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Abstract

This paper gives the intrinsic character of the classification for AF-algebras defined by J.
Cuntz and G. K. Pedersen in terms of their dimension groups. -
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§0. Introduction

The classification problem of C*-algebras is one of the most important and difficult prob-
lems in the study of C*-algebras. For the complexity of its internal structure, the study on
this problem did not make any great progress until now. But in the last two-decades, with
the founding and developing of K-theory, Extension theory and KK-theory, one has paid

more and more attention to this problem again:[1:2:3:4:5:6l,

Usually, one divides C*-algebras into liminary, postliminary and antiliminary types in
terms of their representations. There are many works on these types of C*-algebras[7'8]. In
[9], similar to the case of von Neumann algebras, J. Cuntz and G. K. Pedersen have intro- -
duced another classification for C*-algebras. In this paper, we shall study this classification
for a special class of C*-algebras, i.e., AF-algrbras. '

This paper is organized as follows. In section one, we first recall the definition of the
classification given by J. Cuntz and G. K. Pedersen, .and then list some necessary facts about
AF-algebras. Section two studies the relation between the traces on AF-algebras and the
functionals on their dimension groups; in that section, we introduce the concept of gener-
alized functionals which is correspondent to the traces on AF-algebras. - The third section
is the main part of this paper. We give the intrinsic characters of the classification for AF-
algebras in terms of their dimension groups. We introduce some new concepts in dimension
groups, as like as finite scale and archimedean elements. Our main results of this paper are
Theorems 3.2, 3.5, 3.6, 3.7.
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§1. Preliminaries
1.1 The classification of C*-algebras :
In this section, we first recall the class1ﬁcat10n of C’*-algebras deﬁned by J.Cuntz and
G.K. Pedersen!®!. v : : = :
Let A denote a C*-algebra, A+ be the p051t1ve part of it. In A+, we deﬁne the following
equivalence relation:
If z, y € A, and there exists a sequence of elements {2,}22 in A with

z = Z znzn, y= Z 2y Zn, (1.1)

we say that x is equivalent to y, denoted by T ~Yy, Where the sum is in the norm sense. If
z, y € Ay and there is a 2 € A with  ~ z < y, we denote it by z < y. By [10], we know
that the relation “<” is transitive, and “~” is an equivalence relatlon, Whlch is ‘countably
summable.

In the same way as the comparison of projections in von Neumann algebras J. Cuntz and
J.K.Pedersen have given the following deﬁnltlon in [9].

Definition 1.1. a) an element z in Ay is called ﬁmte, zf for any y € A+ with y <z and
y <z, we have ¢ = y; : :

b) If any element in A+ 18 ﬁmte, we say that A is finite;

c) If for any nonzero element x in A, there always exists a nonzero finite element y in
A, such that y < x, then we say that A is semi-finite.

d). If there exists no nonzero ﬁmte element in Ay, A is called pure-infinite (III- type
C*-algebras in [9]). ‘ :

For the separable C*-algebras, the followmg result holds[9]

Theorem A. Suppose that A i5 a separable C*-algebra. Then

a) A is a finite C*-algebra iff there exists a finite faithful trace on A;

b) A is.a semi-finite C*-algebra iff there is a fazthful semz-ﬁmte lower—semzcon-
tinous trace on A. '

A trace T on A is said to be semi-finite, if for any nonzero y € A, there is an z € A with.

0 < z < y such that 7(z) < +oo.

1.2. Dimension groups : : .

- In this paper, we shall study the classification for: AF—algebras deﬁned above. For this
purpose, we need list some elementary facts about AF-algebras and their dimension groups.
For the details, one can consult the reference [11].

- For a given AF-algebra A, there exists a dimension group (G'(A) G(A)4+) and a scaled
dimension group (G(A), G(A)+,I'(A)) with it. A dimension group is a countably ordered
group (G, G ) with the Riesz interpolation property, i.e., for any a;,b; € G".I. (¢ = 1,2) with
a; < b (4,7=1,2), thereis a ¢ € G+‘suc':h that a; < e <b; (4,7 =1,2) :

For an ordered group (G, G,.), there are some properties which are equlvalent to the Riesz
interpolation property.

