GROUP ACTIONS ON VON NEUMANN REGULAR RINGS

Zhang Yinhuo*

Abstract

Let A be a ring with indentity, G a finite group of automorphisms of A. The main result of this paper is that A/A^G is Galois if and only if it is Frobenius and the module $_{A*G}A$ (or A_{A*G}) is faithful. Moreover if |G| is invertible the author improves [2, Theorem 8] and [3, Theorem 8].

Keywords Von Neumann regular ring, Extension, Group, Automorphism.1991 MR Subject Classification 16E50.

Unless otherwise stated, A/B is ring extension with the same identity.

Definition. An ring extension A/B is separable if the A-bimodule homomorphism μ : $A \otimes_B A \to A, a \otimes b \to ab$, splits.

It is easy to see that A/B is separable if and only if there exist elements x_1, x_2, \cdots $x_n, y_1, y_2, \cdots, y_n \in A$ such that for $a \in A$

$$\sum_{i=1}^{n} x_i y_i = 1, \quad \text{and} \quad \sum_{i=1}^{n} a x_i \otimes y_i = \sum_{i=1}^{n} x_i \otimes y_i a. \tag{*}$$

We have the following

Lemma 1. Let A/B be separable, M a (left) A-module.

(1) If M is completely reducible as a B-module, then so is M as an A-module.

(2) If B is semisimple artinian, so is A.

Proof. Assume that A/B is separable. By above remark there exists an unique element $\sum_{i=1}^{n} x_i \otimes y_i \in A \otimes_B A$ such that (*) holds. Let N be an A-submodule of M. Then there is a B-module projection $f: M \to N$ with $f(n) = n, n \in N$. Define a map \tilde{f} as below

$$\tilde{f}: M \to N, \quad \tilde{f}(m) = \sum_{i=1}^{n} x_i f(y_i m).$$

Manuscript received July 22, 1991.

^{*}Institute of Mathematics, Fudan University, Shanghai 200433, China

For $a \in A$,

$$\tilde{f}(am) = \sum_{i=1}^{n} x_i f(y_i am)$$
$$= \sum_{i=1}^{n} a x_i f(y_i m)$$
$$= a f(m).$$

So \tilde{f} is an A-module homomorphism, and

$$\tilde{f}(n) = \sum_{i=1}^{n} x_i f(y_i n)$$
$$= \sum_{i=1}^{n} x_i y_i n = n.$$

Thus f is an A-module projection of M into N, M_A is completely reducible as an A-module

(2) is obvious by (1).

For von Neumann regular ring, we have

Lemma 2. Let A/B be separable. If B is von Neumann regular, so is A.

Proof. It suffice to show that every left A-module is flat. Let (x_i, y_i) satisfy (*), M be a left A-module, $\mu : A \otimes_B M \to M$ the canonical map. Then μ splits as an A-homomorphism, and its inverse is μ^{-1} via $\mu^{-1}(m) = \sum_i x_i \otimes (y_i m)$. Since ${}_BM$ is flat, $A \otimes_B M$ is a flat A-module. So M is flat, and hence A is regular.

A-module. So *M* is hat, and hence A is regular.

Let G be a finite group acting on A as automorphisms,

$$A^G = \{ a \in A | g(a) = a, \quad \forall g \in A \},\$$

A * G be the trival crossed product of A with G.

Proposition 1. Let G be a finite group acting on A as automorphisms with $|G|^{-1} \in A$. If A/A^G is separable, then the following are equivalent:

(1) A is regular.

(2) A^G is regular.

(3) A * G is regular.

Proof. (1) \Rightarrow (3). Since |G| is invertible, A * G/A is separable. Hence A * G is regular by Lemma 2.

 $(2) \Rightarrow (1)$. It is clear.

(3) \Rightarrow (2). Since A * G is regular, there exists some $c \in A * G$ such that tct = t, where $t = \sum_{g \in G} g$. It follows that e = tc is an idempotent element of A * G such that $e(A * G)e \cong A^G$. Thus A^G is regular.

Notice that the above proposition also holds if we replace regularity by semisimplicity.

Recall that by A/B a Frobenius extension, we mean A is finitely generated projective right B-module, and $A \cong \operatorname{Hom}_{-B}(A, B)$. It is equivalent to the existence of finite pair $\{x_i, y_i\}$ of elements in A and B-bimodule map $h: A \to B$ such that for any $a \in A$,

$$a = \sum_{i} x_i h(y_i a)$$
$$= \sum_{i} h(ax_i) y_i.$$

 $(h; x_i, y_i)$ is called a Frobenius system. In the sequel, we simply say A/B is Frobenius. First we have

Lemma 3.^[6, Proposition 2.7] Let A/B be a Frobenius extension, functors F, G be as below F: A-Mod $\rightarrow B$ -Mod, restriction functor,

$$G: B\operatorname{-mod} \to B\operatorname{-Mod}, N \mapsto A \otimes_B N.$$

Then (F,G) is an adjoint pair of functors.

