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ON THE THEOREM OF ARROW-BARANKIN-BLACKWELL

FOR WEAKLY COMPACT CONVEX SET
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Abstract

This paper studies the known density theorem of Arrow-Barankin-Blackwell. The following
main result is obtained: If X is a Hausdorff locally convex topological space and C ⊂ X is a
closed convex cone with bounded base, then for every nonempty weakly compact convex subset

A, the set of positive proper efficient points of A is dense in the set of efficient points of A.
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In 1953, in reference [1], Arrow, Barankin and Blackwell proved the following conclusion:

In Rn with nonnegative coordinate cone Rn
+, for every compact convex set A ⊂ Rn, the set

of its positive proper efficient points is dense in the set of the efficient points. Afterwards,

in [3], Bitran and Magnanti proved that if Rn is equipped with arbitrary closed convex

pointed cone C, the above result holds still. In 1980, Borwein extended the theorem of

Arrow-Barankin-Blackwellto real normed space partially ordered by a closed convex cone

with weakly compact base. Recently, Jahn[8] proved that in a real normed space if the

ordered cone is a Bishop-Phelps cone, then the theorem of Arrow-Barankin-Blackwellholds.

In 1990, Petschke noticed that Jahn’s proof is effective for real normed space, when the

ordered cone is a convex cone with a bounded base. Therefore, Jahn’s result[8] shows that

the theorem of Arrow-Barankin-Blackwellstill holds in real normed spaces partially ordered

by a closed convex cone with a bounded base. In reference [12], the author has proved

the following conclusion: In a real normed space, for any compact convex set, the set of

the positive proper efficient points is dense in the set of the efficeint points if and only if

the ordered cone is equipped with a base. Thus it can be seen that the work to extend

the theorem of Arrow-Barankin-Blackwellto real normed spaces has concluded. Soon, the

author extended this result to local convex spaces. In view of application, Jahn’s result[8]

is better. He has proved that in a real normed space if the ordered cone is equipped with a

bounded base, then for arbitrary weakly compact convex set, the set of the positive proper

efficient points is dense in the set of the efficient points. Therefore, he extended the theorem
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of Arrow-Barankin-Blackwellto the case of weakly compact sets. Now we ask whether Jahn’s

result[8] can be extended to locally convex spaces. The purpose of this paper is to show a

positive answer for that question.

For convenience, we first introduce several elementary concepts and definitions.

Let X be a Hausdorff locally convex space, let its dual space be X∗, C ⊂ X is a closed

convex pointed cone, A ⊂ X is a subset. We say that x∗ ∈ A is a efficient point if

A ∩ (x∗ − C) = {x∗}.

E(A,C) denotes the set of efficient points. Let

C∗ = {f ∈ X∗ : f(x) ≥ 0, ∀x ∈ C},
C# = {f ∈ X∗ : f(x) > 0, ∀x ∈ C/{0}},

where every function in C# is said to be a strictly positive function. A point x∗ is said to

be a positive proper efficient point of A, if there exists a strictly positive function f ∈ C#

such that

f(x∗) ≤ f(x), ∀x ∈ A,

that is,

f(x∗) = min{f(x) : x ∈ A}.

We use PS(A) to denote the set of positive proper efficient points of A.

Let M ⊂ X be an arbitrary subset, the symbol cl(M) denotes the closure of M , int(M)

denotes the interier. Secondly, we use cone(M) to denote the smallest convex cone which

contains M . When M is a convex set, (see reference [13])

cone(M) = {λx : λ ≥ 0, x ∈ M}.

We say that a cone C is equipped with base B, if B is a convex set of C and satisfies{
0 /∈ cl(B),

C = cone(B) = {λx : λ ≥ 0, x ∈ B}.
(1)

A cone with base must be a pointed cone, i.e., C ∩ (−C) = {0}. And a convex cone C is

equipped with a base if and only if

C# ̸= ∅.

Theorem 1. Let X be a Hausdorff locally convex space, C ⊂ X be a closed convex cone.

Then C is equipped with bounded base if and only if there exists 0 ̸= f ∈ X∗ such that for

any continuous seminorm p, there exists Cp > 0 such that

f(x) ≥ Cpp(x), ∀x ∈ C. (2)

Proof. Let B is a bounded base of C.

