WEAK TRAVELLING WAVE FRONT SOLUTIONS OF GENERALIZED DIFFUSION EQUATIONS WITH REACTION

WANG JUNYU*

Abstract

The author demonstrate that the two-point boundary value problem

$$\begin{cases} p'(s) = f'(s) - \lambda p^{\beta}(s) & \text{for } s \in (0,1); \beta \in (0,1), \\ p(0) = p(1) = 0, p(s) > 0 & \text{if } s \in (0,1), \end{cases}$$

has a solution $(\bar{\lambda}, \bar{p}(s))$, where $|\bar{\lambda}|$ is the smallest parameter, under the minimal stringent restrictions on f(s), by applying the shooting and regularization methods. In a classic paper, Kolmogorov et. al. studied in 1937 a problem which can be converted into a special case of the above problem.

The author also use the solution $(\bar{\lambda}, \bar{p}(s))$ to construct a weak travelling wave front solution $u(x, t) = y(\xi), \ \xi = x - Ct, \ C = \bar{\lambda}N/(N+1)$, of the generalized diffusion equation with reaction

$$\frac{\partial}{\partial x}\left(k(u)\left|\frac{\partial u}{\partial x}\right|^{N-1}\frac{\partial u}{\partial x}\right)-\frac{\partial u}{\partial t}=g(u),$$

where N > 0, k(s) > 0 a.e. on [0, 1], and $f(s) := \frac{N+1}{N} \int_0^s g(t) k^{1/N}(t) dt$ is absolutely continuous on [0, 1], while $y(\xi)$ is increasing and absolutely continuous on $(-\infty, +\infty)$ and

$$(k(y(\xi))|y'(\xi)|^N)' = g(y(\xi)) - Cy'(\xi)$$
 a.e. on $(-\infty, +\infty)$,

$$y(-\infty) = 0, \qquad y(+\infty) = 1.$$

Keywords Generalized diffusion equation, Weak travelling wave front solution,

Two-point boundary value problem, Shooting method, Regularization method. 1991 MR Subject Classification 35K57.

§1. Introduction

The second-order quasilinear parabolic equation

$$\frac{\partial}{\partial x} \left(k(u) \left| \frac{\partial u}{\partial x} \right|^{N-1} \frac{\partial u}{\partial x} \right) - \frac{\partial u}{\partial t} = 0$$
(1.1)

has been suggested as a model for certain generalized diffusion processes by $Philip^{[1]}$ and some similarity solutions of (1.1) have been given by Atkinson and Bouillet^[2], Bouillet and

Manuscript received April 5, 1992. Revised July 10, 1993.

^{*}Department of Mathematics, Jilin University, Changchun 130023, China

Gomes^[3], and Wang^[4], where N is a positive constant and k(u) is assumed to be positive a.e. on $(-\infty, +\infty)$ so that $k^{1/N}(u)$ is locally Lebesgue integrable in $(-\infty, +\infty)$.

As the title suggests, this paper is concerned with the existence of weak travelling wave front solutions of the equation (1.1) with reaction, namely

$$\frac{\partial}{\partial x} \left(k(u) \left| \frac{\partial u}{\partial x} \right|^{N-1} \frac{\partial u}{\partial x} \right) - \frac{\partial u}{\partial t} = g(u).$$
(1.2)

Throughout this paper the following hypotheses are adopted:

(H₁) N is a positive constant.

(H₂) k(s) is a measurable function which is defined and positive a.e. on $(-\infty, +\infty)$ such that $k^{1/N}(s)$ is Lebesgue integrable on [0, 1].

(H₃) g(s) is a bounded measurable function defined on $(-\infty, +\infty)$, and

$$q(s) = 0$$
 for $s \le 0$ and $s \ge 1$.

(H₄) $f(s) := \frac{N+1}{N} \int_0^s g(t) k^{1/N}(t) dt$ is an absolutely continuous function defined on [0, 1] such that one of the following five conditions holds:

(H₄₁) There exists a point $s = A \in (0, 1)$ such that f(s) is positive in (0, A) and negative in (A, 1]. Moreover, $D_+f(s)$, the right hand lower derivative of f(s), is negative in (A, 1).

 $(H_{42}) f(s)$ is negative in (0, 1] and $D_+f(s)$ is negative and bounded in (0, 1).

(H₄₃) There is a point $s = B \in (0,1)$ such that f(s) - f(1) is negative in [0,B) and positive in (B,1). Moreover, $D^-f(s)$, the left hand upper derivative of f(s), is positive in (0,B).

