
Chin. Ann. of Math.
15B: 2(1994),217-224.

TWO EXISTENCE THEOREMS OF PERIODIC
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Abstract

This paper corrects and improves two theorems on the existence of non-trivial periodic
solutions of differential delay equations published in this journal.
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§1. Introduction

Since Kaplan and Yorke[1] provided a method of studying the existence of nontrivial

periodic solutions of differential delay equations by use of ordinary differential equations,

much work has been done to extend their results[2−4]. Instead of the equation ẋ(t) =

−f(x(t− 1)), paper [4] considers more general equations

ẋ(t) = −f(x(t), x(t− 1)) (1.1)

and

ẋ(t) = −F (x(t), x(t− 1), . . . , x(t− 1)) (1.2)

and gives two theorems on the existence of nontrivial periodic solutions. Although these

theorems are interesting, there is some thing wrong in their proofs which makes the corre-

sponding conclusions unacceptable. Our purpose is to correct and improve the results given

there.

§2. Errors in Paper [4]

It is supposed in paper [4] that

1◦ f : R2 → R is continuous, xf(y, x) > 0 for x ̸= 0, y ∈ R;
2◦ f(−y, x) = f(y, x), f(y,−x) = −f(y, x);

3◦ | f(y, x) |≤ r(| x |), where f(s) ≥ 0 is continuous in s with r(0) = 0 and r(s) > 0 for

s > 0;

4◦
∫∞
0

f(y, x)dx = +∞ for any fixed y ∈ R;
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5◦ there is a constant M > 0 such that

M | f(y1, x) |≥| f(y2, x) | for | y1 |≥| y2 |≥ 0;

6◦ α = lim
x→0

f(y, x)/x and β = lim
x→∞

f(y, x)/x (see Lemma 4, [4]).

The conclusion in [4] is that for an integer k > 0 if

α <
π

2
(4k + 1) < β or β <

π

2
(4k + 1) < α,

then Equation (1.1) has a nontrivial periodic solution with period 4/(4k + 1) ( Theorem 1,

[4]) or when

f(x, y) =

{
F (x, y,−x,−y, · · · , (−1)

n
2 x), n = even,

F (x, y,−x,−y, · · · , (−1)
n+1
2 x, (−1)

n+1
2 y), n = odd,

Equation (1.2) has a nontrivial periodic solution with period 4/(4k + 1) (Theorem 2, [4]).

Remark. Theorem 2 in [4] gives only the result for k = 1. It is not difficult to extend it

to the case for k > 1 if the theorem is true.

One of the bases for the proof of the above results is Lemma 4 in [4]. But it is not correct.

Let

Jλ =
x(t.λ)f(y(t, λ), x(t, λ)) + y(t, λ)f(x(t, λ), y(t, λ))

x2(t, λ) + y2(t, λ)
,

where (x(t, λ), y(t, λ)), λ > 0, is a trajectory of the equations{
ẋ = −f(x, y),

ẏ = f(y, x)
(2.1)

passing through the point (λ, λ) in the x, y-plane. Paper [4] claims lim
λ→0

Jλ(t) = α under

conditions 10 − 60. Unfortunately this claim is incorrect. Therefore Lemma 4 and, as a

result, all main conclusions in [4] remain unproved.

We give a counterexample to the mentioned claim as follows. Let

f(y, x) =

{[
1 + |xy|

x2+y2

]
x, x2 + y2 ̸= 0,

0, x2 + y2 = 0.

Obviously f(x, y) is continuous on R2, f(−y, x) = f(y, x), f(y,−x) = −f(y, x) and

| f(y2, x) |≤
3

2
| x |≤ 3

2

[
1 +

| y1x |
x2 + y21

]
| x |= 3

2
| f(y1, x) |, for | y2 |≤| y1 |

and

α = lim
x→0

f(y, x)

x
= lim

x→0

[
1 +

| xy |
x2 + y2

]
= 1.