Since 0 /∈ cl(B), applying the separate theorem, we see that there exists 0 ̸= f ∈ X∗ such

that

f(b) ≥ 1, b ∈ B. (3)

Assume p : x → R to be an arbitrary continuous seminorm. Then

Up = {x ∈ X : p(x) ≤ 1}
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is a neighbourhood of zero. By the boundedness of base B, we know that there exists rp > 0

such that

B ⊂ rpUp, or p(x) ≤ rp, ∀x ∈ B. (4)

Then, since B is a base of C, we know that for any x ∈ C/{0} there exists λx > 0, b ∈ B,

such that x = λxb. By (4), we have

p(x) = λxp(b) ≤ λxrp, or rp ≥ 1

λx
p(x).

Noticing (3) again, we have

f(x) = λxf(b) ≥ λx ≥ 1

rp
p(x).

Conversely, assume that inequality (2) holds, i.e., there exists 0 ̸= f ∈ X∗ such that

f(x) ≥ Cpp(x), ∀x ∈ C.

Let

B = {x ∈ C : f(x) = 1}.

It is obvious that B is a convex subset and 0 /∈ cl(B). In the following we will prove the

boundedness of B.

Let U be a balanced convex open neighbourhood of zero, pU be a Minkowski functional

of U

pU (x) = inf{|λ| : x ∈ λU}.

Then pU is a continuous seminorm. By the supposition, there exists a CU > 0 such that

f(x) ≥ CUp(x), ∀x ∈ C.

According to the properties of Minkowski fucntional, we have

Up = {x ∈ X : p(x) < 1} ⊂ U.

But for any x ∈ B,

1 = f(x) ≥ CUp(x), or p(x) ≤ 1

CU
.

So

B ⊂ 1

CU
Up ⊂ 1

CU
U.

Therefore B is bounded.

Lastly, we prove C = {λx : λ ≥ 0, x ∈ B}. In order to do this, we explain first that for

any x ∈ C/{0}, f(x) > 0, i.e., f ∈ C#. Otherwise, for x0 ∈ C/{0} we get f(x0) ≤ 0. Then

for every continuous seminorm p,

0 ≥ f(x0) ≥ Cpp(x0), or p(x0) ≤ 0.

Note that for arbitrary seminorm p,

p(x0) ≥ 0.

Therefore

p(x0) = 0 for any continuous seminorm p. (5)
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Since X is a Hausdorff locally convex space, the set of continuous seminorms separates the

points of X, i.e., for any 0 ̸= x ∈ X there exists a continuous seminorm p such that p(x) > 0.

From (5), we obtain x0 = 0, it deduces contradiction.

Now, we prove C = {λx : λ ≥ 0, x ∈ B}, since for any x ∈ C/{0}, f(x) > 0. Let

y = x/f(x). Then

y ∈ B or x = f(x)y ∈ {λx : λ ≥ 0, x ∈ B},

i.e., C ⊂ {λx : λ ≥ 0, x ∈ B}. The converse containing is clear.

In the following, the symbol “
w
⇀” denotes weakly convergence, and the symbol “→”

denotes strongly convergence.

Lemma 1. Let the closed convex cone C be equipped with a bounded base. Then for any

net {xn} ⊂ C, xn → 0 ⇐⇒ xn
w
⇀ 0.

Proof. Let xn
w
⇀ 0, and assume xn does not converge to 0. Then there exists a convex

open neighbourhood U of zero such that

xn /∈ U for any n, (6)

which implies xn ̸= 0.

Since B is bounded, there exists a t > 0 such that

tB ⊂ U.

By 0 /∈ cl(B) and the separate theorem, there exists 0 ̸= f ∈ X∗ such that

f(x) ≥ 1 for any x ∈ B. (7)

Notice that the set C1 = {x = λb : b ∈ B, 0 ≤ λ ≤ t} is a convex set and obviously C1 ⊂ U

(because tB ⊂ U and U is convex). Since xn = tnbn, tn > 0, bn ∈ B, we have tn > t (if it is

not true, let tn ≤ t, then xn = tnbn ∈ C1 ⊂ U , this contradicts (6)). By (7), we obtain

f(xn) = tnf(bn) ≥ tn > t.

This is contradictory to xn
w
⇀ 0, i.e., f(xn) → 0.

Below, we construct its “expansion” cone for the cone C with base.

Now let B be a base of C, according to 0 /∈ cl(B) there exists a balanced convex open

neighbourhood U∗ of zero such that

U∗ ∩B = ∅. (8)

Let

N(0) = {U ⊂ U∗ : U is a balanced convex open neighbourhood of zero}. (9)

For every U ∈ N(0), notice that B + U is convex, and then let

CU = cl(cone(B + U)) = cl{λx : λ ≥ 0, x ∈ B + U}. (10)

It is clear that CU is a closed convex cone.

