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SOME CONTRACTIONS OF
THREEFOLD ALGEBRAIC FAMILY **

CHEN MENG*
' Abstract

The objects in this paper are all projective 3-folds over an algebraically closed. field of
characteristic 0. After simply generalizing the Ratlonallty theorem, a kind of contractions, of
non-minimal 3-folds is given .
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§1. Known Results
Theorem M1. Let X be a non-singular projective 3-fold with an ample dz"uz'sor L. such
that Kx is not nef. If X has an extremal ray R = R+ [l] which zs genemted by an extremal
rational curve lthen :
(1) there exists a morphism ® : X — Y to a projective vamety Y such that ®,0x = Oy
and for any irreducible curve C in X,[C] € R zﬁ dim®(C) =

(2) there exists an ezact sequence

0 —s PicY 25 PieX &4 (4 — Z,

—Kx is D-ample; _

(3) if R is not nef, then there ezists a divisor D such that D|x_p is an isomorphism and
dim®(D) < 1 and we have five types: ' _ : |
 (b1) ®(D) is a non-singular curve and Y is non-singular, ®|p : D —> ®(D) is a
Pl —bundle; '

(by) ®(D) is a point and Y is non-singular, D = P? and Op(D) = Op(—1);

(b3) ®(D) is a point, D = P! x P1,0p(D) is of bzdegree ( 1,—1) and s x P! P1 Xt
on X,s,t € P!;

(bs) ®(D) is a point, D = an zrreduczble, reduced and quadmc surface in P3 OD(D)
Op® Op( 1) : ’

(bs) ®(D) is a point, D = P? and Op(D) = Op(-2);

(4) If R is nef, then'Y is non-smgular and we have three types:

(c1) dimY = 2 and for any pomt P of Y Xp is zsomo'rphzc to a conic of P2(X is called
a conic bundle);
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(cz) dim Y =1 and for any point P of Y, Xp is an irreducible, reduced surface such that
wX s ample (X is called a del pezzo fibre space); ,

(c3) dimY =0, p(X ) =1, —Kx is ample (X is called a Fano-variety).

Rationality Theorem. S'uppose that X is a projective baﬂ'ety with only canonical sin-

gularities on which Kx is not nef. Let H be an ample divisor on X. Then u(H) is a rational
number of the form %, where 0 < v < (indez of X)(dim X + 1).

§2. R'ationa.lity and Contractions

Let X be a normal projective 3-fold over an algebraically closed field k of characteristic
0. Let Kx be the canonical divisor of X.-

N(X) ({1—cyclesonX}/ )®zR,

where “ = ” denotes numerical equivaleénce. Let NE(X) C N(X) be the smallest convex
cone containing all the effective 1-cycles. Via the intersection pair ( . ) of l-cycles and
Cartier divisors, N(X) is dual to NS(X) ®z R = N(X)*. NE(X) is the closure of NE(X)
for metrix topology. Let D(X) C N(X)* be the cone generated by all the effective divisors
of X, and D(X) its closure in N(X)*.

Denifition 2.1. A divisor E is called pseudo- eﬂ'ectwe if E € D(X). ForDe N (X ),
we say that D is nef if D.Z >0 for all Z € NE(X).

Tt is easy to show that E-is pseudo-effective if E is nef.

Definition 2.2. For any nef Q-divisor H, we define

p(H) =sup{t|t e R,H; = H +tKx is nef }.

Definition 2.3. A Q-divisor D on X is called ample if some multiple of it is an irre-
ducible, reduced very ample divisor.

Klelman s cntenon for ampleness is well-knowu D is ample iff D.Z > 0 for all Z E
NE(X) -

Definition 2.4. A divisor H on X is called Gnef(or good nef) sz-"ﬁKl NNE(X) =
and p(H) > 0.

Proposition 2.1. For a nef divisor H, if H is Gnef, then H+qKx is an ample Q-divisor
for all rational number q € (0, u(H)). Conversely if there is a positive rational number q
such that H + qKx 1is ample, then H is Gnef. ' :

Proof. If H is Gnef, then for any rational number g € (0, u(H)), H+9Kx is nef. If there
exists an element Z € NE(X) 0 such that (H+¢Kx)-Z =0, then H-Z = —qKx+Z > 0.
Thus we have : : ' :

(H+pu(H)Kx) - Z = (u(H) - ¢)Kx - Z <0,
this is impossible. Hence H + gKx is ample.
Thé converse part is obvious.

Theorem 2.1. Suppose that X is a. projective variety with only canonical singularities
on which Kx is not nef. If X admits a Gnef Cartier divisor H, then u(H) is a positive
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rational number of the form

w(H) = [1 +1 L ulra)y L 14 2 8not 1]

ITv(ng)l mo+1 I v(ng+1)
== ] EM]_.
no + k Tv(ng +k)l

where {u(n)} and {v(n)} are both sequences of positive mtegers, I =canonical index of X,
0<w(n)< I(dlmX —|- 1) 11m u(n) +00. :

Proof. Let ¢ = no < From Proposition 2.1, we know that H + eKx is an ample
Q-divisor. ' ' '
H+ uKx = (H + --—-Kx) + (,u, — —)Kx

Let H' = nol(H + eK x) =InoH + IKx. Then H' is an ample Cartier d1v1sor

nol(H + pKx) = H' +nol(u— —)KX

Thus we get p(H') = nol(p — -——) On the other hand, we know from Ratlonahty Theorem
that '

w(H') = :EZE; 0< v(ng) < I(dim X + 1).

