ∈ D and

yk(t) ∈ S̄(E, l), for t ∈ [a, b]. Applying the Arzela-Ascoli theorem to the sequence {yk(t)},
we can conclude the existence of solutions to BVP (1.3), (1.4), which complets the proof.

§3. A General Theorem

In this section, we present a general comparison theorem.

Theorem 3.1. Suppose that the conditions (i)–(iii) of Theorem 1.1 hold, and for some

m > M , D(r) ≡
{
p ∈ Rn: p ∈ B−1

0 (q), q ∈ S(r,m)
}
is bounded and deg(B0−r,D(r), 0) ̸= 0,

where B0(p) ≡ B(x(·, t0, p)) and S(r,m) =
{
p ∈ Rn: |p − r| < m

}
. Then BVP (1.3), (1.4)

has at least one solution.

Proof. Similar to that of Theorem 1.1.

Remark. In Theorem 1.1, the unique solvability of BVP (1.1), (1.2) is assumed. Hence

the condition deg(B0 − r,D(r), 0) ̸= 0 is more generel.

§4. Some Applications

In this section, using Theorem 1.1, we give a unified approach to several classes of prob-

lems and extend some previous existence theorems.

We first extend the results of Opial[7] and Vidossich[10] to the following

Theorem 4.1. Let f : [a, b]×Rn → Rn, B:C([a, b], Rn) → Rn be continuous and satisfy

(iii) in Theorem 1.1. Suppose that

(i) for a suitable K > 0, one has

|f(t, x)− f(t, y)| ≤ K|x− y|, for x, y ∈ Rn and t ∈ [a, b],

(ii) BVP (1.1), (1.2) has a unique solution for evrey r ∈ Rn.

Then for every bounded continuous function e: [a, b] × Rn → Rn and every r ∈ Rn, BVP

(1.3)(1.4) has at least one solution for g(t, x) = f(t, x) + e(t, x).

Proof. Let x(t) and y(t) be any solution of Equation (1.1) and Equation (1.2) respec-

tively, with the same initial data which exist on [a, b]. Then

|x(t)− y(t)| =
∣∣ ∫ t

t0

[f(s, x)− f(s, y)− e(s, y)]ds
∣∣

≤
∣∣ ∫ t

t0

(K|x(s)− y(s)|+N)ds
∣∣, for t ∈ [a, b],

where N = sup
{
|e(t, y)|: t ∈ [a, b], y ∈ Rn

}
. From this and the Gronwall lemma it follows

that (ii) in Theorem 1.1 is satisfied. Here the remaining conditions in Theorem 1 also hold.

Therefore we complete the proof of the theorem by applying Theorem 1.1.

Remark. In [7] and [10], B(x) is a linear operator. Here, B(x) is not necessarily. This

makes us present a new argument.
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Secondly we prove an existence theorem of periodic solutions.

Theorem 4.2. Suppose that f :R × Rn → Rn is continuous, and for some constant

T > 0, f(t + T, x) ≡ f(t, x), for all (t, x) ∈ R × Rn. Suppose that there is a continuous

function α: [0, T ] → R with
∫ T

0
α(s)ds = α0 < 0 such that

(x− y) · [f(t, x)− f(t, y)] ≤ α(t)|x− y|2, for (t, x) ∈ [0, T ]×Rn (4.1)

where “·” denotes the usual inner product. Moreover suppose that Equation (1.1) has at

least one solution x0(t) existing on [0,T]. Then for every bounded continuous function e :

R×Rn → Rn with e(t+ T, x) ≡ e(t, x) for all (t, x) ∈ R×Rn, the equation

x′ = f(t, x) + e(t, x) (4.2)

has at least one T -periodic solution.

