SOME CONTRACTIONS OF THREEFOLD ALGEBRAIC FAMILY**

CHEN MENG*

Abstract

The objects in this paper are all projective 3-folds over an algebraically closed field of characteristic 0. After simply generalizing the Rationality theorem, a kind of contractions of non-minimal 3-folds is given

Keywords Threefold algebraic family, Extremal ray, Contraction. 1991 MR Subject Classification 14E05, 14A10.

§1. Known Results

Theorem M1. Let X be a non-singular projective 3-fold with an ample divisor L such that K_X is not nef. If X has an extremal ray $R = \mathbf{R}_+[l]$ which is generated by an extremal rational curve l, then

- (1) there exists a morphism $\Phi: X \longrightarrow Y$ to a projective variety Y such that $\Phi_*O_X = O_Y$ and for any irreducible curve C in $X, [C] \in R$ iff $\dim \Phi(C) = 0$;
 - (2) there exists an exact sequence

$$0 \longmapsto Pic\mathbf{Y} \stackrel{\Phi^*}{\longmapsto} Pic\mathbf{X} \stackrel{(.l)}{\longmapsto} \mathbf{Z},$$

 $-K_X$ is Φ -ample;

- (3) if R is not nef, then there exists a divisor D such that $\Phi|_{X-D}$ is an isomorphism and $\dim \Phi(D) \leq 1$ and we have five types:
- (b₁) $\Phi(D)$ is a non-singular curve and Y is non-singular, $\Phi|_D: D \longmapsto \Phi(D)$ is a \mathbf{P}^1 -bundle;
 - (b₂) $\Phi(D)$ is a point and Y is non-singular, $D \cong \mathbf{P}^2$ and $\mathbf{O}_D(D) \cong \mathbf{O}_{\mathbf{P}}(-1)$;
- (b₃) $\Phi(D)$ is a point, $D \cong \mathbf{P}^1 \times \mathbf{P}^1$, $\mathbf{O}_D(D)$ is of bidegree (-1, -1) and $s \times \mathbf{P}^1 \approx \mathbf{P}^1 \times t$ on $X, s, t \in \mathbf{P}^1$;
- (b₄) $\Phi(D)$ is a point, $D \cong$ an irreducible, reduced and quadric surface in \mathbf{P}^3 , $\mathbf{O}_D(D) \cong \mathbf{O}_D \otimes \mathbf{O}_{\mathbf{P}}(-1)$;
 - (b₅) $\Phi(D)$ is a point, $D \cong \mathbf{P}^2$ and $\mathbf{O}_D(D) \cong \mathbf{O}_{\mathbf{P}}(-2)$;
 - (4) If R is nef, then Y is non-singular and we have three types:
- (c₁) dimY = 2 and for any point P of Y, X_P is isomorphic to a conic of $\mathbf{P}^2(X$ is called a conic bundle);

Manuscript received November 12, 1991. Revised April 23, 1992.

^{*}Deparatment of Mathematics, Shanghai Institute of Building Materials, Shanghai 200434, China.

^{**}Project supported by the National Natural Science Foundation of Shanghai.

(c₂) dim Y = 1 and for any point P of Y, X_P is an irreducible, reduced surface such that $\omega_{X_P}^{-1}$ is ample (X is called a del pezzo fibre space);

(c₃) dimY = 0, $\rho(X) = 1$, $-K_X$ is ample (X is called a Fano-variety).

Rationality Theorem. Suppose that X is a projective variety with only canonical singularities on which K_X is not nef. Let H be an ample divisor on X. Then $\mu(H)$ is a rational number of the form $\frac{u}{v}$, where $0 < v \le (index \ of \ X)(\dim X + 1)$.

§2. Rationality and Contractions

Let X be a normal projective 3-fold over an algebraically closed field k of characteristic 0. Let K_X be the canonical divisor of X.

$$N(X) = (\{1 - \text{cycles on } X\}/\equiv) \otimes_{\mathbf{Z}} \mathbf{R},$$

where " \equiv " denotes numerical equivalence. Let $NE(X) \subset N(X)$ be the smallest convex cone containing all the effective 1-cycles. Via the intersection pair (.) of 1-cycles and Cartier divisors, N(X) is dual to $NS(X) \otimes_{\mathbf{Z}} \mathbf{R} = N(X)^*$. $\overline{NE}(X)$ is the closure of NE(X) for metrix topology. Let $D(X) \subset N(X)^*$ be the cone generated by all the effective divisors of X, and $\overline{D}(X)$ its closure in $N(X)^*$.

