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 WIDE SENSE STABILITY OF COMPLEX SYSTEMS OF
DIFFERENTIAL EQUATIONS OF ARBITRARY DIMENSION

ZIAD ZAHREDDINE*
Abstract

It is shown how the extended Routh array (ERA), which naturally extends the Routh array
to the complex case, can handle the appearance of vanishing leading array elements, and ‘how
after minor modifications it can be used to test the stability in the wide sense of systems of
differential equations with complex coefficients and of arbitrary dimension. The recent result - -
advanced for the a,symptotic or strict sense stability of such systems falls out as a special case.
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§1. _In_tr_oduétion

A fundamental problem in control theory deals with the s.tability of a given linear system
of differential equations, which is guarantéed if and only if the éigenvalues of the system have
negative real parts. Different methods of solutions of these problems are available in the
litterature, but they are malnly restricted to systems with real coeﬂic1ents (see for example
[4], [6] and [9]). These problems are related to the classical Routh-Hurwitz criterion which
witnessed a revival of interest in recent years (among many others, see [1], [6] and [10}).

The motivation for. studying the stability of systems of differential equations having com-
plex coefficients has been provided in [3]. Our previous work in this direction ([14] and [15])
focuses on the asymptotic stability of such systems. In [15], we introduced the extended
Routh array (ERA) which is a sophisiticated algorithm for testing the asymptotic stability of
systems of differential equations with complex coefficients and of arbitrary dimension. The
ERA elegantly generalizes the famous Routh array which treats the real case. In {13]; which
is a special case of our present work, we considered the question of stability in a wide sense,
which will be defined later, of systems with low dimensions. Tests of wide sense stability, as
opposed to strict sense stability or asymptotic stability, are known to be more complicated,
since they deal with the singularities that may appear in the stability tests. For. example, a
singularity arises when the left-most element of a certain row in the Routh array is zero. In
 this respect, a flurry of results have recently been reported (e. g. see [2], (5] and [12]).

In this present work, we show how the presence of singularities in the ERA 'doees not

affect its ability to test the stability of a system.. More precisely, we prove that under a
necessary condition on the characteristic polynomlal of the system, the ERA can st111 serve
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as an algorithm for testing the stability in a wide sense of complex systems of differential

equations of arbitrary dimension. The main results of [15] fall out as a special case.

This paper is structured as follows. In section 2 we introduce the basic definitions and
recall s_ome important lemmas. In sectlon 3, we give a brlef dlscuss1on and a geometrlc
interpretation to the set of common roots to a polynomlal f and its’ paracon_]uga,te f*. The
main results of this paper and related discussions will be given in section 4.

§2. Preliminaries

Consider a system of differential equations X’ = AX where A is an n X n complex matrix
and X (t) is a column vector of the n dependent varlables. The basic notions concerning the
stability of this system are the same as-in [15]. We only recall the necessary facts: -

Definition 2.1. A non-constant pblyn'omidl is a, Hurwitz polyriomial if all its roots have
negative real parts. . . |

Definition 2.2. If g(z) ‘is any mtzonal functzon, its paraconjugate is deﬁned by

g"(2) = 9(=%),
where Z denotes the complex conjugate of z. .
Definition 2.3. A function h(z) is said to be positive if Re h(z) > 0 whenever Rez > 0.
It is easy to see that 4 is positive if and only if 4 is positive.
Throughout the paper, - .
fa)=2"+az" "+ a2t gzt an
denotes the characterlstlc polynomlal of the nXxn complex system X' = = AX, and its
paraconJugate is given by ‘ . ‘
f*(z) = ( 1)nzn +( 1)n—1— ot + + an 22 - an——lz + Qn..
As ini*[15], define
. e ,
f—f— if n odd,
=

if n even
Then h - may be written in the form :
h(z) _ 2+ iIma 27t 4+ Reagz® 2 +iIlmazz""3 + Re a4z" 44
Re a,lzn‘1 + iImagsz™2 + Reazz” 3 +ilmagzn 4 + -
h is sometlmes referred to as the test fraction for the polynomial f (see [7])
We recall that if yi and f* do not vanish simultaneously, then f is-a Hurwitz polynomial

if and only-. if b is positive ([11, Chapter 5, Theorem 5.1]). Since h* = —h, the function
—h* is. p051t1ve 1f h i 1s positive. Such a function h can be expanded in the followmg partlal

fraction form _ - ;
-. . _ b b : b
Mz)=a+bs+ —— + —— 4 ——,
. : ’ T 2 — 1w Z—WWy . - - Z— Wy : .
where Rea =0, b > 0, b, > 0 and wy, are distinct real numbers for k = 1,---n ([11, Chapter