Recall that if finite group G acts on A as automorphisms, then A becomes both an $(A * G, A^G)$ -module and an $(A^G, A * G)$ -module via

$$a * \sigma \to x = a\sigma(x), \quad x \leftarrow b = xb$$

$$x \leftarrow a * \sigma = \sigma^{-1}(xa), \quad c \to x = bx,$$

where $a, x \in A, \sigma \in G$ and $b \in A^G$. Let

$$t=\sum_{\sigma\in G}\sigma, \quad B=A^G$$

and

$$[,]: A \otimes_B A \to A * G, \quad a \otimes b \mapsto atb,$$
$$(,): A \otimes_{A*G} A \to B, \quad a \otimes b \mapsto t(ab).$$

Then we can form a Morita context

$$\{_{A*G}A_B, \ _BA_{A*G}, \ [,], \ (,)\}.$$

Let J and J' denote $\operatorname{Ann}_{A*G^-}(A)$ and $\operatorname{Ann}_{-A*G}(A)$, respectely. Now we have **Proposition 2.** The following diagrams are commutative:

.

$$\begin{array}{cccc} A \otimes_B A & \stackrel{[\ ,\]}{\longrightarrow} & A \ast G/J \\ & & 1 \otimes \omega & & l \\ & & 1 \otimes \omega & & l \\ A \otimes_B \operatorname{Hom}_{-B}(A, B) & \stackrel{\operatorname{cdno.}}{\longrightarrow} & \operatorname{End}_{-B}(A), \\ & & A \otimes_B A & \stackrel{\overline{[\ ,\]}}{\longrightarrow} & A \ast G/J' \\ & & \omega' \otimes 1 & & l' \\ & & & Hom_{-B}(A, B) \otimes_B A & \stackrel{\operatorname{cdno.}}{\longrightarrow} & \operatorname{End}_{-B}(A), \end{array}$$

where $\omega(a)(x) = (a, x)$, and $\omega'(a)(x) = (x, a)$, $a, x \in A$.

Notice that a composition map of any two maps in the above commutative diagrams is $\operatorname{End}_{-B}(A)$ (or $\operatorname{End}_{B-}(A)$)-linear. Now we can sharpen [4, Theorem 5]. It is easy to prove **Theorem 1.** The following are equivalent:

(1) A_B is finite projective and ω is surjective.

(1') $_{B}A$ is finite projective and ω' is surjective.

(2) $A \otimes_B A \to End_{-B}(A), a \otimes b \longmapsto (x \mapsto at(bx)), is surjective.$

- (2') $A \otimes_B A \to End_{B-}(A), a \otimes b \longmapsto (x \mapsto t(xa)b)$, is surjective.
- (3) A * G = AtA + J.
- (3') A * G = AtA + J'.

Furthermore, if any of (,)'s (resp.,(, ')') holds, then $J \supseteq J'$ and $\operatorname{End}_{-B}(A) \cong A * G/_J$ (resp., $J' \cong J$ and $\operatorname{End}_{B-}(A) \cong A * G/J'$).

Theorem 2. The following are equivalent:

(1) A/B is Frobenius with Frobenius map t.

(2) $A \otimes_B A \to \operatorname{End}_{-B}(A)$ (or $\operatorname{End}_{B-}(A)$) is bijective.

(3) $A * G = AtA \oplus J$. Furthermore, if any of the above conditions holds, then J = J'. Remark. Let $\Delta = A * G$,

$$I = \sum \{ f(A) | f \in \operatorname{Hom}_{-\Delta}(A, \Delta) \}$$

and

 $I' = \sum \{g(A) | g \in \operatorname{Hom}_{\Delta-}(A, \Delta)\}$

Then both I and I^\prime coincide with AtA . In fact, we have

Lemma 4. Both of the nature maps

 $\eta: A \to \operatorname{Hom}_{\Delta^{-}}(A, \Delta), a \mapsto (a \mapsto xta)$

and

$$\eta': A \to \operatorname{Hom}_{-\Delta}(A, \Delta), a \mapsto (a \mapsto atx)$$

are bijective.

Proof. It is easy to see that both η and η' are injective. since $\Delta * G/A$ is a Frobenius extension with Frobenius system $(h; \sigma, \sigma^{-1})_{\sigma \in G}$, where

$$h(\sum a_{\sigma}\sigma) = a_1,$$

for any $f \in \operatorname{Hom}_{\Delta-}(A, \Delta), x \in A$, we have

$$\begin{split} f(x) &= \sum_{\sigma \in G} x \sigma h(\sigma^{-1} f(1)) \\ &= \sum_{\sigma \in G} x \sigma h(f(\sigma^{-1} \cdot 1)) \\ &= x t h(f(1)) \\ &= \eta(h(f(1))). \end{split}$$

So η is surjective. Similarly, η' is surjective.