(H₄₄) f(s) is positive in (0,1] and $D^-f(s)$ is positive and bounded in (0,1).

 $(H_{45}) f(s)$ is positive in (0, 1) and f(1) = 0.

It goes without saying that for almost all $s \in (0, 1)$, f'(s), a derivative of f(s), exists and N + 1

$$D_+f(s) = D^-f(s) = f'(s) = \frac{N+1}{N}g(s)k^{1/N}(s).$$

The following hypotheses (H'_2) and (H'_3) can replace (H_2) and (H_3) , respectively, because they also ensure that the function f(s) is absolutely continuous on [0, 1].

(H₂) k(s) is a bounded measurable function defined on $(-\infty, +\infty)$. Moreover, k(s) is positive a.e. on $(-\infty, +\infty)$.

 $(\mathrm{H}'_3) g(s)$ is a Lebesgue integrable function defined on $(-\infty, +\infty)$ and

$$g(s) = 0$$
 for $s \le 0$ and $s \ge 1$.

In their classic paper^[5], Kolmogorov et. al. discussed the existence and stability of travelling wave solutions for the simple parabolic equation

$$\frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = g(u), \tag{1.3}$$

where g(u) has the same properties as the function u(u-1). Subsequently, many authors have considered the existence and stability of travelling wave solutions of (1.3) under certain restrictions on g(u). For details, see [6-11].

Aronson^[12], Hosono^[13], Grindrod and Sleeman^[14], de Pablo and Vazquez^[15], and Wang^[16] have studied some special cases of (1.2) where N = 1, k(s) is a continuously differentiable function defined on $[0, +\infty)$ with k(0) = k'(0) = 0 and k'(s) > 0 for s > 0, and k(s)g(s) has the same properties as the function $-s^{\alpha}$ with $\alpha > 0$ or $s^{\alpha}(s^{\beta} - 1)$ with $\alpha, \beta > 0$ or $s^{\alpha}(s^{\beta} - 1)(s^{\gamma} - a)$ with $\alpha, \beta, \gamma > 0$ and $a \in (0, 1)$.

All of the above authors, including the authors of [6-11], applied the phase plane method in proving the existence of (weak) travelling wave front solutions.

In the present paper, we demonstrate that under the hypothesis (H_4) a two-point boundary value problem of the form

$$\begin{cases} p'(s) = f'(s) - \lambda p^{\beta}(s) & \text{for } s \in (0,1); \beta \in (0,1), \\ p(0) = p(1) = 0, p(s) > 0 & \text{if } s \in (0,1), \end{cases}$$
(1.4)

has a solution $(\bar{\lambda}, \bar{p}(s))$, by applying the shooting and regularization methods, where $|\bar{\lambda}|$ is the smallest parameter. Subsequently, we construct a weak travelling wave front solution of the equation (1.2) utilizing the solution $(\bar{\lambda}, \bar{p}(s))$.

\S **2.** Formal Reduction

In this section we convert the problem of finding travelling wave front solutions of the equation (1.2) into the two-point boundary value problem (1.4).

Definition 2.1. We call a function of the form

$$u(x,t) = y(\xi), \quad \xi = x - Ct,$$

a weak travelling wave front solution of (1.2), if the following conditions hold:

(a) $y(\xi)$ is an increasing, absolutely continuous function defined on $(-\infty, +\infty)$.

(b) $y(-\infty) = 0$ and $y(+\infty) = 1$. (2.1)

(c) $z(\xi) := k(y(\xi))|y'(\xi)|^N$ is (equivalent to) an absolutely continuous function defined on $(-\infty, +\infty)$.

(d)
$$z(-\infty) = 0$$
 and $z(+\infty) = 0.$ (2.2)

(e) There exists a finite real number C such that

$$g(y(\xi)) - Cy'(\xi) = (k(y(\xi))|y'(\xi)|^N)' := z'(\xi) \quad a.e. \text{ on } (\infty, +\infty).$$

$$(2.3)$$

Let u(x,t) = y(x - Ct) be a weak travelling wave front solution of (1.2). If $y(\xi)$ is strictly increasing, then the function $\xi = v(s)$, inverse to $s = y(\xi)$, exists, and hence s = y(v(s)) for all $s \in (0,1)$ and y'(v(s)) = 1/v'(s) > 0 a.e. in (0,1). Inserting $\xi = v(s)$ into (2.3) and then putting

$$w(s) := k(s)|v'(s)|^{-N}, \qquad 0 < s < 1,$$
(2.4)

i.e.,

$$v'(s) = k^{1/N}(s)w^{-1/N}(s), \qquad 0 < s < 1,$$
(2.5)

we arrive at a two-point boundary value problem of the form

$$\begin{cases} w'(s) = g(s)k^{1/N}(s)w^{-1/N}(s) - C, & 0 < s < 1, \\ w(0) = 0, & w(1) = 0. \end{cases}$$
(2.6)

Let us denote

$$p(s) := w^{(N+1)/N}(s), \quad \lambda := C(N+1)/N, \quad \beta := 1/(N+1).$$
 (2.7)

(3.1)

Then the problem (2.6) is transformed into (1.4).

