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NON-ISOMORPHIC GROUPS WITH ISOMORPHIC

SPECTRAL TABLES AND BURNSIDE MATRICES**
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Abstract

It was shown by Formanek and Sibley that the group determinant characterizes a finite group
G up to isomorphism. Hoehnke and Johnson (independently the authors—using an argument

of Mansfield) showed the corresponding result for k-characters, k = 1, 2, 3. The notion of k-
characters dates back to Frobenius. They are determined by the group determinant and may
be derived from the character table CT (G) provided one knows additionally the functions

Φk : G× · · · ×G → C(G), (g1, · · · , gk) → Cg1·...·gk ,

where C(G) = {Cg , g ∈ G} denotes the set of conjugacy classes of G.

The object of the paper is to present criteria for finite groups (more precisely for soluble
groups G and H which are both semi-direct products of a similar type) when

1. G and H have isomorphic spectral tables (i.e., they form a Brauer pair),
2. G and H have isomorphic table of marks (in particular the Burnside rings are isomorphic),

3. G and H have the same 2-characters.
Using this the authors construct two non-isomorphic soluble groups for which all these three

representation-theoretical invariants coincide.
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§1. Introduction

For a finite group G, we let Ĝ be the set of irreducible complex characters, and we denote

by

CT (G) = (χG
i (K

H
j ))1≤i,j≤h(G)

the character table of G, where {χG
i }1≤i≤h(G) are the irreducible characters and {KG

i },
1 ≤ i ≤ h(G), are the conjugacy classes of G. The character table together with the power

map on the conjugacy classes, Kg → Kgm , is called the spectral table of G, denoted by

SP (G). The spectral table SP (G) determines the set {|xi|}1≤i≤h(G), where xi ∈ KG
i . We

write B(G) for the Burnside matrix of G, which is sometimes called the table of marks.
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It is well known that a question of Richard Brauer, whether non-isomorphic groups may

have isomorphic spectral tables1, has a negative answer (cf. E. C. Dade [3] and G. Cliff-S.

K. Sehgal [1])2. Cliff and Sehgal[1] determine the Brauer pairs among the solvable two fold

transitive groups3. Recently it was shown by K. Johnson and S. K. Sehgal[4] that these

Brauer pairs also have the same 2-characters in the sense of Frobenius. It is a byproduct

of the results in this paper that these Brauer pairs also have the same Burnside matrices.

These are then the first known examples of Brauer pairs which also have the same table of

marks4.

The aim of this note is to present criteria for a fairly general pair of groups5 to form a

Brauer pair (cf. Proposition 1.1) or to have the same Burnside matrices (cf. Proposition

1.2) or to have the same 2-characters (cf. Proposition 1.3).

As an application we construct some examples of Brauer pairs, the groups of which have

the same Burnside matrices and the same 2-characters. These groups are constructed in the

same spirit as those in [1], they are given as semi-direct product of a finite group G acting

fixed point freely in different ways on a finite vector space V. In the examples of [1] the

group G has exactly two orbits on V ; in our examples this need not be the case.

We shall next describe the criteria.

Proposition 1.1. Assume that Gi, 1 ≤ i ≤ 2, are two finite isomorphic groups, which

act on the same Fp-vectorspace V fixed point freely, i.e., StabGi(v) = 1 for every v ∈ V \{0}.
If each orbit of G1 on V coincides as a set with an orbit of G2 on V , then the semi-direct

products H1 = V ·G1 and H2 = V ·G2 have isomorphic spectral tables.

Remark 1.1. The above conditions imply that the groups Hi are Frobenius groups with

abelian kernel V and complements Gi; in particular, we have (p, |Gi|) = 1.