Proof. We claim that for every r the following BVP

x′ = f(t, x), x(T )− x(0) = r (4.3)

has a unique solution. In fact, we define a mapping F : Rn → Rn by F (p) = x(T, 0, p)− r,

and then prove that F is a contract mapping. From (4.1) we get

d

dt
|x0(t)− x(t, 0, p)|2 = 2[x0(t)− x(t, 0, p)] · [f(t, x0(t))− f(t, x(t, 0, p))]

≤ 2α(t)|x0(t)− x(t, 0, p)|2, for t ∈ [0, T ],

which implies

|x0(t)− x(t, o, p)|2 ≤ |x0(0)− p|2 exp[2
∫ t

0

α(s)ds], for t ∈ [0, T ].

Hence F is well defined on Rn and is contract by substituting x(t, 0, q) for x0(t) above, since

α0 < 0. Therefore, according to the Banach contract mapping principle, F has a unique

fixed point, i.e., BVP (4.3) has a unique solution.

By similar arguments as above, (ii) in Theorem 1.1 also holds. Consequently by virtue of

Theorem 1.1, we get a solution x(t) of Equation (4.2) with x(0) = x(T ). Set

x1(t) = x(t+ kT ), for t ∈ [kT, (k + 1)T ] and k = 0,±1, · · · .

Then x1(t) is the desired sloution of Equation (4.3). The proof is complete.

Next we prove an existence theorem for boundary value problems of kth-order ordinary

differential equations.

Consider the following BVP

x(k) = f(t, x, . . . , x(k−1)), (4.4)

B(x) = r. (4.5)

We have

Theorem 4.3. Let B : Ck−1([a, b], Rn) → Rkn be continuous and satisfy that for every

l > 0, there is an M(l) > 0 such that

|B(x+ h)−B(x)| ≤ M(l), for x, h ∈ Ck−1([a, b], Rn), and ∥h∥ ≤ l.

Let z(t, c1, . . . , ck) be the solution of the Cauchy problem

x(k) = 0, x(i)(a) = ci+1, i = 0, · · · , k − 1.
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If the equation B(z(·, c1, . . . , ck)) = r has a unique solution (c1, . . . , ck), for every r ∈ Rkn,

then for every bounded continuous function f : [a, b] × Rkn → Rn, BVP (4.4), (4.5) has at

least one solution.

Obviously this theorem generalizes the classical Scorza-Dragoni theorem on two point

boundary value problems for second order equations.

Proof of Theorem 4.3. Rewrite Equation (4.4) in the following form

X ′ =


O I

. . .
. . .
. . . I

O

X +

 0
...

f(t, x)

 ≡ AX + F (t,X), X =

 x
...

x(k−1)

 .

From this and the assumptions we see easily that conditions in Theorem 1.1 are all satisfied.

So the conclusion follows from Theorem 1.1.

§5. Generalization of the Lasota-Opial Theorem

In this final section, we extend a well known theorem of Lasota and Opial[5].

Consider the following BVP

x(n) = f(t, x, · · · , x(n−1)), (5.1)

B(x) = r. (5.2)

The first extension is the following

Theorem 5.1. Suppose that f : [a, b] × Rn → R and B : C(n−1)([a, b], R) → Rn are

continuous. Suppose that there are continuous functions pi : [a, b] → R+(i = 0, · · · , n) such

that for every function ai ∈ L2[a, b], i = 0, 1, · · · , n with |ai(t)| ≤ pi(t) for t ∈ [a, b] and

i = 0, · · · , n and for every r ∈ Rn, the following BVP

x(n) =
n−1∑
i=0

ai(t)x
(i) + an(t), B(x) = r (5.3)

has a unique solution and f satisfies

|f(t, x0, · · · , xn−1)| ≤
n−1∑
i=0

pi(t)|xi|+ pn(t) for t ∈ [a, b]

and xi ∈ R(i = 0, · · · , n− 1). (5.4)

Then BVP (5.1), (5.2) has at least one solution for every r ∈ Rn.