Denifition 2.1. A divisor E is called pseudo-effective if $E \in \overline{D}(X)$. For $D \in N(X)^*$, we say that D is nef if $D.Z \ge 0$ for all $Z \in NE(X)$.

It is easy to show that E is pseudo-effective if E is nef.

Definition 2.2. For any nef Q-divisor H, we define

$$\mu(H) = \sup\{t|t \in \mathbf{R}, H_t = H + tK_X \text{ is nef }\}.$$

Definition 2.3. A Q-divisor D on X is called ample if some multiple of it is an irreducible, reduced very ample divisor.

Kieiman's criterion for ampleness is well-known: D is ample iff D.Z>0 for all $Z\in \overline{NE}(X)-0$.

Definition 2.4. A divisor H on X is called $Gnef(or\ good\ nef)$ if $H^{\perp} \cap K_X^{\perp} \cap \overline{NE}(X) = 0$ and $\mu(H) > 0$.

Proposition 2.1. For a nef divisor H, if H is Gnef, then $H+qK_X$ is an ample \mathbb{Q} -divisor for all rational number $q \in (0, \mu(H))$. Conversely if there is a positive rational number q such that $H+qK_X$ is ample, then H is Gnef.

Proof. If H is Gnef, then for any rational number $q \in (0, \mu(H))$, $H + qK_X$ is nef. If there exists an element $Z \in \overline{NE}(X) - 0$ such that $(H + qK_X) \cdot Z = 0$, then $H \cdot Z = -qK_X \cdot Z > 0$. Thus we have

$$(H + \mu(H)K_X) \cdot Z = (\mu(H) - q)K_X \cdot Z < 0,$$

this is impossible. Hence $H + qK_X$ is ample.

The converse part is obvious.

Theorem 2.1. Suppose that X is a projective variety with only canonical singularities on which K_X is not nef. If X admits a Gnef Cartier divisor H, then $\mu(H)$ is a positive

rational number of the form

$$\mu(H) = \frac{1}{n_0} \left[1 + \frac{1}{I} \frac{u(n_0)}{v(n_0)} \right] = \frac{1}{n_0 + 1} \left[1 + \frac{1}{I} \frac{u(n_0 + 1)}{v(n_0 + 1)} \right]$$
$$= \dots = \frac{1}{n_0 + k} \left[1 + \frac{1}{I} \frac{u(n_0 + k)}{v(n_0 + k)} \right] = \dots,$$

where $\{u(n)\}$ and $\{v(n)\}$ are both sequences of positive integers, I= canonical index of X, $0 < v(n) \le I(\dim X + 1)$, $\lim_{n \to \infty} u(n) = +\infty$.

Proof. Let $\epsilon = \frac{1}{n_0} < \mu$. From Proposition 2.1, we know that $H + \epsilon K_X$ is an ample **Q**-divisor.

$$H + \mu K_X = (H + \frac{1}{n_0}K_X) + (\mu - \frac{1}{n_0})K_X.$$

Let $H' = n_0 I(H + \epsilon K_X) = I n_0 H + I K_X$. Then H' is an ample Cartier divisor.

$$n_0I(H + \mu K_X) = H' + n_0I(\mu - \frac{1}{n_0})K_X.$$

Thus we get $\mu(H') = n_0 I(\mu - \frac{1}{n_0})$. On the other hand, we know from Rationality Theorem that

$$\mu(H') = \frac{u(n_0)}{v(n_0)}, \quad 0 < v(n_0) \le I(\dim X + 1).$$

Therefore $u(n_0) = I(n_0\mu - 1)v(n_0)$,

$$I(n_0\mu-1) \le u(n_0) \le I^2(\dim X+1)(n_0\mu-1).$$

For any $n > n_0$, we obtain u(n) and v(n) in a similar way and

$$u(n) = I(n\mu - 1)v(n), \quad \mu = \frac{1}{n} \Big[1 + \frac{1}{I} \frac{u(n)}{v(n)} \Big].$$

As a simple application of proposition 2.1, Corollary 2.1 is a minor generalization of Rationality Theorem of V. V. Batyrev.

Theorem. Let X be a projective QFT-threefold such that K_X is not pseudo-effective and H is an ample Cartier divisor,

$$\sigma_X(H) = \sup\{t \in \mathbf{R} | H_t = H + tK_X \in \overline{D}(X)\}.$$

Then $\sigma_X(H)$ is a rational number.

