
Chin. Ann. of Math.
15B: 2(1994),235-240.

GROUP ACTIONS ON VON NEUMANN REGULAR RINGS

Zhang Yinhuo*

Abstract

Let A be a ring with indentity, G a finite group of automorphisms of A. The main result of
this paper is that A/AG is Galois if and only if it is Frobenius and the module A∗GA (or AA∗G)

is faithful. Moreover if |G| is invertible the author improves [2, Theorem 8] and [3, Theorem 8].
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Unless otherwise stated, A/B is ring extension with the same identity.

Definition. An ring extension A/B is separable if the A-bimodule homomorphism µ :

A⊗B A→ A, a⊗ b→ ab, splits.

It is easy to see that A/B is separable if and only if there exist elements x1, x2, · ·
·, xn, y1, y2, · · ·, yn ∈ A such that for a ∈ A

n∑
i=1

xiyi = 1, and
n∑

i=1

axi ⊗ yi =
n∑

i=1

xi ⊗ yia. (*)

We have the following

Lemma 1. Let A/B be separable, M a (left) A-module.

(1) If M is completely reducible as a B-module, then so is M as an A-module.

(2) If B is semisimple artinian, so is A.

Proof. Assume that A/B is separable. By above remark there exists an unique element
n∑

i=1

xi ⊗ yi ∈ A⊗B A such that (∗) holds. Let N be an A-submodule of M . Then there is a

B -module projection f : M → N with f(n) = n, n ∈ N. Define a map f̃ as below

f̃ : M → N, f̃(m) =

n∑
i=1

xif(yim).
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For a ∈ A,

f̃(am) =
n∑

i=1

xif(yiam)

=

n∑
i=1

axif(yim)

= af(m).

So f̃ is an A-module homomorphism, and

f̃(n) =

n∑
i=1

xif(yin)

=
n∑

i=1

xiyin = n.

Thus f is an A-module projection of M into N, MA is completely reducible as an A-module

(2) is obvious by (1).

For von Neumann regular ring, we have

Lemma 2. Let A/B be separable. If B is von Neumann regular, so is A.

Proof. It suffice to show that every left A-module is flat. Let (xi, yi) satisfy (*), M be a

left A-module, µ : A⊗B M →M the canonical map. Then µ splits as an A-homomorphism,

and its inverse is µ−1 via µ−1(m) =
∑
i

xi ⊗ (yim). Since BM is flat, A ⊗B M is a flat

A-module. So M is flat, and hence A is regular.

Let G be a finite group acting on A as automorphisms,

AG = {a ∈ A|g(a) = a, ∀g ∈ A},

A ∗G be the trival crossed product of A with G.

Proposition 1. Let G be a finite group acting on A as automorphisms with |G|−1 ∈ A.

If A/AG is separable, then the following are equivalent:

(1) A is regular.

(2) AG is regular.

(3) A ∗G is regular.

Proof. (1) ⇒ (3). Since |G| is invertible, A ∗ G/A is separable. Hence A ∗ G is regular

by Lemma 2.

(2) ⇒ (1). It is clear.

(3) ⇒ (2). Since A ∗ G is regular, there exists some c ∈ A ∗ G such that tct = t, where

t =
∑
g∈G

g. It follows that e = tc is an idempotent element of A∗G such that e(A∗G)e ∼= AG.

Thus AG is regular.

Notice that the above proposition also holds if we replace regularity by semisimplicity.

Recall that by A/B a Frobenius extension, we mean A is finitely generated projective

right B-module, and A ∼= Hom−B(A,B). It is equivalent to the existence of finite pair
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{xi, yi} of elements in A and B-bimodule map h : A→ B such that for any a ∈ A,

a =
∑
i

xih(yia)

=
∑
i

h(axi)yi.

(h;xi, yi) is called a Frobenius system. In the sequel, we simply say A/B is Frobenius. First

we have

Lemma 3.[6, Proposition 2.7] Let A/B be a Frobenius extension, functors F,G be as below

F : A-Mod→ B-Mod, restriction functor,

G : B-mod→ B-Mod, N 7→ A⊗B N.