To prove this theorem, we need the following

Lemma 5.1. Let D ⊂ Rn be open and E a closed subset of topological space X, such

that any sequence in E admits a converging subsequence. Suppose that F : D × E → Rn

is continuous and for each λ ∈ E,F (·, λ) : D → Rn is injective. If the sequence {Sλ} with

Sλ ⊂ Range (F (·, λ)) are uniformly bounded in λ ∈ E, then so is {F−1(Sλ)}.
Proof. If not, there were sequences λk ∈ E, xk ∈ F−1(Sλk

) such that

yk = F (xk, λk) → y0, λk → λ0 and |xk| → ∞(k → ∞), (5.5)

for suitable λ0 ∈ E and y0 ∈ Sλ0 . Let x0 = F−1(y0, λ0). From the invariance of domain

theorem (see [13], p.705, Theorem 16. C) it follows that F (S(x0, δ), λ0) is open, where δ > 0
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is suitably small. Hence m =dist(y0, ∂F (s(x0, δ), λ0)) > 0. Obviously,

F (x, λ) → F (x, λ0)(λ → λ0)

uniformly on x ∈ ∂S(x0, δ). By this and (5.5), there is a k0 > 0 such that

|yk − y0| <
m

4
, dist(y0, ∂F (S(x0, δ), λk)) ≥

m

2
,

for every k ≥ k0, which implies yk ∈ F (S(x0, δ), λk) for all k ≥ k0. Since for fixed λ ∈
E, F (·, λ) is injective, we get xk = F−1(yk) ∈ S(x0, δ), which contradicts |xk| → ∞(k → ∞).

The proof is complete.

Proof of Theorem 5.1. Set

c(t, x0, . . . , xn−1) = an(t) +
n−1∑
i=0

pi|xi|,

bi(t, x0, . . . , xn−1) = pi(t)f(t, x0, . . . , xn−1)sgnxi/c(t, x0, . . . , xn−1) (i = 1, · · · , n− 1),

bn(t, x0, . . . , xn−1) = pn(t)f(t, x0, . . . , xn−1)/c(t, x0, . . . , xn−1).

Then

f(t, x0, . . . , xn−1) =

n−1∑
i=0

bi(t, x0, . . . , xn−1)xi + bn(t, x0, . . . , xn−1).

Rewrite Equation (5.1) in the following form

X ′ =


0 1

. . .
. . .
. . .

0 1
bn−1 · · · b1 b0

X +

 0
...
bn



= A(t,X) + h(t,X),

X =

 x
...

x(n−1)

 . (5.6)

Set

Q = {A(t, u) : u ∈ C([a, b], Rn)}, H = {h(t, u) : u ∈ C([a, b], Rn)},

and

Q1 = {e(t) : there is a sequence {Ak(t)} ⊂ CO(H) such that Ak

is weakly convergent to e in L([a, b], Rn×n)},

where CO(H) denotes the convex hull of H. Similar to Q1, we get the set H1 to H. Since

each b ∈ CO(H) has the following form

b(t) =


0 1

. . .
. . .
. . .

. . .

0 1
bn−1 · · · · · · b1 bn


with |bi(t)| ≤ pi(t), for t ∈ [a, b], i = 0, · · · , n − 1, by the Hahn-Banach theorem it follows

that Q1 ⊂ L2([a, b], Rn×n) is bounded, convex and closed. Similarly so is H1. Define a
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mapping Fλ : Rn → Rn by

Fλ(X0) = B(X(·, t,X(t, a,X0, b, c))),

where λ = (t, b, c), b ∈ Q1, c ∈ H1 and X(t, a,X0, b, c) denotes the solution of the Cauchy

problem:

X ′ = b(t)X + c(t), X(a) = X0.

It is easily seen thatX(t, a,X0, b, c) is continuous with respect to (t, b, c) ∈ [a, b]×Q1×H ≡ E

by applying the Gronwall lemma. By the assumption (5.3) for each λ, Fλ is injective. Hence

{F−1
λ (S̄(r, 1)} is uniformly bounded in λ ∈ E, by virtue of Lemma 5.1. Therefore there is

an l > 0 such that for every u ∈ C([a, b], Rn) together with solution Xu(t) of the following

BVP

X ′ = A(t, u)X + h(t, u), (5.7)

B(x) = r, (5.8)

we have

|Xu(t)| ≤ l, for t ∈ [a, b]. (5.9)

Define an operator N : C([a, b], Rn) → C([a, b], Rn) by N(u) = Xu(t), which is well defined

by (5.3), (5.4). Since Xu(t) is a solution of Equation (5.7), from the Arzela-Ascoli theorem

it follows that N is compact. It is easily seen that N is continuous by the uniqueness of

Xu(t) and the continuity of solutions with respect to the initial data and parameter. By

(5.9), N(C([a, b], Rn)) is bounded. Therefore according to the Schauder theorem, N has at

least one fixed point u0. Then u0(t) is the desired solution. The proof is complete.