In order to stable the result on Burnside rings, we have to introduce some more notation:

Definition 1.1. Assume that Gi and V are as in Proposition 1.1. Then for each

v ∈ V, g1 ∈ G1, there exists a unique element τv(g1) ∈ G2 such that g1v = τv(g1)v. Moreover,

for each v ∈ V, g1, h1 ∈ G1, there exists a unique ρv(g1, h1) ∈ G1 with

τv(g1)·h1v = ρv(g1,h1)·h1v.

Proposition 1.2. Assume in addition to the hypotheses in Proposition 1.1 that all min-

imal subgroups in V are conjugate under elements in G1 and G2 respectively, and that there

exists v0 ∈ V such that for every subgroup H ≤ G2 we have ρv(h, h
′) ∈ H for all h, h′ ∈ H.

Then the Burnside matrices of H1 and H2 are isomorphic.

We finally turn to the 2-characters.

Definition 1.2. Let {χi}1≤i≤n be the irreducible characters of the finite group G. With

each χi there is a 2-character χ2
i : G×G→ C associated, which is defined as follows

χ2
i (x, y) := χi(x · y)− χi(x)− χi(y).

3These groups are subgroups of the semidirect product of a finite vectorspace with the group of semi-linear

maps on V [5].
4H. Pahlings has told the authors that he has by computer search found a Brauer pair of 2-groups, the

groups of which also have the same Burnside matrices.
5These pairs are constructed by letting a fixed finite group act fixed point freely in two different ways on

a finite vectorspace and then consider the semi-direct product.
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We say that two groups G,H with irreducible characters {χi}1≤i≤h of G and {ψi}1≤i≤h of

H, where h = h(G) = h(H) denotes the class number, have the same 2-character tables, if

there is a bijection α : G→ H and a permutation β on {1, · · · , n}, such that G and H have

the same character tables via the above maps; and G and H have the same 2-characters via

the above maps.

The next result is a very coarse criterion, to see, when certain groups have the same

2-characters.

Proposition 1.3. Let G and H be isomorphic groups via an isomorphism ρ : G → H.

Let M be an Fp-module with fixed point free action for G and H – this implies that p does not

divide |G|, furthermore, we require that the elements in M \ {0} form a single orbit under

the action of G. Assume that there is a ρ-equivariant bijection σ :M \ {0} →M \ {0}, i.e.,
σ(g ·m) = ρ(g) · σ(m) for g ∈ G, m ∈ M , with σ(−m) = −σ(m). Then G1 := M · G and

H1 :=M ·H have the same 2-characters.

§2. The Proofs of the Propositions 1.1, 1.2, 1.3

We first deal with the spectral tables and prove Proposition 1.1:

Since G1 and G2 are isomorphic, there is an isomorphism of spectral tables of G1 and G2,

i.e., of the characters (and conjugacy classes) of H1 and H2, on which V acts trivially (and

the classes, which do not meet V respectively). Thus it remains to show that the characters

which do not have V in the kernel are in a correspondence for H1 and H2 which is compatible

with a correspondence of the conjugacy classes. However, the conjugacy classes of H1 on

V and of H2 on V are in a bijection σ, since by hypothesis the orbits of G1 and G2 on V

coincide.

We now invoke Clifford’s theory for characters[2] (see also [5, 6.13]): Let χ be a non-trivial

character of V . Since the action of Gi on V is fixed point free, both the inertia groups of

χ in H1 and H2 respectively are just V. However, the orders of V and Gi are relatively

prime, and so the induced character χHi

V is an irreducible character of Hi. But this induced

character has zero value for the elements in Hi outside of V, and for an element v ∈ V we

have

χHi

V (v) =
∑

g∈Hi/ StabHi
(v)

χ(gv),

which is the same for both groups, according to our hypotheses. This completes the proof

of Proposition 1.1.

We now turn to Burnside matrices and prove Proposition 1.2 in more generality.