Therefore u(ng) = I (nop — 1)v(nyg),
I(nop — 1) < u(ng) < I*(dimX + 1)(nop — 1).

For any n > ng, we obtain u(n) and 'u(n) in a similar way and
1 1u(n
a(n) = I(np —1v(n), p = [1 +7 vgn;] | |
As a simple applicatioh of proposition 2.1, Corollary 2.1 is a minor generalization of
Rationality Theorem of V. V. Batyrev. ’
Theorem. Let X be a projective QFT- threefold such that K x i s not pseudo eﬂectzve and
H is an ample Cartier divisor,

Ux(H) = Sup{t € RlHt =H+tKx € E(X)}

Then ox(H) is.a mtzonal number

- Corollary 2.1. Let X be.a projective QFT- threefold such that K x is not pseudo-effective.
If H is a Gnef divisor, then ox(H) is a positive rational number.

Proof. Take a rational number g € (0, u(H)).. Then H + gKx is an ample Q-divisor.
From the Rationality Theorem of Batyrev, we deduce that ox (H +gKx) is rartional. Then
ox(H) =g + ox(H + qKx) is rational too. . .

Remark 2.1. According to the results of Y. Kawamata, we know that under the condi-
tion as in Theorem 2.1, there exists a curve. C C X such that (H + u(H)Kx).C = 0.

From now on we take a partly view-of 3-fold with negative Kodaira dimension. .

Remark 2.2. Let X be a projective QFT—threefold Then x(X) = —oco <=> Kx is not
pseudo-effective <=> X is uniruled.

If X is a non-singular projective 3-fold on which Kx is not pseudo-effective, p(X) = 2,
then X admits at least one extremal ray R. Therefore by Theorem M1 we can get an
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elementary contraction ¢ related to R, ¢ = Contg : X — Y, Y is a projective variety.
If dimY = 3, then Y is a Fano 3-fold; if dimY = 2, then ¢ is a conic bundle (¢; type); if
dimY = 1, then ¢ is a del pezzo fibre space (cg type): In general, X admits a good structure.
Theorem 2.2. Let X be a non-singular projective 3-fold, k(X) = —o0, p(X) = 3. If
X admits a Gnef divisor H such that u(H) is non- mtegml then there exists a contraction
¢: X+ Y, ¢ has three types: : -
(1) Y is non-singular projective, dimY = 3, p(Y) = 2, so the type of Y s clea'r' accordmg
to the arguments in above. ¢ is just blowing down a plane P?; ”
(2) Y is a non-singular surface and ¢ is a conic bundle;
(8) Y is a non-singular curve and ¢ is a del pezzo fibre space.
From Theorem M1, we obtain the following datum after calculation.
Lemma 2.1. In the situation (3) in. Theorem M1, [ is the general extremal curve such
that R = R [l], and we have '
(b1) Kx = ® Ky + D, Kx.l=D.l = -1, D3 =2(1- g(C));
.(bz)KX ®*Ky + 2D, le——z D.l=-1, D3=1,
(bs) Kx = ® Ky + D, le—Dl-—-—l D3 =2; “
(by) Kx = ®*Ky + D, Kx.l=D.l=~1, D3 =2;
(bs) Kx = ®*Ky + %D, Kxl=-1, Dl=-2, D3=4.
Proof of Theorem 2.2. Because H is Gnef, u(H) is rational, thus there exists a curve
C C X such that ) | |
(H + u(H)Kx).C =0, HC=—pu(H)Kx.C>0, Kx.C<O0.
According to Cone theory, we find that there exists at least one extremal rational curve I
such that (H + p(H)Kx).l = 0. Let R = R[l], for any curve C such that R [C] = R, we
have (H+u(H)Kx).C = 0. Hence 1 < —Kx.C = H. C’/ u(I—I ) Whereas w(H) is non-mtegra,l
H.C # p(H), i.e, KXO>101'—KXC>2 '
Now if Contg is birational, then ¥ = ContR(X ) is ‘a non-singular projective 3-fold on
which p(Y) = 2. Contp is of by-type i.e., i

D = P?,0p(D) = Op(-1).
If Contg is not birational, then it is either a conic bundle or a del pezzo fibre space.
Theorem 2.3. Let X be a non-singular Fano 3-fold. If H is an ample divisor on' X such
that p(H) is non-integral and [u(H)] = [o(H )], then X has good contractzons £ XY
and g : Y — Z, which satisfy ‘
(1) Y .and Z are both non-singular projective variety, dim Y = 3, dim Z < 2;
(2) f is just blowing down several planies or trivial. g-is a Fano fibration, p(Y) p(Z2)+1,
and one of the following is true: : o
(i) Z is a rational surface, g is a conic bundle and p(Y') > 2;
(ii) Z Z P!, g is'a del pezzo fibre space and p(Y) = 2;
(iii) dim Z =0, Y is a Fano 3-fold, p(Y) =1 and Fano index
)< ey
I was told by M. -Reid that some experts had already known the result. 1 greatly a,pprecmte

his help.
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Lemma 2.2,[13.Proposition1.11(#id)] - [y £ . X Y be a birational morphism between
non-singular projective varieties.. Then we have f*D(Y) Cc D(X) and fxD(X) c D(Y).