No matter how small λ > 0 is, there are points on the trajectory (x(t, λ), y(t, λ)) such

that | x(t, λ) |=| y(t, λ) | since (x(t, λ), y(t, λ)) is a closed trajectory around the origin (0, 0)

(see Lemma 1, [4]). At such points Jλ(t) = 3/2. Therefore

lim
λ→0

Jλ(t) ̸= 1 = α.

The same problem arises when λ → ∞. So Lemma 4 in [4] is not true since its validity rests

on the claim.
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Such errors come from the neglect of the difference between limits of functions of one

variable and of multiple variables. Besides, we shall find that the conditions 3◦ − 5◦ are not

necessary.

§3. Main Results

We make two groups of assumptions.

(H1):

1) f ∈ C0(R2,R), yf(x, y) > 0 for y ̸= 0, f(−x, y) = f(x, y) and f(x,−y) = −f(x, y);

2) For x ∈ R, f(x, y)/y tends uniformly to α ≥ 0 as y → 0 and to β ≥ 0 as y → ∞, where

α and β may be infinite;

3) For all u ∈ R, lim
(x,y)→(u,∞)

| f(y, x)/f(x, y) |< ∞ or for x ∈ R, | f(x, y) |≤ h(y) < ∞,

where h(y) is continuous on R.
(H2):

1) The same as 1) in (H1);

2) lim
x2+y2→0

f(x, y)/y = α ≥ 0 and lim
x2+y2→∞

f(x, y)/y = β ≥ 0, where α and β may be

infinite;

3) lim
(x,y)→(u,∞)

| f(y, x)/f(x, y) |< ∞ for any u ∈ R.

Clearly (H1) and (H2) do not imply each other.

Theorem 3.1. Suppose that (H1) or (H2) holds and k ≥ 0 is an integer. If α <
π
2 (4k+1) < β or β < π

2 (4k+1) < α, then Equation (1.1) has at least one nontrivial periodic

solution with period 4/(4k + 1).

Corollary 3.1. Suppose that (H1) or (H2) holds. If one of α and β is infinite, then

Equation (1.1) has infinitely many nontrivial periodic solutions.

Theorem 3.2. Suppose that (H1) or (H2) holds and k ≥ 0 is an integer. If α <
π
2 (4k + 1) < β or β < π

2 (4k + 1) < α and

f(x, y) =

{
F (x, y,−x,−y, . . . , (−1)

n
2 x), n = even,

F (x, y, . . . , (−1)
n−1
2 x, (−1)

n−1
2 y), n = odd,

then Equation (1.2) has at least one nontrivial periodic solution with period 4/(4k + 1).

§4. Proof of Main Results

Lemma 4.1. Suppose that (H1) holds and there is a numger m > 0 such that

lim
y→∞

| f(x, y) |≥ m if lim
(x,y)→(u,∞)

| f(y, x)/f(x, y) |< ∞

does not hold. Then all the normal trajectories of Equations (2.1) are closed curves around

the origin in the x, y-plane.

Proof. Under Hypothesis (H1), it is easy to see that the trajectories of Equation (2.1)

are all symmetric with respect to both x- and y-axes. Furthermore, they are also symmetric

with repect to both the lines x − y = 0 and x + y = 0. So we need only to prove that any

trajectory starting from point (λ, λ), λ > 0, will intersect the positive y-semiaxis. Otherwise
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the fact that ẋ(t) < 0 and ẏ(t) > 0 for x(t) > 0, y(t) > 0 implies that lim
t→∞

x(t) = x0 ≥ 0

and lim
t→∞

y(t) = +∞. Therefore

lim
t→∞

dy

dx
= lim

(x,y)→(x0,∞)

[
−f(y, x)

f(x, y)

]
= ∞.

If lim
(x,y)→(u,∞)

| f(y, x)/f(x, y) |< ∞ for any u ∈ R, then

lim
(x,y)→(x0,∞)

f(y, x)

f(x, y)
̸= ∞,

a contradiction. If | f(x, y) |≤ h(y) < ∞ and lim
y→∞

| f(x, y) |≥ m for any x ∈ R, then

lim
(x,y)→(x0,∞)

∣∣∣f(y, x)
f(x, y)

∣∣∣ ≤ h(x0)

m
< ∞,

also a contradiction. This lemma is now proved.