Definition 2.1. Let G and H be groups acting on a set V ; we write the actions as g ·m
and h ·m respectively. We shall assume that G and H act fixed point freely on V, and that

for every v ∈ V the orbit of G and H coincide; i.e., OG(v) = OH(v). Then there exists for

each v ∈ V a unique bijection

τv : G→ H with g · v = τv · v.
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Moreover, for every v ∈ V there is a unique map

ρv : G×G→ G with τv(g) · g′ · v = ρv(g, g
′) · g′ · v.

The question of whether the image of τv of a subgroup is again a subgroup, is answered

by

Claim 2.1. Let U ≤ G. Then τv(U) ≤ H if and only if ρv : U × U → U.

Proof. Note that τv(g
−1) = (τv(g))

−1. Thus we only have to find the necessary and

sufficient conditions for Im(τv(U)) to be multiplicatively closed. Howover,

τv(u1) · τv(u2) · v = τv(u1) · u2 · v = ρv(u1, u2) · u2 · v.

Hence τv(u1) · τv(u2) ∈ τv(U) if and only if ρv(u1, u2) ∈ U.

This claim has the following consequence:

Corollary 2.1. Assume that there exists v0 ∈ V such that for every subgroup U ≤ G

we have ρv0 : U × U → U . Then the map τv0 induces an order preserving map between the

subgroups of G and H.

Proposition 2.1. In addition to the assumptions in Definition 1.3, we suppose now that

G and H are isomorphic normal subgroups of a common group G, which also acts on V , such

that the action of G and H is induced from that of G, that V is an elementary abelian group

of order relatively prime to |G|, that there is an element 1 ̸= v0 ∈ V such that for every

subgroup U ≤ G we have ρv0 : U × U → U , and finally that every subgroup W of V has a

G-conjugate, which contains v0. (Note that according to our notation, the conjugation on V

with elements in G is written as left multiplication.) Then we conclude, for the normalizer

of a subgroup W ≤ V, that τv0(NG(W )) = NH(W ).

For the proof we first note:

Claim 2.2. Let W be a subgroup of V such that g−1 ·W contains V0. Then g · v0 ∈ W.

Moreover, for every subgroup U ≤ G we have ρg·v0 : U × U → U.

Proof. The first part is obvious. For the second we shall use multiplication of complexes:

τg·v0(U) · g · v0 = U · g · v0 if and only if

g−1 · τg·v0(U) · g · v0 = g−1 · U · g · v0.

However, since G and H are normal subgroups of G, we conclude that g−1 · τg·v0(U) · g ≤ H,

which is the same as τv0(g
−1 · U · g) as one sees by looking at the action on v0. Thus we

conclude that τg·v0(U) is a subgroup of H.

We now come to the actual proof of Proposition 2.1. Let W be a subgroup of V. Because

of Claim 2.2, we may assume that v0 ∈W. Then

τv0(n) · n′ · v0 = ρv0(n, n
′) · n′ · v0 ∈W

for every n, n′ ∈ NG(W ), since by assumption ρv0(n, n
′) ∈ NG(W ). We now define

S(W ) = {w ∈W |m · w ∈W for all m ∈ τv0(NG(W )}.

According to the above. v0 ∈ S(W ), and so S(W ) ̸= {1}6. S(W ) is a subgroup of W, since

m · (w0 · w2) = (m · w1) · (m · w2).

6V is written multiplicatively.
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We shall now use induction on |W |. LetW be a minimal subgroup of V. Then S(W ) =W,

which means that τv0(NG(W )) ⊆ NH(W ). Note that τv0 is a bijection, mapping the lattice

of subgroups of isomorphically onto the lattice of subgroups of H, and hence τ−1
v0

has the

same properties as does τv0
. Thus we conclude that τv0

(NG(W )) = NH(W ).

Let now W be given. Then—note that V is abelian and has order relatively prime to

|G|—W is a module over NG(W ); moreover, V was assumed to be elementary, and so W is

completely reducible as NG(W )-module. Assume that W is reducible, i.e., W = W1 ⊕W2.