Corollary 2.1. Let X be a projective QFT-threefold such that K_X is not pseudo-effective. If H is a Gnef divisor, then $\sigma_X(H)$ is a positive rational number.

Proof. Take a rational number $q \in (0, \mu(H))$. Then $H + qK_X$ is an ample **Q**-divisor. From the Rationality Theorem of Batyrev, we deduce that $\sigma_X(H + qK_X)$ is rational. Then $\sigma_X(H) = q + \sigma_X(H + qK_X)$ is rational too.

Remark 2.1. According to the results of Y. Kawamata, we know that under the condition as in Theorem 2.1, there exists a curve $C \subset X$ such that $(H + \mu(H)K_X).C = 0$.

From now on we take a partly view of 3-fold with negative Kodaira dimension.

Remark 2.2. Let X be a projective QFT-threefold. Then $\kappa(X) = -\infty \iff K_X$ is not pseudo-effective $\iff X$ is uniruled.

If X is a non-singular projective 3-fold on which K_X is not pseudo-effective, $\rho(X) = 2$, then X admits at least one extremal ray R. Therefore by Theorem M1 we can get an

elementary contraction ϕ related to R, $\phi = Cont_R : X \longmapsto Y$, Y is a projective variety. If $\dim Y = 3$, then Y is a Fano 3-fold; if $\dim Y = 2$, then ϕ is a conic bundle $(c_1 \text{ type})$; if $\dim Y = 1$, then ϕ is a del pezzo fibre space $(c_2 \text{ type})$. In general, X admits a good structure.

Theorem 2.2. Let X be a non-singular projective 3-fold, $\kappa(X) = -\infty$, $\rho(X) = 3$. If X admits a Gnef divisor H such that $\mu(H)$ is non-integral, then there exists a contraction $\phi: X \longmapsto Y$, ϕ has three types:

- (1) Y is non-singular projective, $\dim Y = 3$, $\rho(Y) = 2$, so the type of Y is clear according to the arguments in above. ϕ is just blowing down a plane \mathbf{P}^2 ;
 - (2) Y is a non-singular surface and ϕ is a conic bundle;
 - (3) Y is a non-singular curve and ϕ is a del pezzo fibre space.

From Theorem M1, we obtain the following datum after calculation.

Lemma 2.1. In the situation (3) in Theorem M1, l is the general extremal curve such that $R = \mathbf{R}_{+}[l]$, and we have

- (b₁) $K_X = \Phi^* K_Y + D$, $K_X . l = D . l = -1$, $D^3 = 2(1 g(C))$;
- (b₂) $K_X = \Phi^* K_Y + 2D$, $K_X \cdot l = -2$, $D \cdot l = -1$, $D^3 = 1$;
- (b₃) $K_X = \Phi^* K_Y + D$, $K_X \cdot l = D \cdot l = -1$, $D^3 = 2$;
- (b₄) $K_X = \Phi^* K_Y + D$, $K_X . l = D . l = -1$, $D^3 = 2$;
- (b₅) $K_X = \Phi^* K_Y + \frac{1}{2}D$, $K_X \cdot l = -1$, $D \cdot l = -2$, $D^3 = 4$.

Proof of Theorem 2.2. Because H is Gnef, $\mu(H)$ is rational, thus there exists a curve $C \subset X$ such that

$$(H + \mu(H)K_X).C = 0, \quad H.C = -\mu(H)K_X.C > 0, \quad K_X.C < 0.$$

According to Cone theory, we find that there exists at least one extremal rational curve I such that $(H + \mu(H)K_X).l = 0$. Let $R = \mathbf{R}_+[l]$, for any curve C such that $\mathbf{R}_+[C] = R$, we have $(H + \mu(H)K_X).C = 0$. Hence $1 \le -K_X.C = H.C/\mu(H)$, whereas $\mu(H)$ is non-integral, $H.C \ne \mu(H)$, i.e, $-K_X.C > 1$ or $-K_X.C \ge 2$.

Now if $Cont_R$ is birational, then $Y = Cont_R(X)$ is a non-singular projective 3-fold on which $\rho(Y) = 2$. $Cont_R$ is of b_2 -type i.e.,

$$D \stackrel{\sim}{=} \mathbf{P}^2, O_D(D) \stackrel{\sim}{=} O_{\mathbf{P}}(-1).$$

If $Cont_R$ is not birational, then it is either a conic bundle or a del pezzo fibre space.