5, Theorem:5.2]). Any function satisfying the conditions of this theorem is called positive

para-odd. It follows that the above expansion of k(%) is unique.
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If we call [h] = a + bz the integral part of h, then by [11], his pos1t1ve para—odd if and
only if E o

(1) [h] = a + bz satisfies Rea = 0 and b >0,

(2) the function A = h — [h] is positive para-odd.

We now state the following three lemmas, the proofs of which may be found in [15]
Lemma 2.1. If f is a Hurwitz polynomial, then f-and f* have no roots in. common.

Lemma 2.2. Any common root to f .and f* is also a common root to f + f* and. f I

and vice versa. : S
Lemma 2.3. Ifh is positive pam-odd then the degrees of its numemtor and denomznator
differ by 1 at most. ' '

§3. Common Rt‘)ots’ to fand f* o
From the definition of f*, we conclude that |f*(iz) = |f(iz)| for any real number 2. It
follows that any pure imaginary root of f is a root of f* and vice versa. In the main theorem,

we shall need the assumption that all common roots to f and f* lie on the ima,ginaryfaxits.
Therefore the following geometrical interpretation may be helpful: ‘

Suppose that z is a common root to f and f* and Rez; # 0. Write f(z) and f*(z) in’

the factored forms, f(z) = (z — 21)(z — 22) -+ (2 — #5,), and
)= ()" (z+2)(z + Z2) o (24 Za)-

Then z; cannot equal —Zy, for otherw1se Rez; = 0. Hence 2; c01nc1des with another root
of f* which we may assume to be —Z. But z1 = —Z 1mp11es 29 = —Z1. Then f(z) =

(z=21)(z—22) - (2= 2z ).
‘This analysis leads to the conclusion that the set S

of common roots to f and f* consists of two - | 4
disjoint subsets Sy and Sa ‘where o S 4+ 2

={2€C: f(2) =0 and Rez =0} | | | | |
and ' B : —Z ‘ 29
Sy ={2€C: f(2) = f(—%) =0 and Rez# 0}.

The elements of Sz can be paired off in symmetric

couples with respect to the imaginary axis. Fig.1

illustrates an element 2; of §; and a pair of P '
ig.1
elements 2z, andZy of Ss. _g 8

Y
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We summarize in the next lemma.

Lemma 3.1. The following three propositions are equivalent:

(1) The set of common roots to f and f* lies on the imaginary azis.

(2) f has no symmet’r‘zc roots with respect to the y-axis outside the y-azis.

(3) 82 = » .

We note: that propositions (2) and (3) are expressed solely in terms of f. In [13], we
were able to express these propositions in more explicit forms, since we were dealing with
low-dimensional systems.

§4. Wide Sense Stability

In {13], [14] and [15] we followed the definitions of asymptotic stability, uniform stability
and stability of a system of- differential equations X "= AX as given in [8]. Since A is a
constant matrix, stability and uniform stability coincide. Therefore for stability which miay
or may not be asymptotic, the wording wide sense stability seems to be more appropriate
than uniform stability which. we used in [13]. '

We now give a quick reminder of the way the ERA has been constructed. As defined
before, let

| f@)=2"4+a12" 4 Fap22® +an_12+an
denote the characteristic polynomial of X' = ! AX and
h(z) = 2"+ 1Ima12"! + Re azz“"2 + ilmagzz™ 3+ Reagz" % + -
Rea;z”~! +ilmay2”2 + Reagz" 3 +idmagz"4 + -

Let f1 be the numerator and f; the denominator of h. If Rea; # 0, call f3 the remainder of
the division of f; by f, which is a polynomial of degree n — 2. If n = 1, we get f3 = 0, and
the process ends. So, we may assume n > 2. By induction we define the polynomial f; to
be the remainder of division of f;_» by f;—1 for j =3,.-- ;n+ 1. The ERA is the following
array in which the j*® row represents the coefficients of fifor 3 =1,2,3,--- ,n+1, and
where each row is completed by zeros to the size of the first row.