It must be pointed out that the two endpoints s = 0 and s = 1 are singular in (2.6) (resp. (1.4)) and the parameter C (resp. λ) is unknown a priori and must be determined as part of the solution.

There is another formal reduction. In fact, (2.1)-(2.3) can be written as

$$\begin{cases} \frac{dy}{d\xi} = \left(\frac{z}{k(y)}\right)^{1/N}, & \frac{dz}{d\xi} = g(y) - C\left(\frac{z}{k(y)}\right)^{1/N}, & \xi \in (-\infty, +\infty), \\ (y, z)|_{\xi = -\infty} = (0, 0), & (y, z)|_{\xi = +\infty} = (1, 0). \end{cases}$$

$$(2.8)$$

Eliminating ξ from (2.8), we obtain

$$\begin{cases} \frac{dz}{dy} = g(y)k^{1/N}(y)z^{-1/N} - C, & 0 < y < 1, \\ z|_{y=0} = 0, & z|_{y=1} = 0, \end{cases}$$

which is identical to (2.6).

Some particular cases of (2.8) have been investigated by many authors^[5-16] in the (y, z) phase plane. However, to our knowledge, the singular two-point boundary value problem (1.4) has not been directly studied before.

§3. Two-Point Boundary Value Problem

The present section is the core of this paper. In this section we demonstrate that the two-point boundary value problem (1.4) has at least one solution.

When $f(1) \neq 0$, we need to consider the two-point boundary value problem only involving one singular endpoint

$$\begin{cases} p'(s) = f'(s) - \lambda p^{\beta}(s), & 0 < s < 1\\ p(0) = h \in (0, -f(1)), & p(1) = 0 \end{cases}$$
(1.4)⁻_h

if f(1) < 0 or

$$\begin{cases} p'(s) = f'(s) - \lambda p^{\beta}(s), & 0 < s < 1, \\ p(0) = 0, & p(1) = h \in (0, f(1)) \end{cases}$$
(1.4)⁺

if f(1) > 0.

Definition 3.1. A pair $(\lambda, p(s))$ is called a solution of $(1.4)_h^-$ (resp. $(1.4)_h^+$), if (a) λ is a finite real number,

(b) p(s) is a nonnegative, absolutely continuous function defined on [0, 1],

(c) p(0) = h and p(1) = 0 (resp. p(0) = 0 and p(1) = h), and

(d)
$$p'(s) = f'(s) - \lambda p^{\beta}(s)$$
 a.e. on [0, 1].

In this definition, the parameter h is allowed to be zero. When h = 0, $(1.4)_h^-$ (resp. $(1.4)_h^+$) is identical to (1.4).

Lemma 3.1. Let $(\lambda, p(s))$ be a solution of $(1.4)_h^-$ (resp. $(1.4)_h^+$). Then

$$\lambda = \frac{f(1) + h}{\int_0^1 p^\beta(s) ds} < 0 \left(resp. \ \lambda = \frac{f(1) - h}{\int_0^1 p^\beta(s) ds} > 0 \right).$$
(3.2)

Proof. Integrating (3.1) over [0, 1], we obtain (3.2).

Clearly, when f(1) = 0, the pair (0, f(s)) is a unique solution of (1.4). Lemma 3.2. Let $(\lambda, p(s))$ be a solution of (1.4). Then p(s) > 0 in (0, 1).

Proof. When f(1) = 0, $\lambda = 0$, p(s) = f(s). The lemma is obviously true.

First assume f(1) < 0. If $p(s_0) = 0$, where $s_0 \in (0, 1)$, then Lemma 3.1 implies that $s_0 \in (A, 1)$ when f(s) satisfies (H₄₁). Integrating (3.1) over $[s_0, s_0 + \delta]$, a subinterval of $[s_0, 1)$, dividing the result by δ and then letting $\delta \downarrow 0$, we get $0 \leq D_+ p(s_0) = D_+ f(s_0) < 0$, which is absurd.