Similarly we have

Lemma 4.2. Suppose (H2) holds. Then all the normal trajectories of Equation (2.1) are

closed curves around the origin in the x, y-plane.

Lemma 4.3. If (x(t), y(t)) is a 4ω-periodic solution of Equation (2.1), ω > 0, then x(t)

is a 4ω-periodic solution of

ẋ(t) = −f(x(t), x(t− ω)) (4.1)

with x(t− 2ω) = −x(t).

Proof. The proof of Lemma 3 of paper [4] shows y(t) = x(t−ω) and x(t− 2ω) = −x(t).

Then the first equation in Equation (2.1) implies our conclusion.

Lemma 4.4. When ω = 1/(4k + 1), any 4/(4k + 1)-periodic solution of Equation (4.1)

is also a periodic solution of Equation (1.1) with the same period.

For the proof see [1], [3] or [4].

Let (x(t, λ), y(t, λ)) be the periodic solution of Equation (2.1) passing through the point

(λ, λ), λ > 0, and Tλ its period.

Lemma 4.5. Under the conditions of Theorem 3.1, Equation (2.1) has at least one

periodic solution with period 4/(4k + 1).

Proof. Without loss of generality we assume that

β <
π

2
(4k + 1) < α.

Let θ(t, λ) = arctan[y(t, λ)/x(t, λ)]. Then θ̇(t, λ) = Jλ(t), where

Jλ(t) =
x(t, λ)f(y, x) + y(t, λ)f(x, y)

x2(t, λ) + y2(t, λ)

= [x2(t, λ) + y2(t, λ)]−1
[
x2(t, λ)

f(y, x)

x(t, λ)
+ y2(t, λ)

f(x, y)

y(t, λ)

]
.

Under the conditions of Theorem 3.1 and the additional assumption

lim
y→+∞

| f(x, y) |≥ m > 0, | f(x, y) |≤ h(y) < ∞,
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we have

(x(t, λ), y(t, λ)) → (0, 0) uniformly as λ → 0.

Otherwise there will be a singular trajectory other than (0, 0), a contradiction to Lemma

4.1.

a) Suppose (H2) holds. If α < ∞, then

f(y, x)

x(t, λ)
= α+ o(1),

f(x, y)

y(t, λ)
= α+ o(1)

as λ → 0. This implies Jλ(t) = α+ o(1). Therefore when λ is small enough,

2π =

∫ 2π

0

dθ =

∫ Tλ

0

Jλ(t)dt = [α+ o(1)]Tλ

and hence

T =
2π

α+ o(1)
<

4

4k + 1
.

If α = +∞, then for a number M > π
2 (4k + 1) there is a δ > 0 such that

f(y, x)

x(t, λ)
> M,

f(x, y)

y(t, λ)
> M

and hence Jλ(t) > M when λ < δ. Therefore Tλ =< 2π/M < 4/(4k + 1).

Similarly we have Tλ > 4/(4k + 1) when λ is large enough, no matter whether β > 0 or

β = 0. So there is at least one λ0 > 0 such that Tλ0 = 4/(4k + 1).

b) Suppose (H1) holds. If lim
(x,y)→(u,∞)

| f(y, x)/f(x, y) |< ∞ holds for all u ∈ R or

| f(x, y) |≤ h(y) and lim
y→∞

| f(x, y) |≥ m > 0 hold for all x ∈ R, then it follows from Lemma

4.1 that all the trajectories of Equation (2.1) are periodic around the origin.

The condition that f(x, y)/y → α uniformly as y → 0 implies

f(x, y)

y(t, λ)
= α+ o(1) when α < ∞

or
f(x, y)

y(t, λ)
> M >

π

2
(4k + 1) when α = ∞.

A similar argument as above leads to the inequality.

Tλ < 4/(4k + 1) for small λ. (4.2)

On the other hand, the condition f(x, y)/y → 0 uniformly as y → ∞ implies that for a

number b ∈ (β, π
2 (4k + 1)) there is a G > 0 such that

f(x, y)

y(t, λ)
< b <

π

2
(4k + 1) for | y(t, λ) |> G,

f(y, x)

x(t, λ)
< b <

π

2
(4k + 1) for | x(t, λ) |> G.

