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Abstract

First it is proved that both the integral of the divergence and the Melnikov function are
invariants of the C2 transformation. Then, the problem of the planar homoclinic bifurcation
with codimension 3 is considered. It is proved that, in a small neighborhood of the origin in the

parameter space of a Cr (r ≥ 5) system, there exist exactly two Cr−1 semi-stable-limit-cycle
branching surfaces, and their common boundary is a unique Cr−1 three-multiple-limit-cycle
branching curve. The bifurcation pictures and the asymptotic expansions of the bifurcation
functions are given. The stability criterion for the homoclinic loop is also obtained when the

integral of the divergence is zero. The proof of the auxiliary theorems will be presented in [16].

Keywords Homoclinic bifurcation, Codimension, Semi-stable-limit-cycle branch,

Three-multiple-limit-cycle branch.
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§0. Introduction and Main Results

In recent years, a great number of papers considered the problem of the homoclinic

loop bifuraction (see [1, 2, 4, 6-11, 13-15] and the references of [2]). Paper [2] solved the

problem of the homoclinic loop bifurcation in high dimension with codimension 2, i.e., with

the resonant eigenvalues and an additional condition (for the exact meaning see [2] or the

following several paragraphs). In this paper, we are interested in the planar homoclinic loop

bifurcation with codimension 3.

Consider the system

ẋ = F (x, y, α),

ẏ = G(x, y, α)
(0.1)α

with the hypotheses: F,G ∈ Cr, r ≥ 5, α ∈ Rn is a multi-parameter, div(F,G) = 0 at point

(x, y, α) = (0, 0, 0), and there exists a homoclinic loop Γ0 passing through the saddle O(0, 0)

when α = 0.

Choosing new parameters if necessary, it follows (see [6,7,10]) that, for any given m

satisfying 0 ≤ m ≤ [ r−1
2 ], there exists a Cr transformation T such that, in a neighborhood
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U of the origin, system (0.1)α takes the form (rescale the time if necessary)

ẋ = −λx−
m∑
i=1

ai(α)x(xy)
i + x(xy)mR1(x, y, α),

ẏ = y +
m∑
i=1

bi(α)y(xy)
i + y(xy)mR2(x, y, α),

(0.2)m

where R1, R2 ∈ Cr, R1, R2 = o((x2 + y2)(r−2m−1)/2), the sign [x] denotes the integral part

of x, λ = 1 + µ, α = (α1, · · · , αn−1, µ) and T is linear outside some neighborhood U1 ⊃ U .

Let vi = ai − bi. If µ = v1 = · · · = vi−1 = 0, vi ̸= 0, then the origin O is called a fine

saddle of order i, and vi is called the i-th saddle value.

Throughout the paper, we assume v1(α) ̸= 0. In other words, O is a fine saddle of order

1 when µ = 0.

Denote I(α) =
∫
Γ0

div(F (x, y, α), G(x, y, α))dt and call it the integral of the divergence.

In the case of dimension 2, paper [2] considered the homoclinic loop bifurcation with a fine

saddle of order 1 and I(0) ̸= 0.

In the following, we always assume

I(0) = 0, v1 > 0. (0.3)

The sign of v1 is not essential. In fact, if v1 < 0, the transformation (x, y, t) → (y, x,−t)

changes v1 into −v1.

By using suitable variable to define the Poincaré map, we will actually prove that the

homoclinic loop bifurcation is uniquely determined by µ, I(α) and the Melnikov function

when v1 ̸= 0, although, strictly speaking, the third one should be replaced by the distance

d(α) between the stable manifold and the unstable manifold. For convenience’ sake (but

without loss of generality), instead of α, we regard θ(α∗) = exp(I(α∗)) − 1, µ and d(α) as

the bifurcation parameters, where α∗ = (α1, · · · , αn−1, 0).