1 ilma; - Reag iImas; Reay Imag
Rea; ilmay; Reaz ilmays Rea;
b3,1 b3 2 b33 b3 4

bsy  bap by,3

bny  bppo 0
bpt11 O .

The main result of [15] states that the n x n complex system X' = AX is asymptotlc sta.ble
if and only if each term of the first cloumn of the ERA is positive.

For more details on the construction of the ERA with related comments and resutls, see
8. | -

In the process of generating the ERA, it is necessary that all elements of the first column
of this array are non-zero except possibly the last one. For technical reasons, let the second
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row of the ERA be of the form:
bai bz b23 b2a bos
where it is understood that
b1 = Reay, bya =ilmas, bz,3s = Reaz and so on.

Also, let by ; = 1 be the first entry and add a zero-row at the bottom. Hence we obtain the
following array which we still call the ERA:

b1,1 ilma; Reap ilmaz Reas ilmas
ba1 b2 ba,3 ba,4 ba,s
b3 1 b3,2 bzs b3

by,1 ba by,3

bn,1 bn,2 0
bpt+1,1 O
bn+t2,1 bni2,2 bnt2,3
where byt2,x = 0 for k = 1,2,- ,n+ 1. .

For the sake of 31mp11c1ty, we mention that according to the way the ERA is constructed
in any j* row the last j — 1 elements are all zero. :

Our main result may now be given. '

Theorem 4.1. Sy = 0, then the system X' = I'= AX where A has no repeated zero eigenvalue
is stable in the wide sense if and only if for some integer m, 2 < m < n+2 we have bj >0
for all §j, 1 < j <m and by, =0 for allk, 1 <k<n+tl, .and where asymptotzc stabzlzty
occurs only when m = n + 2. : -

Proof. The system X' = AX with no repeated zero elgenvalue is stable in the wide sense
if and only if A has no eigenvalues with positive real parts. ([8, Theorem 9.3]).

By [15], the system is asymptotlcally stable or stable in the strict sense if and only if
bj1>0 for all §, 1 < j <n+ 2. This is equivalent to letting m = n + 2 in the statement of
the theorem.

Now we discuss stablllty which is not asymptotic. Let p be the number of roots of f w1th ., .

negative real parts, and n — p those with zero real parts. p satisfies 0 <p <mn.
. Write f(2) in the form ” '

n
H(z — 2z1), where Rezz =0, if p=0,

k=1

FZ)=9q » n o | o -
H(z — 2;) H (z — ), where Rez; <0, Rez, =0, if0<p<mn.
j=1 k=p+1

First consider the case when p'= 0. Then
f(Z) = H(Z - zk)7
k=1

where Rez, = 0 for k = 1,--+,n and at most one of these roots may be zero. Since



198 ' . ‘CHIN. ANN. OF MATH. . : Vol.15 Ser.B

2. = —2L, we get
@ =0 [IE+2) = 0" [] - ).

Define the function k& as follows:

if n odd,

if n even.

o f+r ,
It is evident that k is 1dent1cally zero. With' f and f * as defined in section 2, we get
B(z) = — Re a‘lz" 1+ ilmagz™ 2 + Reagz™ 3 + ilmayz™—4 + - - ‘
2" +ilma; 271 + Reagz® 2 + ilmagz"—3 + Reagzn4 + . ..
We conclude that

Rea; =Imay =Reaz =Imag =---=0
or equivalently by y = 0 for all k = 1,--- ,n + 1. That corresponds to létting m = 2 in the
statem_ent. o

Conversely, suppose by, = 0 for k = 1,--+ ,n 4+ 1. Then the function k as defined above
is identically zero. Therefore o . oo o :
—f* if nodd,
{7

- rr 'if n even.