Then

NG(Wi) ⊃ NG(W ) and NG(W1) ∩NG(W2) = NG(W ).

Since τv0 is compatible with intersections, the result follows from the induction.

We thus may assume that W is a simple module for N = NG(W ). If S(W ) < W, then

S(W ) is a τv0(N)-module, since S(W ) is a union of τv0(N)-orbits. But using the inverse

map τ−1
v0 and induction on this map, we see that S(W ) is an N -module. Hence it follows

that S(W ) =W, and as before we get τv0(NG(W )) = NH(W ).

We now come to the actual proof of Proposition 1.2:

Claim 2.3. The lattice of subgroups is the same in both groups. Moreover, corresponding

groups have normalizers of the same order.

Proof of Claim 2.3. Let U be a subgroup of H1, and put U0 = U ∩ V. Then U0 has a

complement in U, say U1. However (|V |, |G1|) = 1 and so all complements to V in H1 are

conjugate. We therefore may assume that U = U0 · U1 with Uo ≤ V and U1 ≤ vUG1, where

vU ∈ V/U0 is uniquely determined, since H1 is a Frobenius group, and so all complements

are conjugate. We note that then U1 ≤ N(vU )G1
(U0). We now define Φ(U) = U0 · τv0(U1).

According to the results proved above, this is a subgroup of H2, and Φ surely gives an

order preserving bijection on the subgroups, presevering the order of NH1(U)/U (Note that

NH1(U0 · U1) = NvU G1(U1) · U0).

We note that Claim 2.3 now shows that we have an isomorphism of the Burnside matrices.

We now turn to the 2-characters and prove Proposition 1.3. We shall use the hypotheses

and notation introduced there; in addition we define σ(0) = 0. The groups G and H are

isomorphic via a map, say ρ, and thus they have isomorphic 2-characters. Since the groups

G and H operate transitively and fixed point freely on M \ {0}, there is only one faithful

irreducible character χG1 and χH1 of G1 = M · G and H1 = M ·H respectively. All other

characters are just the characters of G and H, since by assumption all complements are

conjugate –H1(G,M) = 0 because (p, |G|) = 1. Similarly as in the paper of Johnson and

Sehgal[4], we construct a map α :M ·G→M ·H by means of

α : (x, g) → (σ(x), ρ(g)) provided 0 ̸= x ∈M, g ∈ G

and

α : (0, g) → (0, ρ(g)).

For simplicity we write χ for χG1 and ψ for χH1 .

We thus only have to verify for a, b ∈ G1the relation

χ(a · b)− χ(a)− χ(b) = ψ(α(a) · α(b))− ψ(α(a))− ψ(α(b)).
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We have to treat some cases separately: Since χ and ψ are induced from faithful linear

characters of M, we have χ(g) = 0 for g ∈ G and ψ(h) = 0 for h ∈ H. The above equality

thus holds

1. if a, b ∈M,

2. if a ∈M, b ∈ G or conversely,

3. if a = (x, g) and b = (x′, g′) with g−1 ̸= g′ and x, x′ ̸= 0.

We thus have to verify the above equation only in case a = (x, g) and b = (x′, g−1) with

x, x′ ̸= 0; i.e., we then have to show: χ(a · b) = ψ(α(a) · α(b)); i.e.,

χ(x+ g · x′) = ψ(σ(x) + ρ(g) · σ(x′)).

These values are different if and only if (x + g · x′) ̸= 0 but σ(x) + ρ(g) · σ(x′) = 0 or

conversely. Now

σ(x) + ρ(g) · σ(x′) = σ(x) + σ(g · x′).

However, σ is bijective and so it is impossible that we have −x ̸= g ·x′ but ρ(−x) = ρ(g ·x′),
since σ(−m) = −σ(m) by assumption.