The main purpose of this paper is to show the existence of exactly two semi-stable-

limit-cycle branching (SCB) surfaces, and the uniqueness both of the three-multiple-limit-

cycle branching (TCB) curve and of the intersection curves of these two surfaces with any

section running parallel to the parameter coordinate plane. We also obtain the asymptotic

expansions of the bifurcation curves. As a by-product, we get the stability criterion for the

homoclinic loop Γ when the integral of the divergence along Γ is zero and v1 ̸= 0. A direct

consequence of our results is that the number of limit cycles produced in the homoclinic

loop bifurcation when v1 ̸= 0 is at most 3, which is already known in [7,10].

In section 2, similar to [2,3], we use the Sil’nikov variable to define the Poincaré map.

Thus we should transform system (0.1)α into the normal form (0.2)2 in some neighborhood

of the origin. But it is essential to prove firstly that both I(α) and the Melnikov function

are invariants of the Cr transformation. In [6], we have shown that I(α) is an invariant of

the linear transformation. In section 1, we obtain the following sharper result: The integral

of the divergence, along a periodic orbit or any simple closed path consisting of orbits and

singular points, is an invariant of the C2 coordinate transformation. The same conclusion

is true for the Melnikov function up to a positive constant factor.
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The main result of the paper is the following theorem.

Main Theorem. Suppose that v1(0) > 0, I(0) = 0, r ≥ 5. In a small neighborhood

of the origin of the parameter space {p(θ, µ, d)}, there exist exactly two continuous SCB

surfaces Σ1, Σ2 (see Figure 1). They are Cr−1 for µ ̸= 0, and their common boundary is

a unique Cr−1 TCB curve S. System (0.1)α has exactly three (resp. a unique and stable)

limit cycles in the neighborhood of Γ0 when P is above the θ − µ plane and below Σ1 ∪ Σ2

(resp. at somewhere else), and exactly two (resp. none) limit cycles when P is below the

θ − µ plane and above Σ2 (resp. at somewhere else).

Since it is clear that a homoclinic loop Γα (Γα → Γ0 as α → 0) exists if and only if P is

situated in the θ − µ plane, i.e., d = 0, we do not state this fact in the Main Theorem and

the following theorems.

The Main Theorem is an immediately consequence of the following six theorems where

we always assume that (0.3) holds.

Theorem 0.1. In a neighborhood of the origin on the θ − d plane, there exists a unique

SCB curve (see Figure 2) d = d1(θ), where

d1(θ) = (4δv1)
−1θ2 ln−1 θ + o(θ2 ln−1 θ), 0 < θ << 1,

d1(0) = 0, d1 is Cr−1 when θ > 0 and C2 at θ = 0, and δ > 0 is a constant.

Moreover, when θ > 0, the system (0.1)α corresponding to d ≥ 0, d1(θ) < d < 0 or

d < d1(θ) has exactly one (stable), two or none limit cycle near Γ0 respectively, and when

θ ≤ 0, the system has a unique and stable (resp. none) limit cycle near Γ0 corresponding to

d > 0 (resp. ≤ 0).

Corollary 0.1. Suppose that O is a fine saddle with order 1 of (0.2)m, Γ is a homoclinic

loop connecting O, and the integral of the divergence along Γ is zero. Then Γ is inner stable

(resp. inner unstable) if v1 > 0 (resp. < 0).

In [8], we have shown that the order of a fine saddle combined with the sign of its saddle

value can not be a universal criterion for the stability of a homoclinic loop. And we learn

from [9] that the stability of Γ is determined by the sign of the integral of the divergence

whenever it is not zero. By now, but, we can easily obtain these conclusions together with

Corollary 0.1 from the formula (2.14) of the successive function

P3(s, θ, d) = d+ δθs+ δ3v1s
2 ln s+O(s2) +O(θs2 ln s),

where s ≥ 0. It is very similar to the following formula given in [10]

P (h) = c1 + c2h lnh+ c3h+ c4h
2 lnh+ · · · , (0.4)

which is the first order approximation with respect to ε of the successive function near a

homoclinic loop of the system x = −Hy − εf , y = Hx + εg, where the Hamiltonian function

H(x, y) = h. Without too much difficulty, it can be shown that c1 is a constant Melnikov

function, c2 = µ and c3 = ε−1I(ε). From (2.14) and (0.4), we see the dominant function

played by d, µ, θ and v1 in the homoclinic bifurcation.