Theorem B.!'? Let (G, Gy) be an ordered group Then the following are equivalent:

(1) Given a; < b; (i,5 = 1,2), there exists a.c € G such that a; < ¢ < b G,5=1,2);
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(2) Given a; < bj (1 = 1,2,--,m5 § = 1,2, ,8), there exists a ¢ € G such that
a; <c<bjforalll<i<n1<j<s; - S
(3)Ifo<a<b + by + « - + by, bi > 0, then there exist a; € G with 0 < a; < b; such
that a = a1 +az + «+ + as; o . ’ :
r 8
(4) If ¥ ai = 3 bj,ai,b; >0, then there ezist c;j € G, such that

i=1
s T
a; — E Cijs bj = E Cije

A scale for a dimension group (@, Gy) is a subset T of G with the following three
properties; ' :

, ; , . N
Iy: (generating) For any a € G, there exist a1, a2,...0r € [ witha= ) a;;

Ty: (hereditary) fa € T',b€ G+ and b < a, then b € T} =

I: (directed) For any a,b €T, there exists a ¢ € T with a,b < c. _
" 1In fact, the scaled dimension group of an AF-algebra"A‘ is exdctly the scaled preordered
Ky-groupl!311 (Ko(A), Ko(A)+,To(A)), where Ko(A)4, To(A) are respectively the images
of Proj(Moo(A)), Proj(A) in Ko(A). Therefore, we can denote the element in T'(A) by [p],
where [p‘]‘denotes the éqﬂiva,lenceda,ss of the project‘iole'p. - .. ' '

We call a group homomorphism ¢ from a dimension group (G ,G4) to ‘R (the real num-
bers) with ¢(G+) & Ry (positive real numbers) a functional on G. |
" Tor the traces on A and the functionals on G, we have

Theorem C.'4 Let A be an AF-algebra, (G(A),G(A)+) be its dimension group. Then
the functional ¢ on (G(A), G (A)4) is one-to-one correspondent to the densely defined, lower-
semicontinuous trace T on A with 7(p) = @(p))- ' L .

§2. The Classification of AF-Algebras and
the Functionals on Their Dimension Groups

In this section, we shall study the relations between the types of AF-algebras and the
functionals on their dimension groups. ' : '

Definition 2.1. Let (G,G4,T) bea scaled dimension group, f be a functional on G. If
f satisfies : |

sup{f(a)| @ €T} < +o0, - (2)
it is called a bounded functiona‘l on G. - '

By Theorem C, we obtain immédiately the following lemma.

Lemma 2.1. Let A be an AF-algebra, (G(4), G(A),,T(A)) be its scaled dimension group.
Then the bounded functionals on G(A) are one-to-one correspondent to the finite traces on
A ‘ | . | -

Lemma 2.2. Let A be an AF-algebra, T be a densely defined, lower-semicontinuous trace
on A. If 7, is its correspondent functional on G(A), then T is faithful iff T« is faithful on-
G(4A). : S

Proof. the necessity is obvious, we only need to prove the sufficiency.
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It 7 is not faithful on A, set J = {z € A: 7(z*z) = 0}, then J # {0}. Since T is
lower-semicontinuous, J is a closed two-sided ideal of A, it is an AF-algebra too. Therefore,
there is a nonzero projection.p € J C A, and 7«([p]) = 7(p) = 0. Since 7, is faithful on
G(A), it.follows that [p] =0, i.e., p =0, a contradiction.

By Theorem A and the above lemmas, we have

Proposition 2.1. Let A be an AF-algebra. Then A is finite iff there exists a faithful
bounded functional on G(A). ' '

Definition 2.2. Suppose that (G, G.) is a dimension group, J is a subgroup of G. If
J=Jy—Jy, where J, = JN G4, and for any a € Gi,be Jy witha < b, we have a € Jy,
then we call J an (ordered) ideal of G. -

Lemma 2.3. Suppose that (G,G..) is .a dimension group, Ji,Ja are two ideals of G.
Then Jy + J; is an ideal of G, and (J1+ L) = Jiy + Jat. Moreover, if J1 N Joy = {0}
( in this case, we say that Jy is perpendicular to J, or Ji is disjoint from J2), then every
element in Jy + Jp has only a unique decomposition form.

