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ON THE MULTIPLE TIME SET OF BROWNIAN MOTIONS**
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Abstract

Let Sp
d be the p-multiple time set of the Brownian motion in d dimensions. In this paper, the

Hausdorff measure function for S2
3 is proved to be φ

(2)
3 = t1/2(log | log t|)3/2, and the Hausdorff

measuure problem for Sp
2 is also discussed. As a result, a conjecture suggested by J. Rosen is

partially proved.
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§1. Introduction

Let Bd = {Bd
t }t≥0 be the Brownian motion in Rd starting at the origin, whose probability

measure is denoted by µ. It is well known that the sample path of B2 has points of p-

multiplicity for any p ≥ 2, and that of B2 has only double points. For convenience, we

let

Dp
d = {x ∈ Rd : Bd

t1 = · · · = Bd
tp = x for some 0 ≤ t1 < · · · < tp < ∞},

Sp
d = {(t1, · · · , tp) ∈ Rd

+ : Bd
t1 = · · · = Bd

tp for some 0 ≤ t1 < · · · < tp < ∞}.

There are already a lot of works on the study of the Hausdorff measure problem or Hausdorff

dimension problem for Dp
d and Sp

d . More precisely, Le Gall[2] proved that the Hausdorff

measure function of Dp
d is hp(x) and k2(x) respectively for d = 2, p ≥ 2 and d = 3, p = 2,

where

hp(x) = x2(log x−1 log log log x−1)p, ∀p ≥ 2, ∀x ∈ (0, 16−1),

k2(x) = x
(
log log x−1

)2
, x ∈ (0, 1/4).

J. Rosen[6,7] proved that for p ≥ 2

dimS2
3 =

1

2
; dimSp

2 = 1, a.e.− µ,
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where dim A denotes the Hausdorff dimension of the set A. However, the Hausdorff measure

problem is still open for the set Sp
d . in [6], J. Rosen conjectured that the Hausdorff measure

function of S2
d is φ

(2)
d , where

φ
(p)
d = t2−d/2(log | log t|)d(p−1)/2, p ≥ 2.

The aim of this paper is to investigate the Hausdorff measure problem for Sp
d . To state

the main theorem, we let αd
p(x,A) be the p−multiple intersection local time which satisfies∫

Rd(p−1)

f(x)αd
p(x,A)dx =

∫
· · ·

∫
A

f
(
Bd

t2 −Bd
t1 , · · · , B

d
tp −Bd

tp−1

)
dt1 · · · dtp

for any bounded Borel function f on Rd(p−1), where

A ⊂ R+p
< = {(s1, · · · , sp) : 0 ≤ s1 < · · · < sp < ∞} and p ≥ 2.

It is well known that αd
p(x,A) exists only for d = 2, p ≥ 2 and d = 3, p = 2. Usually, one

denotes

αp(x,A) =

∫
· · ·

∫
A

δ(x)
(
Bd

t2 −Bd
t1 , · · · , B

d
tp −Bd

tp−1

)
dt1 · · · dtp

for A ⊂ R+p
< , p ≥ 2, and x ∈ Rd(p−1).

The main result of this paper is as follows.

Theorem 1.1. There are constants c0, c1 ∈ (0,∞) such that

c0α
3
2(0, A) ≤ φ

(2)
3 −m(S2

3 ∩A) ≤ c1α
3
2(0, A), µ− a.e. (1.1)

for any A ⊂ R+2
< ∩ [0, t]2 and t > 0, where φ −m(B) denotes the Hausdorff-φ-measure of

the set B ⊂ R2.

This paper is organized as follows. In Section 2, the lower bound in (1.1) is proved, and

the upper bound in (1.1) is proved in Section 3. Our idea to prove Theorem 1.1 is basically

from [2]. In Section 4, we make an argument for the Hausdorff measure problem for Sp
2 with

p ≥ 2. Unfortunately, we are unable to solve completely this problem for d = 2.

§2. Lower Bound

The aim of this section is to show that for some constant c1 ∈ (0,∞)

c1α
3
2(0, S

2
3 ∩ [a1, b1]× [a2, b2]) ≤ φ

(2)
3 −m(S2

3 ∩ [a1, b1]× [a2, b2]), µ− a.e. (2.1)

where a1 < b1 < a2 < b2. We begin with a lemma.