Corollary 0.2. Suppose that the perturbation keeps O as a fine saddle with order 1.

Then, Γ0 can bifurcate at most one limit cycle if I(0) ̸= 0, while there exist six possibilities

shown in Figure 2 if I(0) ̸= 0.
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The above result corresponding to I(0) ̸= 0 can be easily obtained from Figure 2 and is

firstly proved in [8].

Theorem 0.2. In a neighborhood of the origin on the θ − µ plane, there exists a unique

and continuous SCB curve (see Figure 3) θ = θ1(µ), where

θ1(µ) = −µ lnµ+ h.o.t., µ ≥ 0,

and θ1 is Cr−1 when µ > 0 and has the inverse function µ1(θ) = −θ ln−1 θ + h.o.t..

Moreover, the corresponding system (0.1)α has exactly two (resp. none) limit cycles near

Γ0 when µ > 0, θ > θ1(µ) (resp. < θ1(µ)), one (resp. none) limit cycle when µ = 0, θ > 0

(resp. ≤ 0), and one and stable limit cycle when µ < 0.

Theorem 0.3. In a neighborhood of the origin on the µ− d plane, there exists a unique

Cr−1 SCB curve (see Figure 4) d = d2(µ), where

d2(µ) = −(2T + 1)(4δv1)
−1µ2 + o(µ2), 0 < −µ << 1,

d2(0) = 0 and d2 is C2 at µ = 0.

Moreover, system (0.1)α has exactly one and stable (resp. none) limit cycle near Γ0 when

µ ≥ 0 and d > 0 (resp. < 0), and one, two or none limit cycle when µ < 0 and d > 0,

d2(µ) < d < 0 or d < d2(µ) respectively.

Theorem 0.4. (i) Assume 0 < θ0 << 1. Then there exists a Cr−1 function µ2(θ0) >

µ1(θ0) such that, in a neighborhood of the origin on the section θ = θ0, there exist exactly

two SCB curves (see Figure 5) d = d3(θ0, µ) for 0 ≤ µ ≤ µ2(θ0) and d = d4(θ0, µ) for

−1 << µ ≤ µ2(θ0), and a unique TCB point (µ2, d3(θ0, µ2)), where d3, d4 are Cr−1 when

µ ̸= 0, and d3 (resp. d4) is C1 (resp. continuous) at µ = 0, d3(θ0, 0) = d3(0, µ) = 0,

d4(θ0, 0) = d1(θ0), d4(θ0, µ1(θ0)) = 0, d4(0, µ) = d2(µ), d3(θ0, µ2(θ0)) = d4(θ0, µ2(θ0)),
∂
∂µdi(θ0, µ) > 0 for µ ̸= 0 and i = 3, 4, ∂

∂µd3(θ0, 0) = 0, and

lim
µ→0

µ−1d3(θ0, µ)(1 + θ0)
1/µ = δ exp(−1 + 2T/(1 + θ0)).

Moreover, system (0.1)α has exactly one (stable), three, two or none limit cycle near Γ0

corresponding to {d > d3, µ ≤ µ2}∪{0 < d < d4, µ1 < µ ≤ µ2}∪{d > 0, µ ≤ 0 or µ > µ2},
{max{0, d4} < d < d3, 0 < µ < µ2}, {d4 < d < 0, µ < µ1} or {d < d4, µ ≤ µ1} ∪ {d < 0,

µ > µ1} respectively.

(ii) Assume 0 < −θ0 << 1. Then, in a neighborhood of the origin on the section θ = θ0,

there exists a unique C1 SCB curve (see Figure 6) d = d4(θ0, µ) for µ ≤ 0 satisfying

d4(0, µ) = d2(µ), d4(θ0, 0) =
∂

∂µ
d4(θ0, µ) = 0,

∂

∂µ
d4(θ0, µ) > 0 for µ < 0,

lim
µ→0

µ−1d4(θ0, µ)(1− θ0)
−1/µ = δ exp(−1 + 2T/(1− θ0)),

and d4 is Cr−1 when 0 < −µ << 1.