Let K = max
|y|≤G

h(y) and take M > 0 so large that

M >

√
GK

[π2 (4k + 1)− b]
.
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Consider

D1 = {(x, y) | | x |, | y |> G},
D2 = {(x, y) | | x |≤ G, | y |> M},
D3 = {(x, y) | | y |≤ G, | x |> M}.

Obviously D1 ∩D2 = D2 ∩D3 = D3 ∩D1 = ϕ. Since

lim
λ→∞

[x2(t, λ) + y2(t, λ)] = ∞,

we have (x(t, λ), y(t, λ)) ∈ D1 ∪D2 ∪D3, for λ large enough.

When (x(t, λ), y(t, λ)) ∈ D1,

Jλ(t) =
1

x2(t, λ) + y2(t, λ)

[
x2(t, λ)

f(y, x)

x(t, λ)
+ y2(t, λ)

f(x, y)

y(t, λ)

]
< b <

π

2
(4k + 1).

And when (x(t, λ), y(t, λ)) ∈ D2,

Jλ(t) =
1

x2(t, λ) + y2(t, λ)

[
x(t, λ)f(y, x) + y2(t, λ)

f(x, y)

y(t, λ)

]
≤ GK

M2
+ b <

π

2
(4k + 1).

Similarly Jλ(t) <
π
2 (4k + 1) when (x(t, λ), y(t, λ)) ∈ D3. Therefore

2π =

∫ 2π

0

dθ =

∫ Tλ

0

Jλ(t)dt <
π

2
(4k + 1)Tλ.

It follows that

Tλ > 4/(4k + 1) for λ large enough . (4.3)

The inequalities (4.2) and (4.3) imply that there is at least one λ0 > 0 such that

Tλ0 = 4/(4k + 1).

c) The case which remains unproved is that (H1) holds with | f(x, y) |≤ h(y) < ∞ while

lim
y→∞

| f(x, y) |= 0. Since f(x, y)/y → β ≥ 0 uniformly as y → ∞, such a case occurs only

when β = 0. So there is an M1 > 0 such that f(x, y)/y < 1 and hence | f(x, y) |<| y | when
| y |≥ M1. Let

M2 = max
|y|≤M1

h(y) ≤ sup
|y|≤M1

| f(x, y) | and M = 1 +max{M1,M2}.

We define F (x, y) as follows:

F (x, y) =

{
f(x, y), | y |≤ M,
f(x,M sgn(y)) + (y −M sgn(y)), | y |> M.

(4.4)

Obviously F (x, y) satisfies all the requirements of (H1) with

β̄ = 1 <
π

2
(4k + 1) < α = ᾱ

and

h̄(y) =

{
h(y), | y |≤ M,
h(M sgn(y))+ | y −M sgn(y) |, | y |> M.
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The condition that F (x, y)/y → β̄ = 1 uniformly as y → ∞ implies

lim
y→∞

| F (x, y) |= ∞.

It follows from the established result in b) that

ẋ(t) = −F (x(t), x(t− 1)) (4.5)

has at least one 4/(4k + 1)-periodic solution x(t).

We prove now that

m = max
t∈R

| x(t) |= max
t∈R

| x(t− 1) |≤ M.

Otherwise m > M . Let x(t0) = m. Then ẋ(t0) = 0 and thus x(t0 − 1) = 0. Let E1, E2 and

E3 be the sets

{t ∈ [t0 − 1, t0] | x(t− 1) |≤ M1}, {t ∈ [t0 − 1, t0] | M1 <| x(t− 1) | M2}

and [t0 − 1, t0]− (E1 +E2) respectively. Then µ(E1)+µ(E2)+µ(E3) = 1, here µ(Ei) is the

Lebesque measure of set Ei, i = 1, 2, 3. Now

x(t0) = −
∫ t0

t0−1

F (x(t), x(t− 1))dt

≤
(∫

E1

+

∫
E2

+

∫
E3

)
| F (x(t), x(t− 1)) | dt

≤ M2µ(E1) +Mµ(E2) + (M + (m−M))µ(E3)

< m,

a contradiction. Therefore | x(t) |, | x(t− 1) |≤ M .