Lemms 2.1. There is a constant c2 ∈ (0,∞) such that for any s ∈ (0,∞)

lim
a→0+

(
φ
(2)
3 (a)

)−1
α3
2(0, [s− a, s]× [s, s+ a]) ≤ c2, a.e.− µ. (2.2)

Proof. It is easy to see that for any s ∈ (a, 1)

α3
2(0, [s− a, s]× [s, s+ a])

(d)
= d1/2α3

2(0, [0, 1]× [1, 2]).

Thus, by [4, Lemma 2.2] we know that for ome constant c3 ∈ (0,∞)

Eµ

[
α3
2(0, [s− a, s]× [s, s+ a])

]
≤ ck3a

k/2(k!)3/2, ∀k ≥ 1, ∀a ∈ (0, s),
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where Eµ is the expectation with respect to µ. Hence, there are constant c4, c5 ∈ (0,∞)

such that

Eµ

[(
exp

(
c4
(
α3
2(0, [s− a, s]× [s, s+ a])

)/
a1/2

)2/3)]
≤ c5, ∀a ∈ (0, s). (2.3)

Fix s ∈ (0,∞) and let

an = e−n/ logn, ∀n ≥ 2,

and for ε ∈ (0,∞)

Fn(ε) =
{
α3
2(0, [s− an, s]× [s, s+ an]) ≥ (c−1

4 + ε)3/2a
1/2
n+1(log | log an+1|)3/2

}
.

By (2.3) we have

µ(Fn(ε)) ≤µ
{
α3
2(0, [s− an, s]× [s, s+ an]) ≥ (c−1

4 + ε)3/2a1/2n (log | log an|)3/2
}

≤c5 exp
(
−4(c

−1
4 + ε/2) log | log an|

)
≤c5(n/ log n)

−1−c4ε/2,

which implies
∞∑

n=2

µ(Fn(ε)) < ∞.

Note that α3
2(0, [s − an, s] × [s, s + an]) is increasing as a function of a ∈ (0, s), and φ

(2)
3 is

also an increasing function. Then, by means of the Borel-Cantelli lemma we can easily show

that (2.2) holds.

Now we can prove (2.1).

Proof of (2.1). For any process {X(t)}t≥0 and 0 ≤ u ≤ v, let

uXv(t) =

{
X(u+ t)−X(t), t ≤ v − u,

X(v)−X(u), t > v − u,

vXu(t) =

{
X(v − t)−X(u), t ≤ v − u,

X(u)−X(v), t > v − u.

Let {X1(t)}t≥0 and {X2(t)}t≥0 be independent Brownian motion in R3 starting at the

origin, and α̃(s1,s2)(0, A) be the intersection local time of 0X
1
b1−s1

and 0X
2
b2−s2

for any fixed

a1 < s1 < b1 < a2 < s2 < b2. It is clear that

α̃s1,s2)(0, [0, a]× [0, a])
(d)
= α3

2(0, [1− a, 1]× [1, 1 + a]), ∀a ∈ (0, 1).

Thus, by Lemma 2.1 we know that

lim
a→0+

(
φ
(2)
3 (a)

)−1
α̃(s1,s2)(0, [0, a]× [0, a]) ≤ c2, µ− a.e. (2.4)

By setting up a product measure in [a1, b1] × [a2, b2] and using Fubini’s theorem, we can

prove that (2.4) holds for a.e.-m(s1, s2) ∈ [a1, b1]× [a2, b2], where m is the Lebesgue measure

in R2. Thus, we can easily get the following from [5, Theorem 2.2]

α2
3

(
0,
{
(s1, s2) : lim

a→0+

(
φ
(2)
3 (a)

)−1
α3
2(0, [s1, s2+a]× [s2, s2+a]) ≤ c2

})
= 0, a.e.−µ. (2.5)
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By (2.5) and [2, Proposition 2.6] one can show that for some constant c6 ∈ (0,∞)

φ
(2)
3 −m

({
(s1, s2) ∈ [a1, b1]× [a2, b2] : B

3(s1) = B3(s2)
})

≥φ
(2)
3 −m

({
(s1, s2) ∈ [a1, b1]× [a2, b2] : B

3(s1) = B3(s2),

lim
a→0+

(
φ
(2)
3 (a)