Moreover, if define d4(θ0, µ) = 0 for µ > 0, then system (0.1)α has exactly one (stable),

two or none limit cycle near Γ0 when d > 0, d4 < d < 0 or d < d4 respectively for |µ| << 1.

Theorem 0.5. (i) If 0 < µ0 << 1, then, in a neighborhood of the origin on the section

µ = µ0, there exist exactly two Cr−1 SCB curves (see Figure 7) L1 : d = d3(θ, µ0) and L2 :
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d = d4(θ, µ0) when θ ≥ θ2(µ0), and a unique TCB point (θ2, d3(θ2, µ0)), where θ2 ∈ Cr−1 is

an inverse function of µ2,

0 < θ2(µ0) < θ1(µ0), d3(θ2(µ0), µ0) = d4(θ2(µ0), µ0), d4(θ1(µ0), µ0) = 0.

Moreover, system (0.1)α has exactly three (resp. two) limit cycles near Γ0 when θ ≥ θ2(µ),

max{d4, 0} < d < d3 (resp. θ ≥ θ1(µ0), d4 < d < 0), and one (resp. none) limit cycle near

Γ0 when (θ, d) on the left of L1 ∪ L2 and d > 0 (resp. d < 0).

(ii) If 0 < −µ0 << 1, then, in a neighborhood of the origin on the section µ = µ0, there

exists a unique Cr−1 SCB curve (see Figure 8) d = d4(θ, µ0) satisfying d4(θ, 0) = d1(θ) when

θ ≥ 0 and d4(θ, 0) = 0 when θ < 0. Moreover, system (0.1)α has exactly one (stable), two or

none limit cycle near Γ0 corresponding to d ≥ 0, d4(θ, µ0) < d < 0 or d < d4 respectively.

Theorem 0.6. (i) If 0 < d0 << 1, then, in a neighborhood of the origin on the section

d = d0, there exist exactly two Cr−1 SCB curves L1 : µ = µ3(d0, θ) and L2 : µ = µ4(d0, θ)

when θ ≥ θ∗, and a unique TCB point (θ∗, µ∗), where µ3(d0, θ
∗) = µ4(d0, θ

∗) = µ∗ = µ2(θ
∗),

µ3(d0, θ) < µ4(d0, θ) for θ > θ∗, d0 = d3(θ, µ3) = d4(θ, µ4), and µ3(d0, θ) → 0, µ4(d0, θ) →
µ1(θ) as d0 → 0. System (0.1)α has a unique and stable limit cycle (resp. exactly three limit

cycles) near Γ0 when (θ, µ) is in the side of L = L1 ∪ L2 which contains (resp. does not

contain) the origin.

(ii) If 0 < −d0 << 1, then, in a neighborhood of the origin on the section d = d0, there

exists a unique and continuous SCB curve L2 (see Figure 10) with limits θ = θ1(µ) and the

negative θ-axis as d0 → 0, and L2 is Cr−1 when µ ̸= 0. System (0.1)α has exactly two (resp.

none) limit cycles near Γ0 if (θ, µ) is in the right (resp. left) side of L2.

The proof of Theorems 0.1-0.6 will be given in [16].

§1. Invariance of the Divergence Integral and Melnikov Function

In this section, we show that the integral of the divergence and the Melnikov function are

invariants of the C2 coordinate transformation.