Then (F,G) is an adjoint pair of functors.

Recall that if finite group G acts on A as automorphisms, then A becomes both an

(A ∗G,AG)-module and an (AG, A ∗G)-module via

a ∗ σ → x = aσ(x), x← b = xb,

x← a ∗ σ = σ−1(xa), c→ x = bx,

where a, x ∈ A, σ ∈ G and b ∈ AG. Let

t =
∑
σ∈G

σ, B = AG

and

[ , ] : A⊗B A→ A ∗G, a⊗ b 7→ atb,

( , ) : A⊗A∗G A→ B, a⊗ b 7→ t(ab).

Then we can form a Morita context

{A∗GAB, BAA∗G, [ , ], ( , )}.

Let J and J ′ denote AnnA∗G−(A) and Ann−A∗G(A), respectely. Now we have

Proposition 2. The following diagrams are commutative:

A⊗B A
[ , ]−−−−→ A ∗G/J

1⊗ω

y l

y
A⊗B Hom−B(A,B)

cdno.−−−−→ End−B(A),

A⊗B A
[ , ]−−−−→ A ∗G/J ′

ω′⊗1

y l′

y
Hom−B(A,B)⊗B A

cdno.−−−−→ End−B(A),

where ω(a)(x) = (a, x), and ω′(a)(x) = (x, a), a, x ∈ A.

Notice that a composition map of any two maps in the above commutative diagrams is

End−B(A) (or EndB−(A))-linear. Now we can sharpen [4, Theorem 5]. It is easy to prove

Theorem 1. The following are equivalent:
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(1) AB is finite projective and ω is surjective.

(1’) BA is finite projective and ω′ is surjective.

(2) A⊗B A→ End−B(A), a⊗ b 7−→ (x 7→ at(bx)), is surjective.

(2’) A⊗B A→ EndB−(A), a⊗ b 7−→ (x 7→ t(xa)b), is surjective.

(3) A ∗G = AtA+ J .

(3’) A ∗G = AtA+ J ′.

Furthermore, if any of ( , )’s (resp.,( , ′)′) holds, then J ⊇ J ′ and End−B(A) ∼= A∗G/J (

resp., J ′ ∼= J and EndB−(A) ∼= A ∗G/J ′).

Theorem 2. The following are equivalent:

(1) A/B is Frobenius with Frobenius map t.

(2) A⊗B A→ End−B(A) (or EndB−(A)) is bijective.

(3) A ∗G = AtA⊕ J . Furthermore, if any of the above conditions holds, then J = J ′.

Remark. Let ∆ = A ∗G,

I =
∑
{f(A)|f ∈ Hom−∆(A,∆)}

and

I ′ =
∑
{g(A)|g ∈ Hom∆−(A,∆)}

Then both I and I ′ coincide with AtA . In fact, we have

Lemma 4. Both of the nature maps

η : A→ Hom∆−(A,∆), a 7→ (a 7→ xta)

and

η′ : A→ Hom−∆(A,∆), a 7→ (a 7→ atx)

are bijective.

Proof. It is easy to see that both η and η′ are injective. since ∆ ∗ G/A is a Frobenius

extension with Frobenius system (h;σ, σ−1)σ∈G, where

h(
∑

aσσ) = a1,

for any f ∈ Hom∆−(A,∆), x ∈ A, we have

f(x) =
∑
σ∈G

xσh(σ−1f(1))

=
∑
σ∈G

xσh(f(σ−1 · 1))

= xth(f(1))

= η(h(f(1))).

So η is surjective. Similarly, η′ is surjective.

Recall that A/AG is Galois if and only if there exist finite pairs xi, yi of elements in A

such that ∑
i

σ(xi)yi =

{
1, σ = 1,

0, σ = 1.
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The latter is ∑
i

xityi = 1 ∗ 1 ∈ A ∗G,

t =
∑
σ∈G

σ,

that is, A ∗G = AtA. Thus we have

Theorem 3. A/AG is Galois if and only if it is Frobenius and the module A∗GA (or

AA∗G) is faithful.