From thls we conclude that f and J* have the same set of roots. Our assumptlon on the
common roots to f and f* implies that all roots of f are pure 1magmary In other Words
p=0. '

Second, consider the case where 0 < p < n, then

OB H<zfzg) T ==,

Ch=p+1 -
where Rezj'<-0' forj=1,---,p,Rezp =0for k=p+1,-.- ,n and at most one of the 2,8
may be zero. o
‘We claim that b,424=0forallg=1,--- .n+1 and b 1> 0.for all j = 1 ,p+1
Define the function g in the following way

It is clear that g1 is a Hurw1tz polynomial, and
*(z
(~)m> 1 (z—=)

k=p+1
With % as defined in section 2, we have ,
2" +iIma 2" ! + Reaze™ 2 + ilmagz"~% + Re ag 2™ 4 + - -
h(z) = . - - ! ; ‘
‘ Reaiz"~1 +ilmaz2"~2+ Reazz"3 + ilm agzn—4% + - --

= (=1)P(z + 7).

(4.1)
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Since

n

f-r= H (z-—zk) g(z)—( —1)"P H (2 — zx)g" (2),

k=p+1 k-p+1
and - o

F4+f= II (z—zk g(z)+( 1)nP H 2 — )9 (z),

, k=p+1 k=p+1
we can bring h to the form:

if p odd,

L_Q: if p even.
g—9 '

In both cases, we get
H(Z*za)+ H(2+ZJ) |
h(z) = : (4.2)
]_—[(z-—zj)—- H(z-i—z,)

It is obvious that the numerator of hin (4 2) i is a polynomlal of degree P, and the leadmg
term in the denominator is

—2Re (23 + 22+ -+ + zp)z””'l.

Since Rez; < 0 for j = 1,---,p, it follows that the denominator is a polynomial of degree
p — 1. Also, since g is a Hurwitz polynomlal it follows from section 2 that h is a positive
functlon, and that no common roots exist between g and g*, which is equlvalent to say that

— g* and g+ g* have no roots in common. Therefore h as in (4.2) is an irreducible rational
functlon, i.e., no common factors exist between its numerator and denominator.

We note that we are dealing with two different forms of h, namely (4.1) and (4. 2), and that
form (4.1) can be reduced to form (4.2) after the n — p common factors between numerator-
and denominator in form (4.1) of h are cancelled out. ’

If f1 and f, are the numerator and denominator respectively of h in (4.1), we have proved
that f, is identically zero if and only if p = 0. Therefore if p > 0, f2 is not zero, and since
h is positive para-odd, we conclude from Lemma 2.3 that Rea; # 0. By executing a long
division we get .

h(z) = 1 z + ity + LE]
f2

for some real 71, where

z+ z"rl
Reay

is the integer part of h. Hence Rea; > 0 or bz 1> 0. If p=1, we conclude from (4 2) that
h coincides with its integral part, and hence f3 = 0. Therefore bg,q =0 forg=1,---,n+1.
We also have by y > 0 and ba; > 0.

Conversely suppose bz g =0, for¢g=1,---,n+ 1 and by ; > 0. We claim that p = 1. In
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fact, since f3 =0,

. f1 1
h =
fa bz 1

This form of A implies that there ex1st n— 1 common roots between f—f*and f+ f*, and
therefore between f and f*. These roots must be pure imaginary. Write f in the form

£@) = (o —2) [] = ),
o Il

where Rez, =0for k=2,.-- ,n. It is enough to show that Re z; < 0.
If :

—2z -+ 1iry.

g(z)'= Tfﬁ— =2z 2,

IT (= — 2)
k=2
then
f*(z)
(—1)=-1 H (z - zk)

From the deﬁmtmn of h it follows that

9°(2) = —(z+2).

*

_9=9
g+g*
Hence
1 iIm 2,
Re z1 " Rezn

When we compare this to

h(z) = —1—-z +irq,

b2,1

where b3 1 > 0, we conclude that Re z; < 0 and therefore p= 1.
It follows that if p > 2, then f3 is not ldentlcally zero. We then go kack to
h(z) = —1—z+z'r1 + fl ,