Let L : x = xi(t), y = yi(t) for i = 1, · · · ,m and −1
2Ti ≤ t ≤ 1

2Ti be a periodic orbit

(corresponding to i = 1 and T1 finite) or a simple closed path consisting of m singular points

and m pieces of orbits (corresponding to Ti = ∞) of the following Cr system

ẋ = P (x, y),

ẏ = Q(x, y).
(1.1)

If r1 ≤ r, then a Cr1 transformation T

u = u(x, y),

v = v(x, y)
(1.2)

transforms (1.1) into a Cr1−1 system

u̇ = f(u, v),

v̇ = g(u, v),
(1.3)

where

(
f
g

)
= A

(
P
Q

)
, A = ∂(u,v)

∂(x,y) , and L becomes

L′ : u = ui(x(t), y(t)), v = vi(x(t), y(t)) for i = 1, · · · ,m.
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Theorem 1.1. If 2 ≤ r1 ≤ r, then
∫
L′(fu + gv)dt =

∫
L
(Px +Qy)dt. In other words, the

integral of the divergence of a Cr (r ≥ 2) system along a periodic orbit or a simple closed path

consisting of singular points and orbits is an invariant of the C2 coordinate transformation.

Proof. Denote D = detA = uxvy−uyvx. Then D ∈ Cr1−1 ⊂ C1, D ̸= 0, and xuD = vy,

xvD = −uy, yuD = −vx, yvD = ux. By a careful calculation, we obtain

fu + gv = tr(
∂(f, g)

∂(u, v)
)

= tr(A
∂(P,Q)

∂(x, y)
A−1) +D−1(P,Q)

(
vyuxx − vxuxy − uyvxx + uxvxy
vyuxy − vxuyy − uyvxy + uxvyy

)
= tr(

∂(P,Q)

∂(x, y)
) +D−1(DxP +DyQ).

The last equality holds since the trace is an invariant of the similarity transformation.

Now it follows that∫
L′
(fu + gv)dt =

∫
L

(Px +Qy)dt+

∫
L

D−1(Dxdx+Dydy)

=

∫
L

(Px +Qy)dt+

∫
L

d(ln |D|)

=

∫
L

(Px +Qy)dt.

Next we prove that The Melnikov function is an invariant of the C2 coordinate transfor-

mation up to a positive constant factor.

Consider the Cr perturbation system

ẋ = P (x, y) + εP1(x, y, ε, α),

ẏ = Q(x, y) + εQ1(x, y, ε, α),
(1.4)εα

where P , Q, P1, Q1 ∈ Cr, r ≥ 2, ε ∈ R, α ∈ Rn are parameters.

Let L : x = x(t), y = y(t) be either a periodic orbit with period T or a homoclinic orbit

or a heteroclinic orbit of (1.4)0α. Take point p ∈ L arbitrarily and time t such that the

coordinate of p is (x(0), y(0)). Let Σ be a section of an orthogonal orbit of system (1.4)εα
passing through p, Lεα an orbit of (1.4)εα running through p when L is a periodic orbit,

p1 ∈ Σ the first returning point of p along Lεα with the increasing of t, d(ε, α) the directed

distance between p and p1. When L is either a homoclinic orbit or a heteroclinic orbit, we

denote by W s (resp. Wu) the stable (resp. unstable) manifold of a singular point sufficiently

near L with W s, Wu → L as ε → 0, ps1 and pu1 the first intersection points of W s and Wu

with Σ respectively, d(ε, α) the directed length of the vector ps1−pu1 . If L is either a periodic

orbit or a homoclinic orbit, then, as usual, the outer direction is designed as the positive

direction.

It follows from [5, 6, 12] that

d(ε, α) =

{
εΦ(α) +O(ε) when L is a periodic orbit,

εB−1
0 M(α) +O(ε) when L is either a homoclinic orbit or a heteroclinic orbit,
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where B0 = (P 2(x(0), y(0)) +Q2(x(0), y(0)))
1
2 , Φ(α) = B−1

0 M(α), and

M(α) =

∫
L

exp
(
−
∫ t

0

(Px +Qy)dt
)
(PQ1(x, y, 0, α)−QP1(x, y, 0, α))dt. (1.5)

M(α) is usually called the Melnikov function, and it plays a very important part in the

research of the homoclinic and heteroclinic bifurcation problems, whereas the function Φ(α)

plays an essential role in the bifurcation problem concerned with a family of closed orbits

(see [5, 6, 12]).