Proof. J = J; + J, is obviously a subgroup of G. Set J; = (J; + J,) N G+, then it is
obvious that Ji| + Joy C J,.

Let a € J,. Then a = a; + ay, with a; € J; (i = 1,2). Since J; are ideals of G, there
exist a; € J;; such that a} > a;. Then a = a3 +ay < a; + aj. By Theorem B, there exist
a; € G4 such that a < a}, and a = af + af - By the property I;, we have o € Jit, i€,
@ =ai + a3 € Jiy + Joy. So we have proved that

v = Jig + Jay S (2.2)

Then it follows evidently that J = Jy~J, . fbeGy,and b< a witha J+, by the above
equality we can decompose a as a = a1 + ay with a; € Jit. Therefore, b = b; + b2, 0 < b; <
a; € Jiy,s0b; € Jiy,ie,be J4+. Thus J is an ideal of G. :

If J, is perpendicular to J2, for @ € J;()J; there exist aj y8; € Jiy such
that a = af —a; (i =1, 2), therefore @ = af — a7 = af — az, i.e, af + a3 = a7 +af.
By Theorem B, there exist cij (3,5 =1,2) € G, such that

af =cy1 + ez, a; = c11 +ca,
_ 4 (2.3)
a; = c21 + ¢z, @y = C12 + Ca3.

Thus ¢15 < ai" € Jiy, and ¢ < ag € Jay. It follows that ¢;5 = 0 by the assumption
J14 N Jz4 = {0}. Similarly, we have ¢y, = 0. CohseQuently, a; =cpy =aj,al =¢j; = ay,
80 a =0, ie., J;NJy ={0}.

Now suppose that a € J; +J,, and it has the decompositions a = a;+az = o} +a3,a;,a! €
Ji. Then a; —a} = a} —ay € J; N J2. By the abové argument, we have a1 = ay, a3 = ah.

'This lemma can be generalized to the countable case. ‘

Lemma 2.4. Suppose that (G,G4.) is a dimension group, {J;}}L, (N may be equal to
o0) are ideals of G. Then J; + Ja + -+ Jn (algebraical sum) is also an ideal of G, and

J+=(J1+J2+"'+JN)+=J1+.+J2++"'+JN+-

Moreover, if J; are pairwise disjoint ideals, then every element in Ji+Jo+ -+ Iy has
only a unique decomposition form. -
The proof is the same as the above lemma, we omit the details.
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Definition 2.3. Let (G,G.) be a dimension group. If ¢ is a map from G into
R, U{+oo} and it satisfies p(a + b) = p(a) + (b), Vo, b € G4, it is called a general-
ized functional on G. Moreover, if for any b € G \ {0} there always ezists an a € G with
0 < a < b such that p(a) < +o0, then ¢ is called a semi-finite generalized functional.

Let ¢ be a generalized functional on G, set Domty = {a € G4| ¢(a) < +oo}. Then
J = Dom* ¢ — Dom™y is an ideal of G, and ¢ can be extended to a functional on J.

If 7 is a lower-semicontinuous trace on A, then Dom () = {z| 7(z*z) < +o0} is a
two-sided ideal of A (non-closed). Obviously, we can extend + to a densely defined, lower-
semicontinuous trace on W = J. Thus a functional 7, on J G(I ) can be induced,

where J = G(I ) is an ideal of G(A). If we set
| Ji = {a € G(A), : there is no nonzero element bin J, with b <a}. (2.4)

Then J1 = Ji — Ji is an ideal of G(A), and it is perpendicular to J.
By Lemma 2 3, we can extend the functlonal Tito J + J1 by the following equality, whlch
we still denote by 7,
| | atb= { +Z) Ififbb’é_o(’) | @5
where a+b € (J+JH)4,a€ Ji,be Ji. It is apparent that J + J* is an essential ideal of
G(A), i.e., any nonzero ideal of G(A) has a nontrivial intersection with J + J+. Thus, 7,
may be extended to a generalized functional 7. on G (A) by the following equality

(@) = sup{ri(b) |0 <b< g, be (J+T)4}, Va€G(A)s (2.6)

It is easy to verify that 7. is a generalized functional on G(A), and by the construction
we know that if the trace 7 is faithful on A, then 7, is faithful on G(4).