2 . fs
and carry on in exactly the same way with the positive para-odd %
By induction, consider an integer k, 2 < k < p, and suppose that bji, > 0 and the -
fizs f is positive para-odd for all j = 2,--- | k. We claim that br+1,1 > 0 and ?ﬁ—l is
positive para-odd. :
From the construction of the ERA, it follows that

function 4=

fo-1 _ b Oh1a g 4 Jrt1
Jx br,1 k- Je
for some real r,_;. Since £ '};1 is positlve para-odd and
b
b 70

we conclude that fiti ’} is positive para-odd.
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If fi41 is-identically zero, then h appears in the continued fraction form

by 1 :
b=ty z’rl + - 1 ‘ (4.3)
ba,1

k 2

Bp—1.1 ,
21—

bk,l +irg—1

where b;; >0for j=1,---,k.
When k = 2, it is understood that form (4.3) reduces to

2,1
It is clear that (4.3) can be written as a polynomial of degree k — 1 over a polynomial
of degree k — 2. Since k < p, then k — 1 < p. Therefore (4.3) violates form (4.2) of h. We
conclude that fiy1 cannot be identically zero. By Lemma 2.3, bi41,1 # 0. Now,

fo _ bea et L i _l_fk+2

forr beyia Jrt1
is positive para-odd, where 7y is a real number. Hence

bk >0,
b1,
leading to bgy1,1 > 0.
. We just proved that b;; > 0 forall j =1,--+,p+ 1. It remains to show that bpi34 =0
forg=1,---,n4+1.

From thg above induction, it follows that

h 11 + iy +
= 2l iry
b21 Z“ +irg  +
3,1
o 1
p+1 1 z+zr,,+f +1

where b; 1 >0 for j=1,---,p+1. ‘

Form (4.2) of h implies that f,42 is identically zero. Hence byyz, = 0 for all ¢ =
L, ,n+4+1.

Conversely, suppose that for some integer m, 2 < m < n+ 1, we have b;; > 0 for all
j=1,---,m—land b =0fork=1,---,n+ 1

We claim that f has m — 2 roots with negative real parté and n — m + 2 pure imaginary
roots. Since fmE is identically zero, it can be seen that

h(z) = z +iry + bz - - ‘ (4.4)

1

Pzt .
T —

where b;; >0 for j=1,--+,m — 1. When m=3, it is understood that (4.4) reduces to

h( ) = E—Z—l—z—l—zrl
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In both cases, it is clear that:h appears as a polynomial of dégree m—2 over a polynomial of
degree m — 3. Since the inverse of a positive function and the sum of two positive functions
are positive, and the same applies on para-odd functions, we conclude that h is positive
para-odd. Also, since

b.
2l 5
bjt1,1

for j = 1,---,m — 2, form (4. 4) of h is thus irreducible, i.e., no common factors ex1st

‘between its numerator and denominator. We conclude that there exist n — m -+ 2 common

roots between f — f* and f + f*, hence n — m + 2 common roots between f and f* which
must be pure imaginary. We get

Ct=Tle-= ] (z—-zk),

k=m-1 o
where Rez; #0forallj=1,.-- ,m —2 and Rezk=0fork=m—1,--- , T
Let

g
g= n = (z_zj)?
Il (z—2) 4=t

k=m-—1
then
P S—— 1)“H<z+z]>
(=1)n-m+2 1 (2 — 2) I
k=m—1

It Would be enough to show that g is a Hurwitz polynomial. From the deﬁnltlon of h it
follows that : o : ‘

g if m odd,
b= g+g*
gry if m even.
g—g*

Since h is a positive function, we reach our claim 1f we show that no common roots ex1st
between g and g* ([11, Chapter 5, Theorem 5. 1]). In fact, from '

. (e

and

.‘] = (-1)™" ZH(Z‘*‘ZJ),
j=1
we get

H (2 — %)+ H (2 + %)

h(z) = — - . (4.5)
Jl_-_Il (= _‘ZJ) - JI_I (2 + %)

Call g; the numerator and g, the denominator of h in (4.5). It is clear that g; is a polynomial
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of degree m — 2. Now g, cannot be identi'cally zero, for if it were, we would have.

H(Zl“‘za ) =0

which we obtain by making the substltutlon z = z; in gy. Since Re z1 # 0, this last relation
implies that z; + 2; = 0 for some j, 2 < j < m — 2, contradicting the fact that Sz =1. Now
by Lemma 2.3, (4.5) is a polynomial of degree m — 2 over a polynomial of degree m - 3.
When we compare (4.5) to (4.4), we conclude that h in (4.5) is irreducible. Therefore, no
common roots exist between g — g* and g+ g*, hence none exists between g and g*, and the
proof of the theorem is complete.