Under the Cr1 transformation (1.2), system (1.4)εα takes the form

u̇ = f(u, v) + εf1(u, v, ε, α),

v̇ = g(u, v) + εg1(u, v, ε, α),
(1.6)

where

(
f1
g1

)
= A

(
P1

Q1

)
. Now, L, Φ and M become L′, Φ′ and M ′ respectively.

Let D0 = D(x(0), y(0)), B10 = (f2(u0, v0) + g2(u0, v0))
1
2 , where u0 = u(x(0), y(0)),

v0 = v(x(0), y(0)).

Theorem 1.2. If 2 ≤ r1 ≤ r, then Φ′(α) = D0B0B
−1
10 Φ(α) and M ′(α) = D0M(α), i.e.,

neglecting a positive constant factor, the functions Φ(α) and M(α) are invariants under a

C2 transformation.

Proof. Since the proof is similar, we only show the invariance of M(α).

Denote D(t) = D(x(t), y(t)). Then from the proof of Theorem 1.1 we have the following

equality ∫ t

0

(fu + gv)
∣∣
L′dt =

∫ t

0

(Px +Qy)
∣∣
L
dt+ ln |D(t)| − ln |D0|.

Using the relation fg1(x, y, 0, α) − gf1(x, y, 0, α) = D(PQ1(x, y, 0, α) −QP1(x, y, 0, α)), we

obtain

M ′(α) =

∫
L′

exp(−
∫ t

0

(fu + gv)dt)(fg1(x, y, 0, α)− gf1(x, y, 0, α))dt

= D0

∫
L

exp(−
∫ t

0

(Px +Qy)dt)(PQ1(x, y, 0, α)−QP1(x, y, 0, α))dt

= D0M(α).

Remark 1.1. Let ε = |α|, P (x, y) = F (x, y, 0), Q(x, y) = G(x, y, 0), εP1(x, y, α) =

F (x, y, α) − P (x, y), εQ1(x, y, α) = G(x, y, α) − Q(x, y). Then system (0.1)α has the form

of (1.4)εα.

§2. Poincaré Map

Consider the Cr system

ẋ = F (x, y, α),

ẏ = G(x, y, α),
(2.1)α

where r ≥ 5, α ∈ Rn. Assume that O is a fine saddle of system (2.1)0 with order 1, Γ0

is a homoclinic loop of (2.1)0 passing through O, the first saddle value v1(0) > 0, and the

divergence integral I(0) = 0.
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Take a Cr transformation T such that system (2.1)α is changed into the following Cr

system (rescale the time t if necessary)

ẋ = −λx+ P (x, y) + f(x, y, α),

ẏ = y +Q(x, y) + g(x, y, α),
(2.2)

where P , Q, f , g ∈ Cr, f(x, y, 0) = g(x, y, 0) = 0, λ = 1 + µ, α = (α1, · · · , αn−1, µ),

functions P , Q, f , g and their first order derivatives all vanish at the point (x, y) = (0, 0).

Moreover, we can choose T such that, in some neighborhood U of the origin, system (2.2)

has the form

ẋ = −λx− a1(α)x
2y + x3y2R1(x, y, α),

ẏ = y + b1(α)xy
2 + x2y3R2(x, y, α),

(2.2)1

where R1, R2 ∈ Cr, R1(0, 0, α) = a2(α), R2(0, 0, α) = b2(α), for the meaning of a2 and b2
see (0.2)m. For simplicity, we still use Γ0 to denote the image of Γ0 under the transformation

T .

Using the Sil’nikov variable, now we establish the Poincaré map defined by the orbits in

the neighborhood of Γ0.