§3. The Construction of the Groups

We shall now describle a family of non-isomorphic groups, which contain those of Cliff

and Sehgal[1], and which can be collected in families in such a way that groups in the same

family have isomorphic character tables and isomorphic Burnside matrices. However, these

groups can be distinguished by their p-adic group rings for the prime p, since they have no

normal p′-subgroup[8] (This result also implies that integral group rings determine Frobenius

groups[6]).

These groups can be considered as subgroups of the semi-direct product of the group of

semi-linear maps acting on a fimite vectorspace.

Definition 3.1. Let Gn be a group with a cyclic normal subgroup Dn = ⟨dn⟩ of order n

with complement Cµ(n) = ⟨c⟩, where µ(n) is the Euler function, i.e., the number of primitive

n-th roots of unity. The group Dn should be interpreted as the group of n-th roots of unity,

on which Cµ(n) acts as Galois group.

By Gn,m we denote the subgroup of Gn, where the complement Cm = ⟨cm⟩ is generated

by an element of order n dividing µ(n). In addition, we require that m2 divides n, and that

m and n/m2 are relatively prime.

A further assumption is that p is a rational prime, such that Fpm is the smallest field of

characteristic p containing all n-th roots of unity. We note that this is a consequence of the

requirements which we specify now: We postulate that either n = pm − 1—this is the case,

which is considered in Cliff-Sehgal[1], where V \ {0} consists of one orbit under the action

of Gn —or (m−1∑
i=0

pi
)
· n1 = ((pm − 1)/(p− 1)) · n1 = n, (3.1)

where n1 then is a factor of p−1. We require in addition that m is odd and for y := (p−1)/n1
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we have both of the following conditions for the greatest common divisor: (y, n1) = 1 and

(y,m) = 1.

Then M = Fpm is an irreducible Gn,m-module, on which dn acts by multiplication with

a primitive n-th root of unity, and cm acts as Frobenius automorphism, i.e., raising to the

p-th power. EndGn,m(M) = Fp is the prime field.

By Gn,m,p we denote the semi-direct product of M with Gn,m.

Let bm = d
n/m2

n be an element of order m2 in Dn. There is no loss of generality, if we

assume that cmbm = bm+1
m . We note that bmm lies in the centre of Gn,m.

Claim 3.1. Let 1 ≤ i ≤ m− 1 be relatively prime to m. Then

(cm · bim)m = bi·mm (3.2)

is central.

Proof. We have

(cm · bim)m =
m∏
j=1

cjm(bim)

= b
i·
( m∑

j=1

(m+1)j
)

m ,

and so it remains to show that

i ·
( m∑
j=1

(m+ 1)j
)
≡ i ·mmodm2.

However, (m+ 1)j ≡ 1 + j ·mmodm2, and so

i ·
( m∑
j=1

(m+ 1)j
)
≡ i · (m+m2 · (m+ 1) · 1/2)modm2,

which is congruent to i ·m as claimed, since m is odd.

We are now finally in the position to define our groups as subgroups of Gn,m,p (cf. Defi-

nition 3.1).

Definition 3.2. Let 1 ≤ i ≤ m− 1 be relatively prime to m, and define the group Hn,m,i

as a subgroup of Gn,m by

Hn,m,i = ⟨dm
2

n , bmm, cm · bim⟩,

and put Hn,m,i,p = M · Hn,m,i, the semi-direct product with the module M (cf. Definition

3.1).

All of the above conditions are satisfied, for the following subgroups of the semi-linear

group F73 · F∗
73 ·C3 where d9, b ∈ F73 have order 19 and 9 respectively, c generates C3, and

Hi⟨d9, b3, c · bi⟩, i = 1, 2, then Gi = F73 ·H is a pair of such groups.

Proposition 3.1. Let 1 ≤ i ≤ m− 1 be relatively prime to m. Then the groups Hn,m,p,i

have isomorphic spectral tables.