)−1
α3
2(0, [s1, s2 + a]× [s2, s2 + a]) ≤ c2

})
≥c6c

−1
2 α3

2

(
0,
{
(s1, s2) ∈ [a1, b1]× [a2, b2] : B

3(s1) = B3(s2),

lim
a→0+

(
φ
(2)
3 (a)

)−1
α3
2(0, [s1, s2 + a]× [s2, s2 + a]) ≤ c2

})
=c6c

−1
2 α3

2

(
0,
{
(s1, s2) ∈ [a1, b1]× [a2, b2] : B

3(s1) = B3(s2)
})

=c6c
−1
2 α3

2(0, [a1, b1]× [a2, b2]). (2.6)

Note that the constants c2 and c6 do not depend on the choices of a1 < b1 < a2 < b2. Hence

(2.6) also holds if [a1, b1] × [a2, b2] is replaced by any set A ⊂ R+2
< ∩ [0, t]2 with t < ∞. In

other words,

φ
(2)
3 −m(S2

3 ∩A) ≥ c6c
−1
2 α3

2(0, A)

for any A ⊂ R+2
< ∩ [0, t]2 with t < ∞, which proves (2.1).

§3. Upper Bound

The aim of this section is to prove that for some constant c1 ∈ (0,∞)

φ
(2)
3 −m(S2

3 ∩ [a1, b1]× [a2, b2]) ≤ c1α
3
2(0, S

2
3 ∩ [a1, b1]× [a2, b2]), a.e.− µ. (3.1)

We also begin with a lemma

Lemms 3.1. There is a constant Cγ ∈ (0,∞) for any γ ∈ (0, 1/2) such that

µ
(
|α3

2(x, [1− t, 1]× [1, 1 + t])− α3
2(y, [1− t, 1]× [1, 1 + t])|

≥t1/2|t−1/2x− t−1/2|γ
)
≤ exp(−cγn

2), ∀n ≥ 1 (3.3)

for any |x| ≤ 1, |y| ≤ 1 and t ∈ (0, 1).

Proof. As in §2, let {X1(t)}t≥0 and {X2(t)}t≥0 be independent Brownian motions in

R3, starting at the origin, and β2(x,A) be the intersection local time of them, i.e.,

β2(x,A) =

∫∫
A

δ(x)
(
X1(u)−X2(v)

)
dudv.

It is clear that

α3
2(x, [1− t, 1]× [1, 1 + t])

(d)
= β2(x, [0, t]× [0, t]).

By the scaling property of Brownian motion, one easily shows that

β2(x, [0, t]× [0, t])− β2(y, [0, t]× [0, t])

(D)
= [β2(t

1/2x, [0, t]× [0, t])− β2(t
−1/2y, [0, t]× [0, t])].
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As in [1], we can show for any given γ ∈ (0, 1
2 )

Eµ|β2(t
−1/2x, [0, t]× [0, t])− β2(t

−1/2y, [0, t]× [0, t])|k

≤Ck
γ (k!)

2|t−1/2(x− y)|kγ , ∀k ≥ 1,

where Cγ ∈ (0,∞). Hence,

Eµ|α3
2(x, [1− t, 1]× [1, 1 + t])− α3

2(y, [1− t, 1]× [1, 1 + t])|k

=tk/2Eµ|β2(t
−1/2x, [0, t]× [0, t])− β2(t

−1/2y, [0, t]× [0, t])|k

≤Ck
γ (k!)

2|t−1/2(x− y)|kγtk/2. ∀k ≥ 1.

Thus, there is a constant C − 2 ∈ (0,∞) such that

Eµ

{
exp

[1
2
C−1

γ

∣∣α3
2(x, [1− t, 1]× [1, 1 + t])− α3

2(y, [1− t, 1]× [1, 1 + t])
∣∣

· t−1/2|t−1/2x− t−1/2y|γ
]1/2}

≤ C2, ∀t ∈ (0, 1), |x|, |y| ≤ 1.

By the Chebyshev inequality, one can easily get the desired result from the above estimate.

We are now in a position to prove (3.1).

Proof of (3.1). Let an = 2−n1+δ

for some δ ∈ (0, 1), ∀n ≥ 1, and Ωn denote the

collection of the following type set in [0, 1]× [1, 2]

E =
2∏

i=1

[
kian, (ki + 1)an

]
,

where k1 and k2 are integers satisfying

0 ≤ k1 ≤ 2n
1+δ

, 2n
1+δ

≤ k2 ≤ 2 · 2n
1+δ

.