Next, assume f(1) > 0. If $p(s_0) = 0$, where $s_0 \in (0, 1)$, then Lemma 3.1 implies that $s_0 \in (0, B)$ when f(s) satisfies (H₄₃). In the same way as above, we get

$$0 \ge D^- p(s_0) = D^- f(s_0) > 0,$$

which is also absurd. This completes the proof of the lemma.

Lemma 3.3. Let $(\lambda_1, p_1(s))$ and $(\lambda_2, p_2(s))$ be solutions of $(1.4)_h^{\pm}$ with $h \ge 0$. If

$$p_1(a) = p_2(a), p_1(b) = p_2(b), \quad 0 \le a < b \le 1, \text{ and } p_1(a) + p_1(b) > 0,$$

then $\lambda_1 = \lambda_2$ and $p_1(s) \equiv p_2(s)$ on [a, b].

Proof. If this is not the case, by Lemma 3.1 and the continuity of $p_1(s)$ and $p_2(s)$, we may without loss of generality assume that $\lambda_1 < 0$, $\lambda_2 < 0$, and $p_1(s) < p_2(s)$ in (a, b). Note that

$$p'_1(s) - p'_2(s) = \lambda_2 p_2^\beta(s) - \lambda_1 p_1^\beta(s)$$
 a.e. in (0,1). (3.3)

When $\lambda_2 \leq \lambda_1 < 0$, we integrate (3.3) over [a, b] to give

$$0 = \lambda_2 \int_a^b [p_2^\beta(s) - p_1^\beta(s)] ds + (\lambda_2 - \lambda_1) \int_a^b p_1^\beta(s) ds < 0$$

which is a contradiction.

When $\lambda_1 < \lambda_2 < 0$ and (say) $p_1(a) > 0$, there exists a subinterval $[a, s_0]$ of [a, b), where $\lambda_2 p_2^\beta(s) - \lambda_1 p_1^\beta(s) > 0$. Integrating (3.3) over $[a, s_0]$, we get

$$p_1(s_0) - p_2(s_0) > 0, \qquad s_0 \in (a, b),$$

which contradicts the assumption that $p_1(s) - p_2(s) < 0$ in (a, b). The lemma is proved.

Corollary 3.1. $(1.4)_h^{\pm}$ with h > 0 has at most one solution.

Corollary 3.2. Let both $(\lambda_1, p_1(s))$ and $(\lambda_2, p_2(s))$ be solutions of (1.4). Then either $p_1(s) \equiv p_2(s)$ on [0, 1], $\lambda_1 = \lambda_2$ or $p_1(s) > p_2(s)$ in (0, 1), $|\lambda_1| < |\lambda_2|$.

Proof. From Lemma 3.2, we know that $p_1(s) > 0$ and $p_2(s) > 0$ in (0, 1). There are two possibilities. If there exists a point $c \in (0, 1)$ such that $p_1(c) = p_2(c)$, then $p_1(s) \equiv p_2(s)$ on [0, 1] and $\lambda_1 = \lambda_2$, by Lemma 3.3. If there is no interior point of (0, 1) at which $p_1(s) = p_2(s)$, then $(say) p_1(s) > p_2(s)$ in (0, 1) and hence

$$|\lambda_1| = |f(1)| / \int_0^1 p_1^\beta(s) ds < |f(1)| / \int_0^1 p_2^\beta(s) ds = |\lambda_2|$$

by Lemma 3.1. The proof concludes.

In what follows we demonstrate that under the hypothesis (H_{41}) or (H_{42}) the problem $(1.4)_h^-$ has a solution by applying the shooting and regularization methods.

Lemma 3.4. For each pair of fixed $\lambda \leq 0$ and $h \in (0, -f(1))$, the initial value problem

$$\begin{cases} p'(s) = f'(s) - \lambda p^{\beta}(s), & s > 0, \\ p(0) = h \end{cases}$$

$$(3.4)_{h}^{\lambda}$$

has a unique solution $p(s; \lambda, h)$ on [0, r), its maximal interval of existence. If r < 1, then $p(r - 0; \lambda, h) = 0$; if r = 1, then $p(1 - 0; \lambda, h) \ge 0$. Moreover, $p(s; \lambda, h)$ is continuous and strictly increasing in h and $-\lambda$ in the following sense:

(a) If $h_1 > h_2 > 0$, then $p(s; \lambda, h_1) > p(s; \lambda, h_2)$ in the maximal interval of existence for $p(s; \lambda, h_2)$.