Proof. The groups Hn,m,i are isomorphic for all i with 1 ≤ i ≤ m − 1 relatively prime

to m. In fact, since m and n/m2 are relatively prime, all these groups are isomorphic to a

semi-direct product of a cyclic group of order n/m2, generated by a, with a cyclic group of

order m2, generated by e, and e acts on a in the same way as cm acts on dm
2

n .
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Consequently we may apply Proposition 1.1 and the result will follow, if we can show that

the orbits of Hn,m,i onM = Fpm are the same for all admissible i. To do so, let ζ ∈M = Fpm

be a primitive n-th root of unity with respect to the multiplication.

Claim 3.2. StabHn,m,i(ζ) = 1.

Proof. Recall from Definition 3.2 that

Hn,m,i = ⟨dm
2

n , bmm, cm · bim⟩.

To simplify the notation, we shall write a = dm
2

n , b = bm, c = cm. Then Hi = ⟨a, bm, bi · c⟩
has an abelian normal subgroup A = ⟨a, bm⟩, which has trivial stabilizer on ζ.We recall from

above that Hi = ⟨a, c · bi⟩ and that (c · bi)m = bi·m, which has order m. Since (|a|,m) = 1,

all complements to ⟨a⟩ in Hi are conjugate, and we may replace ζ by another primitive n-th

root of unity, to conclude that

StabHi(ζ) ⊂ ⟨c · bi⟩ ⊃ ⟨bm⟩.

However, no non-trivial subgroup of ⟨bm⟩ can stabilize ζ.

We now note that our group Hi has order n, and from Claim 3.2 it follows that the

orbit ωHi(ζ) has length n. It follows from the construction that then this orbit must be the

subgroup of Fpm generated by ζ, i.e., ωHi(ζ) consists precisely of the n-th roots of unity in

Fpm . However, this set is independent of the index i in Hi.

Recall from Definition 3.1 that we have two cases: First, n = pm − 1; then the elements

Fpm \ {0} form a single orbit, and the statement follows.

In the second case (cf. Equation 3.1) we write

n = n0 · n1, where n0 = (pm − 1)/(p− 1). (3.3)

Claim 3.3. The greatest common divisor of y = (p− 1)/n1 and n is 1, and the group ⟨ζ⟩
of order n as a subgroup of Fpm has coset representatives, which can be chosen to lie in the

units of the prime field of Fpm .

Proof. The case p = 2 is of no interest, and so we may assume that p is an odd prime.

Let

ν =
(
p− 1,

m−1∑
j=0

pj
)

be the greatest common divisor. Then ν divides m—this follows by induction on m. In

order to see that (y, n) = 1, we note that by assumption (y,m) = 1 and (y, n1) = 1, the

second statement now follows easily.

This completes the proof of Proposition 3.1.

Proposition 3.2. Let 1 ≤ i ̸= j ≤ m − 1 be relatively prime to m. Then the groups

Hn,m,i,p and Hn,m,j,p (cf. Definition 3.2) are not isomorphic.

Proof. Assume to the contrary that H := Hn,m,i,p and H ′ := Hn,m,j,p are isomorphic,

via an isomorphism ϕ. We denote by S the common subgroup of H and H ′ generated by

Fpm ∪ {dm2

n , bmm}, and by Cn/m the subgroup generated by {dm2

n , bmm}.
Claim 3.4. M := Fpm is an irreducible module for Cn/m.
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Proof. According to our construction (cf. Definition 3.1) M is an irreducible module

for Cn. Now Cn/m is a subgroup of index m in Cn. If N is an irreducible constituent of

M ↓Cn/m
, then N = Fpν is a field, since Cn/m is cyclic. But then m = µ · ν. On the other

hand,

|M : N | = pµ·(ν−1) ≤ m.

The last inequality follows from orbit considerations, using Claim 3.3: Recall that

pm − 1 = n · y with y|(p − 1). Since Cn acts fixed point freely on M, there are y orbits

of length n of Cn on M , which are transformed into each other by elements in the prime

field (cf. Claim 3.3). Since each of these splits for Cn/m into m orbits, the inequality follows.