Theorem 2.3. Let X be a non-singular Fano 3-fold. If H is an ample divisor on X such that $\mu(H)$ is non-integral and $[\mu(H)] = [\sigma(H)]$, then X has good contractions $f: X \longmapsto Y$ and $g: Y \longmapsto Z$, which satisfy

- (1) Y and Z are both non-singular projective variety, dim Y = 3, dim $Z \le 2$;
- (2) f is just blowing down several planes or trivial. g is a Fano fibration, $\rho(Y) = \rho(Z) + 1$, and one of the following is true:
 - (i) Z is a rational surface, g is a conic bundle and $\rho(Y) \geq 2$;
 - (ii) $Z \stackrel{\sim}{=} \mathbf{P}^1$, g is a del pezzo fibre space and $\rho(Y) = 2$;
 - (iii) dim Z = 0, Y is a Fano 3-fold, $\rho(Y) = 1$ and Fano index

$$r(Y) \leq \left[\frac{1}{\mu(H) - [\mu(H)]}\right].$$

I was told by M. Reid that some experts had already known the result. I greatly appreciate his help.

Lemma 2.2.^[13,Proposition 1.11 (iii)]. Let $f: X \longmapsto Y$ be a birational morphism between non-singular projective varieties. Then we have $f^*\overline{D}(Y) \subset \overline{D}(X)$ and $f_*\overline{D}(X) \subset \overline{D}(Y)$.

R. Hartshorne has given the following result in [5]: $-K_X$ on X is ample if and only if $(-K_X.C) > 0$ for every effective 1-cycle C on X.

Lemma 2.3. Let $\phi: X \longmapsto Y$ be an extremal contraction, X be a non-singular Fano 3-fold, $\phi = Cont_R$, and R be of b_2 -type. If H is an ample divisor on X, then ϕ_*H is also ample.

Proof. Denote by D the exceptional divisor of ϕ . Then

$$D \stackrel{\sim}{=} O_{\mathbf{P}}(-1), \quad K_X = \phi^* K_Y + 2D.$$

Let C be any curve on Y, \tilde{C} the strict transform of C. Then

$$K_Y.C = \phi^*K_Y. \stackrel{\sim}{C} = (K_X - 2D). \stackrel{\sim}{C} = K_X. \stackrel{\sim}{C} - 2D. \stackrel{\sim}{C} < 0,$$

therefore Y is also Fano.

Now it is sufficient to show that $(\phi_*H.C) > 0$ for any curve $C \subset Y$. We have the exact sequence

$$0 \longmapsto PicY \stackrel{\phi^*}{\longmapsto} PicX \stackrel{(.l)}{\longmapsto} \mathbf{Z} \longmapsto 0.$$

There exists a positive number a such that $(H + aK_X).l = 0$. So $H + aK_X \equiv \phi^* \overline{H}$ for a divisor H. Let $H_1 = \Phi_* H$. Then

$$H \equiv H_1 + aK_Y, \quad H + aK_X \equiv \Phi^*(H_1 + aK_X), \quad H + 2aD = \Phi^*H_1.$$

Hence

$$(\Phi_*H.C) = H_1.C = \Phi^*H_1.\tilde{C} = (H + 2aD).\tilde{C} > 0.$$

So H_1 is numerically positive and H_1 is ample because Y is Fano.

Proof of Theorem 2.3. We know that $H + \mu(H)K_X$ is nef. Let $\overline{H} = H + [\mu(H)]K_X$. Then \overline{H} is a nef Cartier divisor and $\mu(\overline{H}) = \mu(H) - [\mu(H)]$. Because $\mu(H)$ is non-integral, we have $0 < \mu(\overline{H}) < 1$ and $\overline{H} + K_X$ is not pseudo-effective by the condition. Therefore the problem is reduced to the case when $H + K_X$ is not pseudo-effective. We assume that $H + K_X$ is not pseudo-effective in the next.

Like the situation in the proof of Theorem 2.2, there exists an extremal curve I such that

$$(H + \mu(H)K_X).l = 0, \quad K_X.l = -\frac{1}{\mu}H.l < -1, \quad K_X.l \le -2.$$

Let $R = \mathbf{R}_{+}[l]$, $\phi_1 = Cont_R$. Then ϕ_1 is of one of the four types: b_2 -type, c_1 -type, c_2 -type and c_3 -type.

Let $X_1 = Cont_R(X)$. Then X_1 is non-singular. If ϕ_1 is birational, let $H_1 = \phi_1 H$. Then H_1 is ample by Lemma 2.3, $H_1 + K_{X_1}$ is not pseudo-effective and so $\mu(H) < 1$ by Lemma 2.2 and X_1 is Fano by Hartshorne's result. Thus we can treat X_1 with the same method as to X. Because $\rho(X)$ is finite, this program must terminate at Fano fibration.