Conversely, if a faithful generallzed functional ¢ on G(4) has been given, we will construct
a faithful lower-semicontinuous trace on A. We have already known that J = Domg is an
ideal of G(A), where Dom™ ¢ = {a € G(4)+| p(a) < oo}. Because there ex1sts a one-to-one
correspondence relation between the ideals of AF-algebras and the ideals of the dimension
groups, there exists an ideal I of A such that G(I ) J. By Theorem C, we have a densely
defined, faithful and lower-semicontinuous trace 7' on I, such that 7! = 7|;. It is easy to
verify that Dom(7') = {z € I : 7'(z*z) < 400} is not only a two-sided ideal of I, but also
an ideal of A. . ' ‘

Define a function s : Dom(7') x Dom(7") — € by

s(z, y) = 7'(y*z), Ve, y € Dom(r’). (2.7)

Obviously, it satisfies

1) s is linear in the first variable, and conjugated linear in the second variable, moreover,
s(, z) > 0. For this reason, Dom(7') can be considered as an inner product space;

2) s(y, z) = s(z*, y*);

3) s(zz, y) = s(z, 2*y), Vz€ A;

4)Vz € A, the map z — zz defined on Dom(r') is contmuous where Dom(7') is considered
as an inner product space.

5) {xy : = € Dom(7"),y € Dom(7')} is dense in the inner product space Dom(7').
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In fact, if there is 2 € Dom(7’), and z L {zy: =, y € Dom(7')}, then' _
s(z, zy) = 7'(y*z*2) = 0, Vax, y € Dom(r'). ’ (2.8)
Since 7’ is faithful on Dom(T' ), letting y = a*2z, we have z*2 = 0, Vz € Dom(’r’ ), 80
=0, ) . :
All these facts state that s is a bltrace on A[7] Therefore, there exists a lower—seml—
continuous trace 7' on A, which is an extension of 7.
Let It ={x € A: a2y =0,Vy ¢ I}. Then Il is a two-sided ideal of A, I+IJ- is an
essentjal ideal of A, and every element in I+ I has only a unique decompos1t10n Moreover

T+IY)y =1+ I L. Now, we give a modification for the trace 7 on A as follows:
( ) { +o0,  if there 1say€Il\{0} W1thy<:1:, (2.9)
z) = .
7"(z), if there is no nonzero y € I+ + such that y <z,
where z € A,. It is easy to verify that 7 is homogeneous (multiplies with positive number)
and additive. In the following, we shall prove the equality ‘
T(zz*) = 7(z*z), Vo € A. S (2.10)
" If there exists a z < z*x, z € Ii'\{O}, setting y = x21/2, since 21/2221/2 < Z1/2g*31/2 =
y"y, we have y # 0 and y € I'*-. Noticing yy* = z2'/221/2z* < ||z||zz*, we see that there
exists a nonzero 2’ € I such that 2’ < za*. And the converse is also true. From these
statements we have proved the equality (2.10), it 1mp11es that 7 is a trace on A. What
remains to be proved is that 7 is lower semi-continuous.
Suppose that x,, € A, such that 7(z,) < 1 and #,, — 2. We need to prove that r(z) < 1.
Since 'r(:z:n) < 1, there exists no nonzero y € I_,_, Vn € N such that y < z. So we have
7(x5) = 7"(z) < 1. Because 7" is lower semicontinuous, we have 7" (z)<1.
By z € Ay, there is y = y1 +y2 € I+ I*)+, Where Y1 € Ly, 92 € I+ such that
-y =y1 +y2 < . Since z, — x, Ve > 0 there is an o E N such that, when n > ng, we have
z <z, +e. Then

. Yi+y2<zp+e,  Vn>ng | (2.11)
By [8], there exist 2%%,4,j = 1,2, such that |
y1 = 2020 + 2" 2, Tn 2 21271 + 225, (212)
Yo = 231" 251 + 255" 25, € 2 22y + 25525, .

so 231 "25y < yo. It follows that 23, € I'*, and therefore 234 234 * € It 7. Notice that 2323 <
Tn, but there exists no nonzero element in I smaller than z,, so we have 25 = 0. Thus

luall = 123" 23l = g™l <, | (2.13)
it implies that y = 0. Consequently, there exists no nonzero yel i‘ such that y<a 'By
the definition of 7, we have _' _

7(z) = 7"(z) < 1. : . (2.14)

Combining all the above statements, we have proved the‘following theorem.