Let Nn denote the number of the set E belonging to Ωn which intersects with S2
3 , and such

that for large enought n0 ≥ 1

α3
2(0, [sE − ak, sE + ak]× [tE − ak, tE + ak]) ≤ rφ

(2)
3 (ak), ∀k ∈ [n0, n],

where r is a sufficient small positive constant, and (sE , tE) is the center of E. From the

argument in [8, §6] one can see that it suffices to prove the following for proving (3.1)

lim
n→∞

φ
(2)
3 (an)Nn = 0, a.e.− µ. (3.3)

Now we let Ωn be the collection of the following type set in R3

F =
3∏

i=1

[
li2

− 1
2n

1+δ

, (li + 1)2−
1
2n

1+δ
]
,

where li is an integer number and satisfies

−n2
1
2n

1+δ

≤ li ≤ n2
1
2n

1+δ

, i = 1, 2, 3.

Let N ′
n be the number of the cubes in ωn to which the point B3(s) = B3(t) belongs for

some (s, t) ∈ S2
3 . Denote

B−1(I) = {s ∈ [0, 2] : B3(s) ∈ I}, I ⊂ R3,

and let S be the number of k’s such that k ≤ 2[2n
1+δ

] and there is a cubed I of length
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2−
1
2n

1+δ

satisfying

B−1(I) ∩
[
k2−n1+δ

, (k + 1)2−n1+δ]
̸= ∅.

As in the proof of [9, Lemma 2.4], one can prove that

µ(S ≥ n4) ≤ 2−3n1+δ

, ∀n ≫ 1. (3.4)

Let Ñn denote the number of E belonging to Ωn which intersects with S2
3 . Then

Nn ≤ 2−2n1+δ

, ∀n ≥ 1.

Note that for some constant c3 ∈ (0,∞)

µ
(
max
0≤t≤2

|B3(t)| ≥ n
)
≤ e−c3n ≪ 2−3n1+δ

, ∀n ≫ 1.

Thus, by (3.4) we can show that

EµÑn ≤ n4EµN
′
n.

By [3, Corollary 1.2] we know that for some constant c4 ∈ (0,∞)

EµN
′
n ≤ c42

1
2n

1+δ

.

Therefore,

EµÑn ≤ c4n
42

1
2n

1+δ

, ∀n ≤ 1. (3.5)

For any E ∈ Ω, let JE = {E ∩ S2
3 ̸= ∅}. Then

EµNn =
∑

E∈Ωn

µ(JE) · µ
(
(φ

(2)
3 (ak))

−1α3
2(0, [sE − ak, sE + ak]

× [tE − ak, tE + ak]) ≤ r, ∀k ∈ [n0, n]/JE

)
. (3.6)

Note that there is a point (τ, σ) ∈ E such that

B3(τ) = B3(σ),

and

α3
2(0, [sE − ak, sE + ak]× [tE − ak, tE + ak])

=

∫ sE+ak

sE−ak

∫ tE+ak

tE−ak

δ
(
B3

s −B3
τ − (B3

t −B3
σ)
)
dsdt, (3.7)

where we have assumed sE < tE . Since (τ, σ) ∈ E, we have

µ
(
|B3

τ −B3
sE | ≥ 2−

1
2n

1+δ

n
)
≤ µ

(
sup

0≤s≤an

|B3
s | ≥ a1/2n n

)
≪ 2−2n1+δ

, ∀n ≫ 1, (3.8)1

µ
(
|B3

σ −B3
tE | ≥ 2−

1
2n

1+δ

n
)
≪ 2−2n1+δ

, ∀n ≫ 1. (3.8)2

Without loss of the generality, we may assume τ ∈ [sE − ak, sE ] and σ ∈ [tE − ak, tE ]. Then
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(3.7) and Lemma 3.1 can imply that

µ
(∣∣∣∫ sE+ak

sE

∫ tE+ak

tE

δ
(
B3

s −B3
τ − (B3

t −B3
σ)
)
dsdt

−
∫ sE+ak

sE

∫ tE+ak

tE

δ
(
B3

s −B3
sE − (B3

t −B3
tE )