Take δ > 0 sufficiently small such that the segments Lx = {(x, y) : 0 ≤ x ≤ δ, y = δ} and

Ly = {(x, y) : x = δ, 0 ≤ |y| ≤ δ} are completely situated in U . For any 0 < y0 < δ, there

exists a unique time τ such that the orbit starting from (δ, y0) at t = 0 firstly intersects Lx

at t = τ . Equivalently, the second component of the solution (x(t, δ, y0), y(t, δ, y0)) for the

initial value problem of (2.2) satisfies y(τ, δ, y0) = δ.

1) The case µ > 0.

Let x1 = x(τ, δ, y0). When 0 ≤ t ≤ τ , it follows from the constant variation formula that

x(t) = e−λt
(
δ −

∫ t

0

eλs(a1x
2y + x3y2R1)ds

)
,

y(t) = et
(
y0 +

∫ t

0

e−s(b1xy
2 + x2y3R2)ds

)
.

(2.3)

Since the hyperbolicity guarantees the validity of the C1 linearization theorem (see [3])

in the case of 2 dimension, we can use

x(t) = δe−λt, y(t) = y0e
t, y0 = δe−τ

as the first approximation in the right hand of (2.3), and get

x1 = δs1+µ − µ−1a1δ
3s2+µ + µ−1a1δ

3s2+2µ +O(µ−1s3+µ),

y0 = δs− µ−1b1δ
3s2 + µ−1b1δ

3s2+µ +O(µ−1s3),
(2.4)

where s = e−τ . s is called the Sil’nikov time, and s = 0 is corresponding to τ = +∞.

Define the Poincaré map

π1 : Lx → Ly, x1 7→ π1(x1),

where π1 is induced by the orbits. Selecting a suitable system of orthogonal curvilinear

coordinates, we can obtain (see [12] Chapters 2 and 4)

π1(x1) = d(α) + a(α)x1 +O(x2
1), (2.5)



No.2 Zhu, D. M. HOMOCLINIC BIFURCATION WITH CODIMENSION 3 213

where d(α) is the ordinate of the first intersection point of Ly with the unstable manifold of

saddle O of the perturbation system (2.2), and

a(α) = exp
(∫ T2

T1

(−µ+ Px +Qy + fx + gy)dt−
1

2

∫
Γ01

dB

B

)
, (2.6)

where B = (−x+P )2+(y+Q)2, Γ01 is a piece of segment of Γ0 starting at (0, δ) and ending

at (δ, 0), and T1, T2 are the times corresponding to points (0, δ) and (δ, 0) respectively.

From the special form of (2.2)1, it is easy to see that∫ T2

T1

(Px +Qy + fx + gy)dt =

∫ +∞

−∞
(Px +Qy + fx + gy)dt

=

∫ +∞

−∞
(fx + gy)dt. (2.7)

The last equality is valid simply because I(0) = 0.

Let L+
y be the upper part of Ly situated in the above of the x-axis. Then, still by the

speciality of (2.2)1, we get ∫
Γ01

dB

B
= −

(∫
L+

y

+

∫
Lx

dB

B

)
= 0. (2.8)

Denote α∗ = (α1, · · · , αn−1, 0), exp(I(α
∗)) = 1+ θ, T2 −T1 = 2T , hθ = (1+ θ)(1− 2µT ),

h = h0, Eθ = a1hθ + b1, E = E0, and

P1(s, θ, µ, d) = π1(x1)− y0. (2.9)

Obviously,

I(α∗) =

∫ +∞

−∞
(fx + gy)dt (2.10)

is the divergence integral of the perturbation system (2.2) which keeps 0 as a fine saddle

with order 1. Combining (2.4)-(2.10), we have

a(α) = (1 + θ)e−2µT , (2.11)

P1(s, θ, µ, d) = d− δs+ δhθs
1+µ + µ−1b1δ

3s2 − µ−1Eθδ
3s2+µ

+ µ−1a1δ
3hθs

2+2µ + r1, (2.12)

where r1 = O(s2+2µ) +O(µ2s1+µ) +O(µ−1s3).

2) The case µ < 0.

Let t → −t. Then system (2.2)1 becomes

ẋ = λx+ a1(α)x
2y − x3y2R1(x, y, α),

ẏ = −y − b1(α)xy
2 − x2y3R2(x, y, α).