Lemma 2. There holds

C/{0} ⊂ int(CU ),

and CU is a pointed cone when U − U ⊂ U∗.
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Proof. Let x ∈ C/{0}. Then there exist b ∈ B, λ > 0, such that x = λb. Thus

x+ λU = λb+ λU ⊂ λ(B + U) ⊂ cone(B + U) ⊂ CU .

Therefore x ∈ int(CU ).

Now we prove that CU is pointed. If it is not true, then there would exist an x ̸= 0 such

that x ∈ CU and −x ∈ CU , and there would exist net

λτ (b
1
τ + u1

τ ) → x, µτ (b
2
τ + u2

τ ) → −x,

where b1τ , b
2
τ ∈ B, and u1

τ , u
2
τ ∈ U , λτ , µτ > 0. So we obtain

λτ (b
1
τ + u1

τ ) + µτ (b
2
τ + u2

τ ) → 0.

Since

λτ (b
1
τ + u2

τ ) + µτ (b
2
τ + u2

τ )

=(λτ + µτ )

[( λτ

λτ + µτ
b1τ +

µτ

λτ + µτ
b2τ

)
+
( λτ

λτ + µτ
u1
τ +

µτ

λτ + µτ
u2
τ

)]
,

we write

bτ =
λτ

λτ + µτ
b1τ +

µτ

λτ + µτ
b2τ ∈ B,

uτ =
λτ

λτ + µτ
u1
τ +

µτ

λτ + µτ
u2
τ ∈ U,

then bτ + uτ → 0.

Since U is a neighbourhood of zero, there exists a τ0 such that bτ0 + uτ0 ∈ U , or

bτ0 ∈ U − uτ0 ⊂ U − U ⊂ U∗.

Notice that bτ0 ∈ B, then bτ0 ∈ B ∩ U∗; this is contradictory to (8).

Lemma 3. Let the closed convex cone C be equipped with bounded base B and net

{zU ∈ CU : U ∈ N(0)}. Then

(i) zU
w
⇀ 0 implies zU → 0;

(ii) zU
w
⇀ z ̸= 0 implies z ∈ C.

Proof. Since B is a bounded base of C, and 0 /∈ cl(B), by applying the separate theorem

it is obtained that there exists 0 ̸= f ∈ C# such that

f(b) ≥ 1, ∀b ∈ B. (3)

For any U ∈ N(0), by zU ∈ CU , there exists net λτ (bτ + uτ ) → zU , where λτ ≥ 0, bτ ∈ B,

uτ ∈ U . Notice that zU +U is a neighbourhood of zU . Then there exists index τU such that

λτU (bτU + uτU ) ∈ zU + U for any U ∈ N(0),

or there exists wU ∈ U such that

λτU (bτU + uτU ) = zU + wU for any U ∈ N(0), (11)

where wU ∈ U .

It is obvious that two nets {uτU : U ∈ N(0)} and {wU : U ∈ N(0)} all converge to 0.

Moreover, if net {zU} weakly converges, then net {zU} is bounded, and the number net

{λτU : U ∈ N(0)} given by (11) is bounded. (If it is not true, without loss of generality
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supposing λτU → ∞, by (11) we obtain

bτU + uτU =
zU + wU

λτU

.

Let f ∈ C# be decided by (3). Then

f(bτU ) = f(bτU + uτU )− f(uτU ) =
1

λτU

(f(zU ) + f(wU ))− f(uτU ).

Since {zU} is bounded, {f(zU )} is bounded and f(wU ), f(uτU ) → 0. So

f(bτU ) → 0.

But on the other side, by (3) we obtain f(bτU ) ≥ 1, this is contradictory).

In the following we will prove respectively (i) and (ii).

(i) Since {λτU : U ∈ N(0)} is bounded, let λτU → λ ≥ 0.

Assume λ > 0. Then according to (11), and f(zU ) → 0 (notice zU
w
⇀ 0), f(wU ),

f(uτU ) → 0 (λτU → λ > 0), we obtain

f(bτU ) → 0;

this is contradictory to f(bτU ) ≥ 1.

So λ = 0, i.e., λτU → 0. Notice that {bτU } ⊂ B is bounded and uτU , wU → 0, by (11) we

obtain

zU = λτU (bτU + uτU )− wU → 0.

(ii) Notice that λτU → λ ≥ 0 when zU
w
⇀ z ̸= 0, which implies certainly λ > 0. Otherwise

if λ = 0, i.e., λτU → 0, then with the same proof as above, by (11) we obtain zU → 0, so

zU
w
⇀ 0; this is contradictory to zU

w
⇀ z ̸= 0.