)
dsdt

∣∣∣ ≥ 1

2
a
1/2
k ,

|B3
τ −B3

sE | ≤ k4a
1/2
k , |B3

σ −B3
tE | ≤ k4a

1/2
k

)
≤µ

(∣∣∣∫ sE+ak

sE

∫ tE+ak

tE

δ
(
B3

s −B3
sE + (B3

sE −B3
τ )− (B3

t −B3
tE )− (B3

tE −B3
σ)
)
dsdt

−
∫ sE+ak

sE

∫ tE+ak

tE

δ
(
B3

s −B3
sE − (B3

t −B3
tE )

)
dsdt

∣∣∣ ≥ 1

2
a
1/2
k ,

|B3
τ −B3

sE | ≤ k4a
1/2
k , |B3

σ −B3
tE | ≤ k4a

1/2
k

)
≤22k

1+δ

, ∀k ∈ [n0, n− 1], (3.9)

where we have used the strong Markov property of B3 and the following fact

an
ak

≤ 2−nδ, ∀k ∈ [n0, n− 1], n ≥ n0 + 1. (3.10)

By (3.7), (3.8) and (3.9) we can show that

r.h.s. of (3.6) ≤ 2−n1+δ

+
∑

E∈Ωn

µ(Jn) ·
(
(φ

(2)
3 (ak))

−1

·
∫ sE+ak

sE

∫ tE+ak

tE

δ
(
B3(s)−B3(sE)− (B3(t)−B3(tE))

)
dsdt ≤ r,

∀k ∈ [n0, n− 1]/JE

)
=2−n1+δ

+ EµÑn · µ
(
(φ

(2)
3 (ak))

−1

∫ ak

0

∫ ak

0

δ(X1(s)−X2(t))dsdt ≤ r,

∀k ∈ [n0, n− 1]
)
. (3.11)

We now estimate the following quantity

µ
(∫ an−1

0

∫ an−1

0

δ(X1(s)−X2(t))dsdt ≤ rφ
(2)
3 (an−1)

)
≤1− exp(2c5r[(1 + δ) log n+ log log 2]). (3.12)

By (3.10), Lemma 3.12 and [4, Lemma 2.2] we can show that for some constant c6, c7 ∈
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(0,∞)

µ
(
(φ

(2)
3 (ak))

−1

∫ ak

ak+1

∫ ak

ak+1

δ(X1(s)−X2(t))dsdt ≤ r
)

≤ exp(−c6k
2) + µ

(
|X1(ak+1)| ≤ ka

1/2
k+1, |X2(ak+1)| ≤ ka

1/2
k+1,

(φ
(2)
3 (ak))

−1

∫ ak

ak+1

∫ ak

ak+1

δ(X1(s)−X1(ak+1)− (X2(t)− x2(ak+1))

+X1(ak+1)−X2(ak+1))dsdt ≤ r
)

≤ exp(−c6k
2) + µ

(∫ ak−ak+1

0

∫ ak−ak+1

0

δ(X1(s)−X2(t))dsdt ≤ 2rφ
(2)
3 (ak)

)
≤1− exp(−c7r((1 + δ) log k + log log 2)).

By the Markov property we can show that

(3.12) =
n−1∏
k=n0

[
1− exp(−c7r((1 + δ) log k + log log 2))

]

≤
n−1∏
k=n0

(1− k−c7r(1+δ/2)),

if n0 ≥ 1 is large enough. We now choose r > 0 to be small ehough. Then, there is a

constant c8 ∈ (0,∞) for any given K ≥ 1 such that

(3.12) ≤ c8n
−K , ∀n ≫ 1.

By (3.5) and (3.11) we know that for some constant c9 ∈ (0,∞)

EµNn ≤ c9n
−kn42

1
2n

1+δ

, ∀n ≫ 1.

Thus we have, if K > 4,

φ
(2
3 (an)EµNn ≤ c9n

−(K4)| log log 2−n1+δ

| → 0, n → ∞,

which implies (3.3).

To sum up, we complete the proof of Theorem 1.2.