Theorem 2.1. Suppose that A is an AF-algebra. Then -

(1) If T is a faithful, lower-semicontinuous trace on A, then there exists a fazthful gener—
alized functional 2
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(2) If ¢ is a faithful, generalized functional on G(A), then there is a. faithful, lower-

semicontinuous trace T such that (T|pom(r))x = P|Dome- :

Theorem 2.2. Let A be an AF-algebra. Then

(1) A is a semi-finite AF-algebra iff there exists a faithful, semi-finite generalized func-

tional on G(A). | C

(2) A is a pure-infinite AF-algebra iff there are not any nontrivial, faithful generalized
functionals on G(A). '

Proof. (1) Necessity: If A is semi-finite, there exists by Theorem A a faithful, semi-finite
" and lower-semicontinuous trace 7 on A. According to Theorem 2.1 a generalized functional

@ on G(A) can be induced by the trace 7. It is faithful and semi-finite by its construction.

Sufficiency: If there exists a faithful, semi-finite gehera,lized functional ¢ on G(A), it has

a faithful, lower-semicontinuous trace 7 on A by Theorem 2. 1, which is correspondent to ¢.
" Since ¢ is semi-finite, Dome is an essential ideal of G (A), thus I+ = {0}. Therefore, T =7
is semi-finite. ‘ » '

(2) Necessity:- If there exists a nontrivial faithful generalized functional ¢ on G(A), then
there exists a nontrivial faithful, lower-semicontinuous trace 7 on A by Theorem 2.1. It
is obvious that every nonzero element in Dom™(7) (# 0) is a finite element of A, which
contradicts the assumption. ‘ ' - -

" Sufficiency: If there exists a nonzero finite element © € Ay, then the hereditary C*-
sﬁbalgebra B of A generated by z is a finite AF-algebrald. It implies that there exists a
faithful finite trace 7 on B by Theorem A, and it can be extended to a lower-semicontinuous
trace 7' on A by [9]. By the construction method in the proof of Theorem 2.1, we can
construct a faithful lower-semicontinuous trace on A which is an extension of 7/. It fol-
lows by Theorem 2.1 that there is a nontrivial faithful generalized functional on G(A), a
contradiction. ‘

-.§3. The Classification of the Dimension Groups.

In this section, we shall give the character of the classification for AF-algebras in terms
of their dimension groups.

Definition 3.1. Let (G,G4,T') be a scaled dimension group. .

(1) Ifa €T, and for anyn € N, we always have na € T', then a i3 called a stable element
of I'. Otherwise, if there exists an ng € N such that noa ¢ T, a is called a finite element of

(2) If e'uery nbnzerb element in T' is finite, we say that I' is ﬁm"te;‘ if every element'z‘n T
is stable, I is called stable.

Let I, denote the set of all stable elements in I'. We have

Proposition 3.1. I}, is a hereditary cone in T, ie, Jy=T, —Is is an ideal of G.

The proof is easy. We omit the details. | |

Corollary 3.1. T' is a stable scale iff ' = G. ,

Corollary 3.2. If A is an AF-algebra, then A is stable (i.e., A= A® K where K is the
set of all compact operators in a separable Hilbert space) iff the scale T'(A) is stable.
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In the following, we will give the character of the finite AF-algebras. For this purpose,
we need the Hahn-Banach’s type theorem of K. Goodearl and D. Handelman!15], ‘

Let G be a dimension group, u € G.. be an order. unit of G (i.e., Ya € Gy, there exists
n € N such that ¢ < nu. In this case, the set [u] = {a: 0 <a< u}is a scale of G, which
is called a unit scale). If a € G, set

fi(a) =sup{h/m: h >0, m >0, hu < ma}, (3.1)

f*(a) = inf{k/n: k>0, n >0, na < ku}. (3.2)

Theorem: 3.1.'% Let G be a dimension group, u be an order unit of G and a be an
element of G1. Then

(1) 0< £u(a) < £*(a) < +oo; |

(2) If f is a functional on G with f(u) = 1, then f.(a) < f(a ) < f*(a);

(3) Given a number r with fi(a) <r < f*(a), then there exists a functzonal f on G such
that f(u) =1, f(a) =r.