We end up by making the following comments:

1. Tt is constructive to note that the above proof establishes a clear relationship between
the integer m of the statement and the number of eigenvalues of the n X n complex system
X' = AX with negative or zero real parts. More precisely, we have

(a) m = n + 2 if and only if all eigenvalues of A have negative xjeal:parts. This case is
equivalent to stability in the strict sense ([15]). ' o

(b) m = 2 if and only if all eigenvalues of A are pure imaginary.

(c) 2 < m < n+2 if and only if A has m — 2 eigenvalues with negative real parts and
n — m + 2 pure imaginary ones.

2, If the system X' = AX is stable, then Sy = @, since A has no eigenvalues with positive
real parts. In fact the condition that S = 0 is necessary only in the opposite direction as
shows the following simple example.

Let

f(z) = 2* - %23 — 2% — iz — 2,
which can be written in the factored form
F(2) = (z+1—1)(z — 1 = i)(z —9)(z + ).
Hence S # 0 and the system is not stable. However the ERA takes the form: |

1 -2 -1 -2i -2
0 0 0 0 0

3. All stability results established in'this paper as well as in [15] hold true if we replace
the system X' = AX by the nth order linear differential equation with complex coefficients:
™ 4+ a1y ot an oy’ + an1y +any =0,

whose characteristic polynomial is also given by

f(z) =2"+ a1zn—1 4+ an_222 + @p12 + Gn.

REFERENCES

[1] Argoun, M. B., On the stability of low-order perturbed polynomials, IEEE Trans. on Aut. Cont., 35:
2 (1990), 180-182,

[2] Benidir, M. & Picinbono, B., Extended table for eliminating the singularities in Routh array, IEEE
Trans. on Aut. Cont., , 35:2 (1990), 218-222.

[3] Bistritz, Y., Stability criterion for uncertain contmuous systems with complex coefficients, IEEE Trans.
Circuits S'yst 35 (1988), 442-450.



204 ' CHIN. ANN. OF MATH. ; Vol.16 Ser.B

[4] Datta, B. N., An analysis and synthesis of classical Fujiwara methods for the root-separation problems,
J. of Math. Anal and Appl., 98 (1984), 495-501.

[5] Feinstein, J., The negative Routh test and its application to the cases of vanishing leading elements and
imaginary roots, IEEE Trans. Aut. Cont., AC-30 (1984), 164-165.

[6] Hollot, C. V., Kharitonov-like results in the space of Markov parameters, IEEE Trans. on Aut. Cont.,
34:5 (1989), 536 538.

[7]1 Hovstad, R. M., A short proof of a contmued fract1on test for the stability of polynomlals, Proc. Amer
Maih. Soc., 105 1 (1989), 76-79.

[8] Jordan, D. W & Smith, P., Non-linear ordinary differential equations, Clarendon Press, Oxford, 1977.

[9] Kharitonov; V. L., Asymptotic stability of an equilibrium position of a family of linear differential
equations, Translated from Russian, Differential Equations, 14 (1979), 1483-1485.

[10] Krajewski, W., Lepschy, A., Main, G. A. & Viaro, U., A unifying frame for stability-test algorithms for
continuous-time systems, IEEE Trans. on Circuits and Syst., 8T:2 (1990), 290-296.

[11] Levinson, N. & Redheffer, R. M., Complex variables, Tata McGraw-Hill Publishing Company lelted
New Delhi, 1980.

[12] Yeung, K. S., Addendum to ‘Routh-Hurwitz test under vanishing leadirig array elements’, IEEE Trans.
Aut Cont., AC-30 (1985), 1036.

[13] Zahreddme, Z., On the unifom stability of a system of dxfferentlal equations with complex coefficients,
Indian J. Pure Appl Math., 20:4 (1989), 307-329.

[14] Zahreddine, Z., Asymptotm stability of complex systems of dlﬁ'erentlal equations of higher dlmensxons,
Indian J. Pure Appl. Math., 21:9 (1990), 781-790.

[15] Zahreddine, Z., An extension of the Routh array for the asymptotic stability of a system of differential
equations with complex coefficients, Applicable Analysis(to appear).