Using the classification theorem of extremal ray R of Fano 3-fold in section 2 of [12], we can see that Z is rational, especially if dim Z = 1, then $Z \cong \mathbf{P}^1$.

Definition 2.5. Define $\sigma(X) = \inf \sigma(H)$ for all the ample divisors H on X, $\sigma(X)$ is intrinsic related to X.

Theorem 2.4. Let $X \subset \mathbf{P}^n$ be a non-singular Fano 3-fold. $H = O_X(1)$ be the very ample divisor, $d = H^3$ be the degree of X embedded in \mathbf{P}^n $(n \ge 4)$. Then we have $\sigma \le d(n+1)^2/c_1^3$.

Lemma 2.4. Let X be a non-singular projective 3-fold and be embedded in \mathbf{P}^n $(n \geq 4)$. Let $H = O_X(1)$ be the very ample divisor.

$$q = h^1(O_X) = 0, L = \wedge^{n-3} N_{X/P^n}.$$

Then $h^0(L) > 0$ i.e., L is linearly equivalent to an effective divisor.

This is a very special case of known results. We can have a cohomological calculation directly. I believe that the conditions here are much sufficient, but I do not think it over.

Proof of Theorem 2.4. We suppose $L = \wedge^{n-3} \mathbf{N}_{X/P^n}$. Then $K_X = L - (n+1)H$. We know that $H + \sigma K_X$ is pseudo-effective. Because X is Fano variety, c_1 is ample. Thus $c_1^2(H + \sigma(H)K_X) \geq 0$.

$$\sigma(H) \leq rac{c_1^2 H}{c_1^3}, \ \ c_1 = (n+1)H - L.$$
 $c_1^2 H = ((n+1)^2 H - L)^2.H = (n+1)^2 H^3 - L.H.(2(n+1)H - L),$ $c_1^2 H \leq (n+1)^2 H^3 = d(n+1)^2 \ \ ext{and} \ \ \sigma \leq \sigma(H) \leq rac{d(n+1)^2}{c_1^3}.$

Corollary 2.2. Under the condition of Theorem 2.4, if $d < \frac{c_1^3}{(n+1)^2}$, then X has good contractions as in Theorem 2.3.

I thank M. Reid for his stimulating letter. I also thank J. Kollar and the referee for many skillful suggestions.

REFERENCES

- [1] Ando, T., On extremal rays of the higher dimensional Varieties, Inven. Math., 81 (1985), 347-375.
- [2] Batyrev, V. V., The cone of effective divisors of threefolds(Preprint).
- [3] Clemens, H., Kollar, J. & Mori, S., Higher dimensional complex geometry, Societe Mathematique de France, 166 (1988).
- [4] Hartshorne, R., Algebraic geometry, Springer Berlin, 1977.
- [5] Hartshorne, R., Ample subvarieties of algebraic varieties, 56, Springer-Verlag, 1970.
- [6] Iskovskih, V. A., Fano 3-folds I, Math. USSR IZV., 11 (1977).
- [7] Iskovskih, V. A., Fano 3-folds II, Math. USSR IZV., 12 (1978).
- [8] Kawamata, Y., The cone of curves of algebraic varieties, Ann. of Math., 119 (1984).
- [9] Kollar, J., The cone theorem, Ann. of Math., 120 (1984).
- [10] Kollar, J., Vanishing theorems for cohomology groups, Proceeding of Symposia in Pure Mathematics, 46 (1987).
- [11] Miyanishi, M., Algebraic methods in the theory of algebraic threefolds, Advanced Studies in Pure Maths, 1 (1983).
- [12] Mori, S. & Mukai, S., On Fano 3-folds with $B_2 \geq 2$, Advanced Studies in Pure Math., 1 (1983).
- [13] Mori, S., Three-folds whose canonical bundles are not numerically effective, Ann. Math., 116 (1982).
- [14] Mori, S., Flip theorem and the existence of minimal methods for 3-folds, J. Amer. Math. Soc., 1 (1988).
- [15] Reid, M., Surface of small degree, Math. Ann., 71-80 (1986).
- [16] Reid, M., Minimal models of canonical 3-folds, Advanced Studies in Pure Math., 1 (1983).
- [17] Wilson, P. M. H., Toward birational classification of algebraic varieties, Bull. London Math. Soc., 19 (1987).