Lemma 3.1. Suppose that (G, u) is a dimension group with an order unit u. Iface Gy -
is a finite element in the unit scale [u]; then there exists a functional f on G such that
f(u) =1, f(a) > 0.

Proof. By Theorem 3. 1, it is enough to prove that f* (a) > 0.

In fact, if f*(a) = 0, then for allm € N there exist k > 0, n > 0 such that k/n < 1/m
and na < ku by the equality (3.2). Therefore, : :

mna < mku < nu, Vm € N. - (3.3)

Thus ma < u, Ym € N; this implies tha.t a is a stable element in fu], which contradicts the
-assumption. .

Proposition 3.2. Let (G,G4,T) be a scaled dimension group. Then for every finite
element ag € T, there exists a bounded functional ¢ on G such that p(ag) > 0.

Proof. By [11, Proposition 7. 2], we can embed the dimension group (G, G, I') into a
unital dimension group G* = G @ Z, the scale of G! is given by the following

I'GY) ={(a, 0): a €T} U{(—a, 1): ael} - (34)
and G is generated by I'(G!). It is easy to verify that w = (0, 1) is an order unit of G
and I'(G') = [u]. The embedding map of G into G* is given by .
i: a— (a,0) Va € G. (3.5)
It is evident that an element in T is finite iff its image is finite in I'(G). This implies that
(a0,0) is a finite element in I'(G'). By the above lemma, we obtain a functional f on G?
such that f(u) =1 and f((ao,0)) > 0.
Let o(a) = f(i(a)) = f((a,0)). Then ¢ is a bounded functional on G and ¢(ag) > 0,
which completes the proof.
Theorem 3.2. Let (G,G,.,T) be a scaled dimension group Then the followzng state-
ments are equivalent:
(1) T is a finite scale;
(2) For everya €T\ {O} » there exists a bounded functional f on G such that f(a) > 0;
(3) There exists a fazthful bounded functional ¢ on G.
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Proof. 1) = 2) follows immediately from the above proposition.

2) = 3) Since I' is a countable set, it can be written as I \ {0} = {a1,a3,---}. By
the assumption, for every a, € T'\ {0}, there exists a bounded functional f, such that
Fau(an) > 0 and || fo|| = sup{fn(a) : a €T} =1. Set

ola) =3 I8, (3.6)

It is apparent that ¢ is a faithful bounded functional on G.
3) = 1) If T is not finite, then there isana € I \ {0} such that na € T',Vn € N. So

np(a) = p(na) < ||l = sup{p(®) : beT} <+oo, VneN. (3.7)

Tt follows that ¢(a) = 0, but ¢ is faithful, we have a = 0, a contradiction.

.Combining the above theorem and Proposition 2. 1, we can get _ .

Theorem 3.3. Let A be an AF-algebra. Then A is finite iff the scale T'(A) of its scaled
dimension group (G(A), G(A)+,F(A)) is finite.

‘This result obviously generalizes the corresponding results in [2, 9, 16].

Definition 3.2. Suppose that (G,G+) is a dimension group.

(1) Ifb € G4, and for every nonzero element a in G there always ezists a positive integer
number ng such that the inequality noa <°b does not hold, then b is called an archimedean
element of G; : ‘

(2) Ifbe G4 \{0}, and for every a € G, \{0} witha < b there always ezists c € G4\ {0}
such that nc < a, Yn € N, then b is called pure-infinite;

(3) If all elements in G4 are archimedean, then G is called ‘archimedean; if there are
no nonzero archimedean elements in‘G+, then -G is called pure-infinite, in _this case, every
nonzero element in G is pure-infinite. A | '

Remark. These concepts and the concept of finite scale in Definition 3.1 are first
introduced in this paper, where the concept of the archimedean elements is transferred
from the theory of Riesz spacell”), but it is different from the above. '

Let P, denote the set of all pure-infinite elements in G4. Then

Proposition 3.3. P, is a hereditary cone of Gy, i.e, P=P, — Py is an ideal of G.