Since x(t) is a 4/(4k + 1)-periodic solution of Equation (4.5) with | x(t − 1) |≤ M , we

know from the relation F (x, y) = f(x, y) for | y |≤ M that x(t) is also a 4/(4k+1)-periodic

solution of Equation (1.1).

Lemma 4.5 is now proved.

It is obvious that Theorem 3.1 is a direct deduction of Lemmas 4.4 and 4.5.

Proof of Corollary 3.1. If α = ∞, then we take a periodic solution (x∗(t), y∗(t)) of

Equation (2.1) with trajectory Γ∗ around the origin. Assume that its period is T ∗. Take

an integer k0 > 0 such that 4/(4k0 + 1) < T ∗. For any integer k ≥ k0 there is a periodic

solution (x̄(t), ȳ(t)) with the trajectory Γ̄ enclosed by Γ∗ and period less than 4/(4k + 1)

since α = ∞. So Equation (2.1) has at least one nontrivial 4/(4k + 1)-periodic solution

(xk(t), yk(t)) and thus xk(t) is a nontrivial 4/(4k + 1)-periodic solution of Equation (1.1).

If β = ∞, then lim
y→∞

| f(x, y) |= ∞ and hence the conditions of Lemma 4.1 are satisfied. A

similar argument can show that Equation (1.1) has a nontrivial 4/(4k+1)-periodic solution.

The fact that k ≥ k0 is an arbitrary integer implies the expected result.

As to Theorem 3.2, we need only to notice that for a 4/(4k + 1)-periodic solution x∗(t)

of Equation (1.1), it holds that

x∗(t) = −x∗(t− 2

4k + 1
) = −x∗(t− 2

4k + 1
− 8k

4k + 1
) = −x∗(t− 2).
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Then
ẋ∗(t) = −f(x∗(t), x∗(t− 1))

=

{
−F (x∗(t), x∗(t− 1), . . . , (−1)n/2x∗(t)), for n= even

−F (x∗(t), x∗(t− 1), . . . , (−1)
n−1
2 x∗(t), (−1)

n−1
2 x∗(t− 1)), for n= odd

= −F (x∗(t), x∗(t− 1), . . . , x∗(t− n)).

That is to say, x∗(t) is a nontrivial 4/(4k+1)-periodic solution of Equation (1.2) under the

conditions of Theorem 3.1.

Remark. With our correction and improvement, the corollaries in [4] will hold. We do

not list them here.

§5. Two Examples

After checking the conditions given in this paper, we know that the conclusions about

those examples in paper [4] are true. We give other two examples here.

Example 5.1. If f(x, y) = (ax2+by2)y, a, b > 0, then Equation (1.1) has infinitely many

nontrivial periodic solutions.

Proof. Since

lim
(x,y)→(u,∞)

∣∣∣f(y, x)
f(x, y)

∣∣∣ = lim
(x,y)→(u,∞)

∣∣∣ay2 + bx2

ax2 + by2
x

y

∣∣∣ = 0 for u ∈ R,

it is obvious that f(x, y) satisfies hypothesis (H2) with α = 0 and β = ∞. Our conclusion

comes from Corollary 3.1.

Example 5.2. If

f(x, y) =
x2 + 2y2

2x2 + y2
(
y1/3 + y3

)
,

then Equation (1.1) has infinitely many nontrivial periodic solutions.

Proof. It is easy to see that

| f(x, y) |≤ h(y) = 2 | y1/3 + y3 |

and ∣∣∣f(x, y)
y

∣∣∣ ≥ 1

2 | y |
∣∣y1/3 + y3

∣∣.
Therefore | f(x, y)/y |→ ∞ both as y → 0 and as y → ∞. After verifying the conditions of

(H1), we reach the conclusion in view of Corollary 3.1.

Those theorems and corollaries in [4] can not give the above results even if they were

correct.
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