§4. Remark

In this section, we give some remarks on the Hausdorff measure problem for the multiple

time set of the Brownian motions in R2. Let θ1, · · · , θp be p independent Brownian motion

in R2 and βp be the multiple intersection local time of them, which is defined formally by

βp(y,A) =

∫
· · ·

∫
A

δ(y)
(
θ1(s1)− θ2(s2), · · · , θp−1(sp−1)− θp(sp)

)
ds1 · · · dsp

for any y ∈ R2p, A ⊂ (R+
<)

p, and p ≥ 2. Denote the p multiple intersection local time of

B2 by ᾱp(y,A), i.e.,

ᾱp(y,A) =

∫
· · ·

∫
A

δ(y)
(
B2(s1)−B2(s2), · · · , B2(sp−1)−B2(s)

)
ds1 · · · dsp
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for any A ⊂ (R+
<)

p, y ∈ R2p, and p ≥ 2.

By [4, Lemma 2.2] thee are constants c1, c2 ∈ (0,∞) such that

ck1(k!)
p−1 ≤ Eµ

[
βp(0, [0, 1]× · · · × [0, 1])

]k
≤ ck2(k!)

p−1(log k)p. (4.1)

By a similar argument in §3, we know that there is a constant c3 ∈ (0,∞) such that

c3ᾱ2(0, S
2
2 ∩ [a1, b1]× [a2, b2]) ≥ φ

(2)
2 −m(S2

2 ∩ [a1, b1]× [a2, b2]), a.e.− µ,

where S2
2 and φ

(2)
2 were defined in §1. One can easily generalize the corresponding result to

d = 2 and p ≥ 3. In order words, there is a constant Cp ∈ (0,∞) such that

ᾱp(0, S
p
2 ∩ [a1, b1]× · · · × [ap, bp])

≥Cpφ
(p)
2 −m(Sp

2 ∩ [a1, b1]× · · · × [ap, bp]). (4.2)

Note that (see [5]) the distribution of

{B2(a1 + s1), B
2(a2 + s2), · · · , B2(ap + sp) : (s1, · · · , sp) ∈ [0, b1 − a1]× · · · × [0, bp − ap]}

is absolutely continuous with respect to that of

{θ1(s1), θ2(s2), · · · , θp(sp) ∈ [0, b1 − a1]× · · · × [0, bp − ap]}

and vice versa, where 0 ≤ a1 < b1 < a2 < b2 < · · · < ap < bp. Then, by a similar argument

in [2, §4] we can show that it suffices to prove the following for proving (4.2)

βp(0, S
p

2 ∩ [0, a1, b1]× · · · × [0, ap, bp])

≥C ′
pφ

(p)
2 −m(S

p

2 ∩ [0, a1, b1]× · · · × [0, ap, bp]) (4.3)

for some constant C ′
p ∈ (0,∞), where

S
p

2 = {(s1, · · · , sp) : θ1(s1) = · · · = θp(sp)} ⊂ (R+
<)

p.

By a similar argument in §3, one can also show that (4.3) is actually a result of the lower

bound in (4.1). Hence (4.2) is correct.

We now consider the estimate for the lower bound of

φ
(p)
2 −m(Sp

2 ∩ [a1, b1]× · · · × [a2b2]).

For any ϵ ∈ (0, 1), let

φ(p)
ϵ (t) = t(log | log t|)p−1+ϵ, ∀t ∈ (0, 1/4).

By (4.1) one can show that for some constant c4(ϵ) ∈ (0,∞)

Eµ

[
exp(c4(ϵ)βp(0, [0, a]× [0, a])/a)

1
p−1+ϵ

]
< ∞, ∀a ∈ (0, 1), ϵ ∈ (0, 1).

By a similar argument in the proof of Lemma 2.1 we can show

lim
a→0+

(
φ(p)
ϵ (a)

)−1
βp(0, [0, a]× [0, a]) = 0, a.e.− µ.

Then, as in §2 one can show that for any c5 ∈ (0,∞)

ᾱp

(
0,
{
(s1, · · · , sp) ∈ (R+

<)
p : lim

a→0+

(
φ(p)
ϵ (a)

)−1

· ᾱp(0, [s1, s1 + a]× · · · × [sp, sp + a]) > 5
})

= 0.
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By the density theorem (see [2, Proposition 5 and Proposition 6]) we know that

φ(p)
ϵ −m(S − 2p ∩ [a1, b1]× · · · × [ap, bp])

≥rc5ᾱp(0, [a1, b1]× · · · × [ap, bp]), a.e.− µ.

From the above argument one can see that the estimate (4.1) plays an important role in

studying the Hausdorff measure problem for the set Sp
2 . Unfortunately, we are so far unable

to improve the estimate (4.1).
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