The proof is simple, we omit the details. ‘

Proposition 3.4 If the dimension group (G, G4) has an order unit u, then the scale [u]
generated by u is finite iff G is archimedean.

Corollary 3.3. If the dimension group (G,G.) is finitely generated and G is archime-
dean, then G has a finite scale. '

By Theorem 3.2, we know that if a dimension group has a finite scale, it must be
archimedean, since in this case it has a faithful functional.

Lemma 3.2. Let (G,G4,T') be a scaled dimension group. If every element in I' is
archimedean, then G is itself archimedean.

Proof. Let a,b € G4,and na <b, Vné€N.

r
Since b € G, there exist by, ba,...,br €T such that b = 5 b;. By the directed property
. i=1
of the scale (I3), there exists bp € I' such that b; < by, 1 < ¢ < r. Therefore
b=by +by+ +b<rho : (3.8)
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and nra < b < rby. It follows that na < by, Vn € N. By the assumption, we have a = 0.
Consequently, bis archlmedean, which completes the proof. ) '

Theorem 3.4. If A is a liminal AF—algebm, then (G(A),G(A)4) is archimedean.

Proof. By the above lemma, it is enough to prove that every element in I‘(A) is
archimedean.

~ Since 4 is liminal, for every irreducible representatlon (m, H) of A we have 7(A) = C(H),
where H is a separable Hilbert space and C(H ) is the set of all compact operators on H.
Moreover, for every p € Proj(A) \ {0}, there exists an irreducible representation (mp, Hp) of
A such that 7,(p) # 0. ‘

If I'(A) is not archimedean, then there are a,b € I'(4),a # 0, such that na < b Vn € N.. _
Since a € I'(A), there exists p € Proj(A) such that [p] = a. Takean irreducible representation
(m, H) of A such that m(p) # 0. Notice that the representation 7 : A — C(H) may induce
a homomorphism =, between the Ky-groups

me: Ko(A) — Z. L o (39)
It is apparent that m.([p]) = [7r(p)] # 0, in contrast we have

7« (n[p]) = nm.([p]) - niy(a) < 7 (D), Vn € N. | Y(3,1‘0)

Since (Z Z +) is archimedean, we have 7r* (a) =0,a contradlctlon

We have proved that an AF-algebra A is seml-ﬁnlte iff there is a falthful seml-ﬁmte
generalized functional ¢ on G(A) If we set Dom*¢ = {a € G(A); : ¢(a) < 0}, Domyp =
Dom™p—Dom™y, then Dome is an essential ideal of G and ¢ can be extended to a functlonal
on Domey. Since ¢ is faithful on Domyp, Dome is archimedean. . Thus, if A is seml-ﬁmte,
then G(A) has an archlmedean essential ideal. In the followmg, we shall prove that the
converse of this statement is also true.

Lemma 3.3. Let (G,G,) be a dimension group, a;;a5 € G,. If the -ideals J,,; J,,
generated by a1, ap are disjoint, then we call a; disjoint from ay and denote it by a; L as.
Set [a] = {x € Gy : = <a}. Then a; L ay iff [a1] N [az] = {0}. ’

Proof. The necessity is obvious. ‘

Sufﬁc1ency If there exists a c € Jar+N Ja2+ with ¢ # 0, ‘then there are ny, ng € N such
that ¢ < nlal, n2a2 Let n = max{nl, na2}. Then we have ¢ < nai, nay and there ex1st by
Theorem B ¢}, c? E Gy, z = 1 2, ,n such that \

n n ' ' :

Zc Zc , and c}‘gal, ¢ <ag,i=1,2, - ,n. - (3.11)
i=1 i=1 o e ) '
By Theorem B again, We‘get ¢ij € G4 such that ‘ o v -
i | . N :

= ZCZ], c = ZCW’ i, j=1, 2,--n. (3.12)

j= =1,

Since ¢ # 0, there is at least a pair subscripts to; Jo, 1 L4, jo < n such that Ciogo # 0.
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But
n ‘ _ .
Ciojo S Z'ciofi = cq::lo' < ay, oo (3.13)
1 .
n . ’ .
Ciogo < Zcijo = C;’o < az, ‘ k (3.14)
=1 -

which is impossible by the assumption.