(2.2)2

Define the Poincaré map π2 : L+
y → Lx, where we assume that Lx has been extended

to the region x < 0. And denote θ1 = (1 + θ)−1 − 1, gθ1 = (1 + θ1)(1 + 2µT ), g = g0,

Fθ1 = a1 + b1gθ1 , F = F0, s = e−λτ , µ1 = (1 + µ)−1 − 1, and P2(s, θ, µ, d) = π2(y1) − x0.
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Then

P2(s, θ, µ, d) = d1 + a−1(α)y1 − x0 +O(y21)

= d1 − δs+ δgθ1s
1+µ1 − µ−1a1δ

3s2 + µ−1δ3Fθ1s
2+µ1

− µ−1b1δ
3gθ1s

2+2µ1 + r2, (2.13)

where r2 = O(s2+2µ1) + O(µ−1s3) + O(µ2s1+µ1), d1 and d have different signs, and d1 = 0

iff d = 0. For simplicity, in the following, we always substitute −d for d1.

3) The case µ = 0.

Using (2.3) and s = e−τ , we get

x1 = x(τ)

= δs+ a1δ
3s2 ln s+O(s3 ln s),

y0 = δs+ b1δ
3s2 ln s+O(s3 ln s).

Define P3(s, θ, d) = π1(x1)− y0. Then

P3(s, θ, d) = d+ a(α)x1 − y0 +O(x2
1)

= d+ δθs+ δ3v1s
2 ln s+ r3, (2.14)

where r3 = O(s2) +O(θs2 ln s).

Theorem 2.1. P1, P2, P3 defined by (2.12)-(2.14) respectively are Cr (resp. continuous)

when 0 < s << 1 (resp. 0 ≤ s << 1) and |θ|, |µ|, |d| << 1, and can be C1 extended to the

region |s| << 1. Moreover, lim
µ→0+

(P1 − r1) = P3 − O(s2), r1 = O(s2+2µ) + O(µ2s1+µ), and

r2 = O(s2+2µ1) +O(µ2s1+µ1).

Proof. Clearly, P1 and P3 are linear with respect to θ and d, whereas P2 is linear with

respect to θ1 and d1. And since system (2.1)α is Cr, Pi is also Cr with respect to µ and

τ = − ln s (or τ = −λ−1 ln s in case i = 2) for i = 1, 2, 3. Consequently, Pi is C
r when s > 0

for i = 1, 2, 3.

It is easy to see that, from the expression of Pi (i = 1, 2, 3), Pi is C1 at s = 0, and can

be extended to the region s ≤ 0.

Denote sµ = exp(µ ln s) = 1 + µ ln s + O(µ2). Then a simple calculation shows that

lim
µ→0

(P1 − r1) = P3 −O(s2). Comparing r1 with r3, we get r1 = O(s2+2µ) +O(µ2s1+µ).

Similarly, we can get the asymptotic expression of r2.

Remark 2.1. In [10], it was established a general asymptotic expansion in any differ-

entiable class k for the Poincaré map along a homoclinic loop Γ of any planar vector field

unfolding xα:

Dα[x]− x = β0 + α1xw[· · · ] + β1x[· · · ] + · · ·+ βkx
k[· · · ]

+ αk+1x
k+1w[· · · ] + ϕk, (2.15)

where w = α−1
1 (xα1 −1), ϕk is Ck for x > 0 and x is the parametrization of some transversal

section.

Comparing (2.12)-(2.14) with (2.15), we easily see that the expansions (2.12)-(2.14) have

the following three advantages.
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1) The expansions of Pi (i = 1, 2, 3) are more precise than that of Dα[x]− x.

2) The first three coefficients in (2.12)-(2.14) have the already known meanings.

3) Pi (i = 1, 2, 3) can be C1 extended to the region |s| << 1 as claimed in Theorem 2.1,

and this is essential to the proof of our results.

The proof of Theorems 0.1-0.6 will be presented in [16].
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