Recall that A/A^G is Galois if and only if there exist finite pairs x_i, y_i of elements in A such that

$$\sum_{i} \sigma(x_i) y_i = \begin{cases} 1, & \sigma = 1, \\ 0, & \sigma = 1. \end{cases}$$

The latter is

$$\sum_{i} x_{i} t y_{i} = 1 * 1 \in A * G,$$
$$t = \sum_{\sigma \in G} \sigma,$$

that is, A * G = AtA. Thus we have

Theorem 3. A/A^G is Galois if and only if it is Frobenius and the module $_{A*G}A$ (or A_{A*G}) is faithful.

Proposition 3. Let A/A^G satisfy any condition of Theorem 1. If there is some $c \in A$ such that t(c) = 1, then $A^G \sim A * G/J$ (resp., A * G/J').

Proof. If t(c) = 1 for some $c \in A$, then A^G is a direct summand of A as a left or right A^G -module. It follows that if (,)'s (resp., (, ')'s) of Theorem 1 holds, then A_{A^G} (resp., ${}_{A^G}A$) is a progenerator. In this situation, $A^G \sim A * G/J$ (resp., A * G/J').

Recall that a ring is biregular if any principal ideal is generated by a central idempotent. A is a self-injective ring if its right reglar module A_A is injective. It is well-known that a self-injective biregular ring is a von Neumann regular ring.

Proposition 4. If A * G is biregular, then A/A^G is a Frobenius extension. Moreover if the trace map is surjective, then A_{A^G} and ${}_{A^G}A$ are progenerators, that is, $A * G/J \sim A^G$.

Proof. Since I = AtA is a principal ideal of A * G, there exists a central idemopent element e in A * G such that I = e(A * G). It follows that

$$A * G = I + (1 - e)(A * G)$$
$$= I \oplus J.$$

So A/A^G is Frobenius by Theorem 2. By Proposition 3, $A^G \sim A * G/J$.

Now we can improve [2, Theorem 8] and [3, Theorem 8]. We have

Theorem 4. Let A be regular in the sence of von Neumann, G a finite group acting on A as automorphisms with $|G|^{-1} \in A$. Then the following are equivalent:

(1) A is biregular self-injective.

(2) A^G is biregular self-injective and A/A^G is Frobenius.

(3) A * G is biregular self-injective.

Proof. (1) \Rightarrow (3). By [2, Corollary 2].

(3) \Rightarrow (2). A/A^G is Frobenius by Proposition 4. Since $A\ast G$ is regular, there exists an element

$$x = \sum_{\sigma \in G} a_\sigma \sigma \in A \ast G$$

such that txt = t. Let $c = \sum a_{\sigma}$. Then

$$t = txt = tct = t(c)t,$$

and hence t(c) = 1. It follows that $A * G/J \sim A^G$ by Proposition 4. But $A * G = I \oplus J$, and hence $A * G/J \simeq I$ is an injective A * G-module. So A * G/J is self-injective, and hence A^G is self-injective. On the other hand, tc is an idempotent element of A * G such that

$$A^G \cong tc(A * G)tc.$$

No.2

It follows that A^G is biregular.

 $(2) \Rightarrow (1)$. Since A/A^G is Frobenius, A is self-injective by Lemma 1. Now (1) holds by [2, Theorem 8].

Now if G is finite with $|G|^{-1} \in A$, the converse of [3, Theorem 8] is true.

Corollary. Let A be a commutative ring, G a finite group of automorphisms of A with $|G|^{-1} \in A$. Then the following are equivalent:

(1) A is self-injective von Neumann regular.

(2) A^G is self-injective von Neumann regular and A/A^G is Frobenius and separable.

(3) A * G is self-injective biregular.

Proof. Since A is commutative, A is biregular if A is regular. Now it is sufficient to show that A/A^G is separable if A * G is biregular. But this is true by [1, Prosition 4].

Notice that the above corollary also holds if we replace self-injective regular (or biregular) by semisimple artinian.

References

- Auslander, M. & Goldman, O., The Brauer group of a commutative ring, Trans. Amer. Math. Soc., 97 (1960), 367-409.
- Handelman, D. & Renault, G., Actions of finite groups on self-injective rings, *Pacific J. Math.*, 89 (1980), 69-80.
- [3] Jondrup, S., Groups acting on rings, J. London Math. Soc., 8:2 (1974), 483-486.
- [4] Kasgh, F., Projective Frobenius-Erweiterungen, Sitzuungsber. Heidelberger Akd. Wiss., 61:4 (1960), 89-109.
- [5] Kitamura, Y., A note on fixed rings, Math. J. Okayama Univ., **31** (1989), 85-91.
- [6] Zhang, Y. H., Hopf Frobenius extensions of algebras (to appear).