R. Hartshorne has given the following result in [5]:—Kx on X is ample if and only 1f
(—=Kx.C) > 0 for every effective 1-cycle C on X. : :

Lemma 2.3. Let ¢ : X — Y be an extremal contraction, X be a non-singular Fano
3-fold, ¢ = Contgr, and R be of béftypc. If H is an ample divisor on X, then ¢.H is also
ample. o

Proof. Denote by D the exceptlonal d1v1sor of ¢. Then

 DZ0p(-1), Kx=¢"Ky +2D.
"Let C be any curve on Y, 5’ ‘the strict tra;'nsformb‘o’f C. Then
Ky.C = ¢*Ky. C= (Kx — 2D). C= Kx.C —2D. C< 0,

therefore Y is also Fano.

Now it is sufficient to show that (¢.H.C) > 0 for any curve C C Y. We have the exact
sequence ' ‘ '

0+ PicY 2 Piex &z 0.

- There exists a positive number a such that (H +aKx).l = 0. So H +aKx = qb_’_"ﬁ for a
divisor H. Let Hy = ®,H. Then ” |

H=H, +aKy, H+aKx=®(H,+aKx), H+2D=3a"H,.
Hence - | S o ’ - ' '
(8,H.C) = H,.C = 8 H,.C = (H + 2aD).C > 0.

So H; is numerically positive and H; is ample because Y is Fano.

Proof.of Theorem 2.3.- We know that H + u(H)Kx is nef. Let H = H + [p(H)]|Kx.
Then H is a nef Cartier divisor and p(H H) = p(H) — [u(H)]. Because p(H) is non-integral,
we have 0 < u(H ) < 1 and H + Kx is not pseudo-effective by the condition. Therefore
the problem is reduced to the case when H + Kx 1s not pseudo-effectwe We assume that
H + Kx is not pseudo- effective in the next : :

Like the s1tuat10n in the proof of Theorem 2.2, there ex1sts an extremal curve l such that

(H+,u,(H)Kx)l_0 le~——ll;Hl< -1, Kxl<-2.

Let R = R+ [f], 41 = Contg. Then ¢, is of one of the four types ba-type, c1-type, cg—type
and cs-type

Let Xy= ContR(X ). Then X1 is non-singular. If #1 is birational, let Hy = ¢;H. Then
H, is ample by Lemma 2.3, H 1 + Kx, is not pseudo—eﬁ'ectlve and so ,u(H ) < 1 by Lemma
2.2 and X 1 is Fano by Hartshorne's result. Thus we can treat X 1 ‘with the same method as
to X. Because p(X) is finite, this program must termma,te at Fano fibration.

Using the classification theorem of extremal ray R of Fano 3-fold in section 2 of [12], we
can see that Z is rational, especially if dim Z = 1, then Z & P1.

Definition 2.5. Define o(X) = info(H) for all the ample divisors H on X o(X) is
intrinsic related to X.
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Theorem 2.4. Let X C P be a non-singular Fano 3-fold. H = Ox(1) be the very ample
divisor, d = H® be the degree of X embedded in P™ (n > 4). Then we have o < d(n+1)?/c3.

Lemma 2.4. Let X be a non-singular projective 3-fold and be embedded in P™ (n > 4).
Let H = Ox(1) be the very ample divisor.

q= hl(ox) = 0, L = /\n_sNX/Pn.

Then hO(L) > 0 i.e., L is linearly equivalent to an effective divisor.
This is a very special case of known results. We can have a cohomological calculation
directly.I believe that the conditions here are much sufficient, but I do not think it over.
Proof of Theorem 2.4. We suppose L = An—st/Pn. Then Kx = L — (n+ 1)H.
We know that H + oK x is pseudo-effective. Because X is Fano variety, c¢; is ample. Thus
ci(H +o(H)Kx) > 0.

o(H) <

20
9-1—:{—, ¢y =(n+1)H — L.

c‘fH = ((n+1)2H — L)2.H = (n + 1)?H® — L.H.(2(n + 1)H — L),

d(n + 1)

3

AH< (n+ 1‘)2I:I3 d(n+1)? and o <o(H) < .
' 1

Corollary 2.2. Under the condition of Theorem 5.4, ifd < (,’,L—_(;'_iiyf;.%heﬂ X has good
contractions as in Theorem 2.3. ' ' '

I thank M. Reid for his stimulating letter. I also thank J. Kollar and the referee for many
skillful suggestions.
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