Proposition 3. Let A/AG satisfy any condition of Theorem 1. If there is some c ∈ A

such that t(c) = 1, then AG ∼ A ∗G/J (resp., A ∗G/J ′).

Proof. If t(c) = 1 for some c ∈ A, then AG is a direct summand of A as a left or right

AG-module. It follows that if ( , )’s ( resp., ( , ′)’s) of Theorem 1 holds, then AAG (resp.,

AGA ) is a progenerator. In this situation, AG ∼ A ∗G/J (resp., A ∗G/J ′).

Recall that a ring is biregular if any principal ideal is generated by a central idempotent.

A is a self-injective ring if its right reglar module AA is injective. It is well-known that a

self-injective biregular ring is a von Neumann regular ring.

Proposition 4. If A ∗G is biregular, then A/AG is a Frobenius extension. Moreover if

the trace map is surjective, then AAG and AGA are progenerators, that is, A ∗G/J ∼ AG.

Proof. Since I = AtA is a principal ideal of A ∗ G, there exists a central idemopent

element e in A ∗G such that I = e(A ∗G). It follows that

A ∗G = I + (1− e)(A ∗G)

= I ⊕ J.

So A/AG is Frobenius by Theorem 2. By Proposition 3, AG ∼ A ∗G/J .

Now we can improve [2, Theorem 8] and [3, Theorem 8]. We have

Theorem 4. Let A be regular in the sence of von Neumann, G a finite group acting on

A as automorphisms with |G|−1 ∈ A. Then the following are equivalent:

(1) A is biregular self-injective.

(2) AG is biregular self-injective and A/AG is Frobenius.

(3) A ∗G is biregular self-injective.

Proof. (1) ⇒(3). By [2, Corollary 2].

(3) ⇒ (2). A/AG is Frobenius by Proposition 4. Since A ∗ G is regular, there exists an

element

x =
∑
σ∈G

aσσ ∈ A ∗G

such that txt = t. Let c =
∑

aσ. Then

t = txt = tct = t(c)t,

and hence t(c) = 1. It follows that A ∗G/J ∼ AG by Proposition 4. But A ∗G = I ⊕J , and

hence A ∗G/J ≃ I is an injective A ∗G-module. So A ∗G/J is self-injective, and hence AG

is self-injective. On the other hand, tc is an idempotent element of A ∗G such that

AG ∼= tc(A ∗G)tc.



240 CHIN. ANN. OF MATH. Vol.15 Ser.B

It follows that AG is biregular.

(2) ⇒ (1). Since A/AG is Frobenius, A is self-injective by Lemma 1. Now (1) holds by

[2, Theorem 8].

Now if G is finite with |G|−1 ∈ A, the converse of [3, Theorem 8] is true.

Corollary. Let A be a commutative ring, G a finite group of automorphisms of A with

|G|−1 ∈ A. Then the following are equivalent:

(1) A is self-injective von Neumann regular.

(2) AGis self-injective von Neumann regular and A/AG is Frobenius and separable.

(3) A ∗G is self-injective biregular.

Proof. Since A is commutative, A is biregular if A is regular. Now it is sufficient to show

that A/AG is separable if A ∗G is biregular. But this is true by [1, Prosition 4].

Notice that the above corollary also holds if we replace self-injective regular (or biregular)

by semisimple artinian.

References

[1] Auslander, M. & Goldman, O., The Brauer group of a commutative ring, Trans. Amer. Math. Soc., 97
(1960), 367-409.

[2] Handelman, D. & Renault, G., Actions of finite groups on self-injective rings, Pacific J. Math., 89

(1980), 69-80.
[3] Jondrup, S., Groups acting on rings, J. London Math. Soc., 8:2 (1974), 483-486.
[4] Kasgh, F., Projective Frobenius-Erweiterungen, Sitzuungsber. Heidelberger Akd. Wiss., 61:4 (1960),

89-109.

[5] Kitamura, Y., A note on fixed rings, Math. J. Okayama Univ., 31 (1989), 85-91.
[6] Zhang, Y. H., Hopf Frobenius extensions of algebras (to appear).