Theorem 3.5. If A is an AF-algebra, then the following statements are equivalent:

(1) A is semi-finite; '

(2) There exists a faithful, semi-finite generalized functional on G(A);

(3) G(A). contains an essential archimedean ideal;

(4) There is an essential ideal with a finite scale in G(A). -

Proof. 1)& 2)= 3) have been proved above.

3)=> 4) Let J be the essential archimedean ideal of G(A). Notice the fact that if J' is an
essential ideal of J, then J' itself is an essential ideal of G(A). Thus we can immediately
suppose that G(A) is an archimedean dimension group. :

Since G(A), is countable, we can write G(A)y \ {0} as

G(A)+\{0}={a1, A2y +ov Qpyeo }e | | . (3.15)

Let by. = ay. If the other elements in G(A); \ {0} are joint with by, then we let the
set m be equal to {b;}. Otherwise, we take the first element an, in G(A)4 \ {0} which is
disjoint from by, denote it by by. Following this method, we can construct a subset m which
is composed of pairwise disjoint elements in G(A); \ {0}, and any element in G(A)4 \ {0}
is joint with m. Let m = {b1, b2, ... }. By Lemma 3.3, we know that the ideals of G
generated by b; are pairwise disjoint, Jp, denoted by J;. Construct the algebraical sum
J=> then J is an essential ideal of G. By Lemma 2.4, we know that every element in
J has only a unique decomposition form. From these facts, it is easy to verify'tha_t the set

I'= {Z c;: ¢; <b;, and it has only finitely many ¢; # 0} (3.16)

is a finite scale of J. ‘ ) A
4)=> 2) Let J be.an essential ideal of G, which has a finite scale. Then there exists a
faithful functional ¢ on J. Define \ o -
| w(a) = sup{@(b) : bbe.J+, b< a}, Va € G(A)+. (3:17)

Then it is easy to prove that pisa faithful; semi-finite generalized functional on G(A).
Definition 3.3. Let (G,G ) be a dimension group, & € G \{0}. Ifthereisb € G+ \{0}
such that b < a, and b is archimedean, then a is called a semi-finite element of G. If all
nonzero elements in G4 are semi-finite, we say that G is ‘semi-finite.
Theorem 3.6. If A is an AF-algebra, then A is semi-finite iff G(A) is a semi-finite
dimension group. “
Proof. By Theorem 3.5, the necessity is evident. - .
- Sufficiency: If G(A) is semi-finite, let- AG.;. denote the set of all archimedean elements in
G(A).., and write it as AGy = {b1, ba, ... bp,...} g
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As in the proof of Theorem 3.5, we can construct a maximal subset m of AG which is
composed of pairwise disjoint elements, and furthermore we can construct an essential ideal
J of G with a finite scale from m. By Theorem 3.5, A is semi-finite. v

Theorem 3.7. Let A be an AF-algebra, then A is pure-infinite iff G(A) is pure-infinite.

Proof. Sufficiency: If A were not pure-infinite, then there would be a nontrivial faithful
generalized functional ¢ on G(A) by Theorem 2.2. Thus there would be an ag € G(A),
such that 0 < ¢(ag) < +oo. Since G(A) is pure-infinite, there is a b € G(A)+ \ {0} such
that nb < ap, Vn € N. Therefore |

ne(b) < @(ao) < +oo0  Vn e N. o (3.8)

It follows that ©(b) = 0, but ¢ is faithful, so b =0, a contradiction.

Necessity: If G(A) were not pure-infinite, i.e., G(A) contained a nonzero archimedean
element a, then the ideal J, of G generated by a would be archimedean. Thus there would
be a faithful functional ¢ on J,, and similar to the proof of Theorem 2.1 we could extend
¢ to a faithful generalized functional ¢ on G, which contradicts Theorem 2. 2.

Obviously, G(A) is semi-finite iff every element, in I'(A) is semi-finite and it is the same
that G(A) is pure-infinite iff every element in I'(A) is pure-infinite. Thus combining the
preceding results, we can obtain the following theorem. ,

Theorem 3.8. Let A be an AF-algebra. Then A is finite, or semi-finite or pure-infinite _
iff the scale T'(A) of A is respectively finite, semi-finite or pure-infinite. o _
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