Remark. In Lasota and Opial’s result, B(x) =
(
x(t1), · · · , x(tn)

)
, where a < t1 < · · · <

tn < b. Here, in Theorems 5.1 and 5.2, B(x) may be a general linear oprator, even nonlinear

one.

The following theorem is a direct extension of the Lasota and Opial’s theorem[5].

Theorem 5.2. Suppose that f : [a, b]×Rn → R is continuous and that B : C([a, b], Rn) →
Rn is continuous and satisfies the following:

For every m > 0, there is an M(m) > 0 such that

|B(x+ h)−B(x)| ≤ M(m) for x, h ∈ C([a, b], Rn) and ∥h∥ ≤ m. (5.10)

Suppose moreover that there are continuous function pi : [a, b] → R+(i = 0, · · · , n) and

ε0 > 0 such that for every function ai ∈ L2[a, b], i = 0, · · · , n − 1 with |ai(t)| ≤ pi(t) + ε0,

for t ∈ [a, b] and i = 0, · · · , n− 1, and for every r ∈ Rn, the following BVP

x(n) =
n−1∑
i=0

ai(t)x
(i), B(x) = r

has a unique solution and f satisfies

|f(t, x0, · · · , xn−1)| ≤
n−1∑
i=0

pi(t)|xi|+ pn(t) for t ∈ [a, b], xi ∈ R (i = 0, · · · , n− 1).

Then BVP (5.1), (5.2) has at least one solution.
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Here we point out that in Lasota and Opial’s theorem, B(x) ≡ (x(t1), . . . , x(tn)) =

(r1, . . . , rn), where a < t1 < · · · < tn < b. Hence the above theorem generalizes their result.

Proof of Theorem 5.2. Along the line of the proof of Theorem 5.1, we have (5.9),

where H1 = {0}. By (5.7) and the assumption, there is an m0 > 0 such that

|X(t, a,X0, µA(·, u), h(·, u))−X(t, a,X0, µA(·, u), 0)| < m0,

for t ∈ [a, b], x0 ∈ Rn, u ∈ C([a, b], Rn) and µ ∈ [0, 1]. (5.11)

Set

D = {p ∈ Rn : p = B−1
0uµ(q), q ∈ S(r,M(m0))},

where B0uµ(p) = B(X(·, a, p, µA(·, u), 0)). The set D ⊂ Rn is bounded, open and satisfies

D ⊃ Du for every u ∈ C([a, b], Rn).

By (5.10), (5.11) and the definition of D, any possible solution Xµ(t) of the following

BVP

X ′ = µA(t,X)X + µh(t,X), (5.12)µ

B(X) = r (5.13)

must satisfy Xµ(a) /∈ ∂D, for µ ∈ [0, 1]. Now we prove the existence of solution to BVP

(5.12)µ, (5.13). Using an approximation procedure similar to the proof of Theorem 1.1, we

may assume that h(t,X) is continuously differentiable in X ∈ Rn. Recalling the proof of

Theorem 1.1, we get deg(B0 − r,D, 0) = ±1, where B0(p) ≡ B(X(·, a, p, 0, 0)). From this

and the continuity of Brouwer degree it follows that

deg(B1 − r,D, 0) = deg(B0 − r,D, 0) ̸= 0,

where Bµ(p) = B(X(·, a, p, µ)) and X(t, a, p, µ) denotes the solution of Equation (5.12)µ
with initial data X(a) = p. Therefore B1 has at least one fixed point p0 ∈ D, and then

X(t, a, p0, 1) is the desired solution. The proof is completed.
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