Therefore λ > 0. Thus

bτU =
zU + wU

λτU

− uτU
w
⇀

z

λ
, let

z

λ
= b.

Since {bτU } ⊂ B ⊂ C and C is a closed convex cone, C is a weakly closed convex cone too.

So weakly limit b = z/λ ∈ C, or

z = λb ∈ C.

Now we will prove the main theorem in this paper.

Theorem 2. Let X be a Hausdorff locally convex space, C ⊂ X be a closed convex cone

with bounded base. Then for every nonempty weakly compact convex subset A, the set of

positive proper efficient points is dense in the set of efficient points of A, i.e.,

E(A,C) ⊂ cl(PS(A)). (12)

Proof. Let A ̸= ∅ be a weakly compact convex set, x̄ ∈ E(A,C), let

M = A− x̄.

Then O ∈ E(M,C), i.e., (O − C) ∩M = {0}, and M is still a weakly compact convex set.

Moreover, let the closed convex cone CU be defined by (10), i.e.,

CU = cl(cone(B + U)), for any U ∈ N(0).
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For any U ∈ N(0), let

MU = (O − CU ) ∩M.

Then MU is a weakly compact convex set (notice that CU is weakly closed). By the ex-

istence theorem of efficient point (see [13]), there exists an efficient point in MU . Let

XU ∈ E(MU , CU ). Since MU is a section of A at 0, and the efficient point of the section

MU is the efficient point of M , we have xU ∈ E(M,CU ). Notice that CU is a pointed cone.

Then

(xU − CU ) ∩M = {xU} for any U ∈ N(0).

SinceM is a weakly compact set and net {xU : U ∈ N(0)} ⊂ M , without loss of generality

we can assume xU
w
⇀ x0 ∈ M .

By xU ∈ MU = (−CU ) ∩M , i.e.,

xU ∈ −CU , or − xU ∈ CU , and − xU
w
⇀ −x0.

According to Lemma 3 we obtain −x0 ∈ C or x0 ∈ −C. As x0 ∈ M , we have

x0 ∈ (−C) ∩M = (O − C) ∩M = {0}.

Thus x0 = 0, and we get

xU
w
⇀ 0, or − xU

w
⇀ 0, −xU ∈ CU .

Apply Lemma 3 (i) again to obtain

−xU → 0, i.e., xU → 0.

Now we prove

xU ∈ PS(M).

In fact, by Lemma 2 we have int(CU ) ̸= ∅.
Since xU ∈ E(M,CU ), xU is a weakly efficient point of M (see [13]). Then

(xU − int(CU )) ∩M = ∅.

According to the separate theorem of convex set, there exist 0 ̸= fU ∈ X∗ and t ∈ R such

that {
fU (xU − CU ) ≤ t ≤ inf fU (M),

fU (xU − int(CU )) < t ≤ inf fU (M).
(13)

Since xU ∈ M , by the second inequality of (13) we deduce that

fU (xU − int(CU )) < t ≤ inf fU (M) ≤ fU (xU ),

or

fU (−int(CU )) < 0, and fU (int(CU )) > 0.

According to Lemma 2, C/{0} ⊂ int(CU ). Then

fU (C/{0}) > 0, i.e., fU ∈ C#.

By O ∈ CU , from the first inequality of (13), we have

fU (xU ) ≤ inf fU (M),
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i.e., fU (xU ) = min{fU (x) : x ∈ M}. So xU is a positive efficient point of M , i.e., xU ∈
PS(M).

At last, since xU ∈ M , we have xU = yU − x̄, yU ∈ A. So from

fU (xU ) ≤ fU (x), for x ∈ M = A− x̄,

we immediately deduce that

fU (yU ) ≤ fU (y), for any y ∈ A,

i.e., yU is a positive proper efficient point of A, yU ∈ PS(A). Secondly, by xU = yU − x̄ → 0

we obtain yU → x̄. So

x̄ ∈ cl(PSA).

The proof is finished.

When X is a real normed space, the above Theorem 2 implies immediately the following

theorem.

Theorem 3. Let (X, ∥ · ∥) be a real normed space, C ⊂ X be a closed convex cone with

bounded base. Then for every weakly compact convex set A in X, the set of positive proper

efficient points of A is dense in the set of efficient points of A.

The Theorem 3 was first obtained by Jahn (see [8]) for Bishop-Phelps cone. Soon,

Petschke noticed the relation between the cone with bounded base and Bishop-Phelps cone,

and he proved the Theorem 3 for the cone with bounded base.
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