However, m2|(pµ·ν − 1), which is only possible, if ν = 1, since 2 · µ · (ν − 1) ≥ µ · ν. Hence

M remains irreducible, when restricted to Cn/m.

We now continue with the proof of Proposition 3.2. The isomorphism ϕ induces an

automorphism ϕ′ of S. Moreover, according to the Claim 3.4, M = Fpm is an irreducible

module for Cn/m with EndCn/m
(M) = Fpm .

Hence— if necessary after a conjugation—we may assume

ϕ′ : S → S,

(x,α) → (σ(x), αi),

where α is a generator of Cn/m and σ is an Fp-automorphism of M with σ(α ·x) = αi ·σ(x)
and i is relatively prime to n/m. It should be noted that all complements to M in S are

conjugate. However, not all indices i are possible. In fact, only those values can be attained,

such that the twisted module iM under the automorphism α→ αi is isomorphic to M.

Alltogether, Cn/m has µ(n/m) automorphisms, and there are µ(n/m)/m non-isomorphic

faithful irreducible FpCn/m-modules, since Fpm is a splitting field for Cn/m and so each of

them is isomorphic to Fpm . On each of these modules the Frobenius automorphism acts

Fp-linearly. Moreover, the unique subgroup of order m in Aut(Cn/m) stabilizes M. But

this is exactly the group generated by the Frobenius automorphism of Fpm , i.e., the group

generated by cm (cf. Definition 3.1), and so the twisted module iM is the moduleM twisted

be a power of the Frobenius automorphism. Since the conjugation action of cm · bim on S is

the same as that of cm —in both cases it is the Frobenius automorphism—we may apply a

conjugation in H and H ′ respectively to arrange that

ϕ′ : S → S,

(x,α) → (σ(x), α), (3.4)

But then σ is an FpCn/m linear map, which is given by multiplication with x0 ∈ F∗
pm .

Since all groups of order m2 in H and H ′ respectively are conjugate by the theorem of

Schur-Zassenhaus, we may assume that ϕ maps cm · bim to (cm · bjm)k. We recall from Claim

3.1 that

(cm · bim)m = bi·mm and (cm · bjm)k·m = bj·k·mm .

Applying ϕ and Equation (3.4), we get i = k · jmodm. On the other hand, we have for
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x ∈ Fpm the equality

ϕ(cm·bimx) = (bim · x)p · x0.

Evaluating this equation on both sides and solving with respect to x we conclude that

for every x ∈ Fpm the expression xp·(1−pk) is a constant. Since raising to the p-th power is

an automorphism of Fpm , we have that for every x ∈ Fpm the expression x1−pk

is constant.

But that is a contradiction, since 1 < k < m.

We now show that our groups have isomorphic Burnside matrices, by proving

Claim 3.5. The groups Hn,m,i,p and Hn,m,j,p, 1 ≤ i ̸= j ≤ m− 1, satisfy the hypotheses

of Proposition 1.2 in Section 1.

Proof. It only remains to show that we can find an element v0 in Fpm such that τv0
maps the subgroups of Hn,m,i to those of Hn,m,j . We choose v0 ∈ Fp, the prime field in

Fpm . Then τv0 acts trivially on ⟨dm2

n , bmm⟩ and τv0 maps ⟨cm · bim⟩ to ⟨cm · bjm⟩ as one sees by

inspection of the action of these groups on v0 (It is worthwile to note that

τv0 : ⟨cm · bim⟩ → ⟨cm · bjm⟩

is not a group homomorphism).

Finally, it is clear that the groups in case n = pm − 1 surely satisfy the hypotheses of

Proposition 1.3, and hence have the same 2-character tables. Note the codition σ(−m) =

−σ(m) is satisfied, since in case p is odd, 2 divides n. (A similar statement was in great

detail proved by K. W. Johnson and S. K. Sehgal[4].)
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