(b) If $-\lambda_1 > -\lambda_2 \ge 0$, then $p(s; \lambda_1, h) > p(s; \lambda_2, h)$ in the maximal interval of existence for $p(s; \lambda_2, h)$.

Although the proof of Lemma 3.4 (for the case when f'(s) is continuous on [0, 1]) can be found in [17, pp.8-15], we shall reproduce it here, in consideration of not only the completeness but also the fact that a detailed knowledge of the properties of p will be important in our discussion of existence.

Proof of Lemma 3.4. Let $[0, \delta]$ be a (maximal) subinterval of [0, 1] on which

$$q(s) := \frac{h}{2} + f(s) - \lambda s \left(\frac{h}{2}\right)^{\beta} \ge 0$$

and put

$$M^{1/\beta} := \max_{s \in (0,\delta)} \{q(s)\}, \qquad L := \max\left\{M, \beta\left(\frac{h}{2}\right)^{\beta-1}\right\},$$
$$p_0(s) := \frac{h}{2}, \qquad p_{n+1}(s) := (\Phi p_n)(s), \qquad n = 0, 1, 2, \cdots,$$
(3.5)

where

$$(\Phi p)(s) := h + f(s) - \lambda \int_0^s p^\beta(t) dt.$$
 (3.6)

It is clear that

$$0 \le p_1(s) - p_0(s) = q(s) \le M^{1/\beta}, \qquad s \in [0, \delta],$$

and

$$0 \le p_1^{\beta}(s) - p_0^{\beta}(s) \le [p_1(s) - p_0(s)]^{\beta} \le L, \qquad s \in [0, \delta].$$

Here we have used the inequality

$$(a+b)^{\beta} \leq a^{\beta} + b^{\beta}$$
 for $a, b \geq 0, 0 < \beta < 1$

The definition of Φ implies that h

 $\overline{2}$

$$= p_0(s) \le p_1(s) \le \dots \le p_n(s) \le p_{n+1}(s) \le \dots, \qquad s \in [0, \delta],$$

and hence

$$0 \le p_{n+1}^{\beta}(s) - p_n^{\beta}(s) \le L[p_{n+1}(s) - p_n(s)], \qquad s \in [0, \delta], n = 1, 2, \cdots.$$

Thus, it is readily verified by induction that

$$0 \le p_{n+1}(s) - p_n(s) \le \frac{1}{n!} (-\lambda Ls)^n, \qquad s \in [0, \delta], n = 1, 2, \cdots.$$

It follows that the series

$$p_1(s) + \sum_{n=1}^{\infty} [p_{n+1}(s) - p_n(s)]$$

is uniformly convergent on $[0, \delta]$, that is,

$$p(s;\lambda,h) := \lim_{n \to \infty} p_n(s) \text{ exists uniformly on } [0,\delta].$$
(3.7)

Thus, term-by-term integration is applicable to the integrals in (3.5) and gives

$$p(s;\lambda,h) = h + f(s) - \lambda \int_0^s p^\beta(t;\lambda,h) dt.$$
(3.8)

Therefore, (3.7) is a solution of $(3.4)_{h}^{\lambda}$ on $[0, \delta]$. When $\delta < 1$ we consider the initial value problem.

When
$$\delta < 1$$
, we consider the initial value problem

$$\begin{cases} p'(s) = f'(s) - \lambda p^{\beta}(s), & s \ge \delta \\ p(\delta) = h_1 := p(\delta; \lambda, h). \end{cases}$$

Repeating the above argument, we can conclude that there is a subinterval $[0, \delta + \delta_1]$ of [0, 1] on which a solution $p(s; \lambda, h)$ of $(3.4)^{\lambda}_h$ is defined. Continuing this procedure, we can obtain a solution $p(s; \lambda, h)$ of $(3.4)^{\lambda}_h$ on [0, r), where $r = \delta + \delta_1 + \delta_2 + \cdots$.

The local Lipschitz continuity of the nonlinear function p^{β} with respect to p > 0 implies the uniqueness of $p(s; \lambda, h)$. The remainders of Lemma 3.4 follows from Lemma 3.3 and the part of Lemma 3.4 which has already been proved.

Lemma 3.5. Let $E_h := \{\lambda \leq 0; p(1-0;\lambda,h) > 0\}$. Then there is a $\lambda_0 < 0$ such that $(-\infty, \lambda_0] \subset E_h$.

Proof. If f(s) satisfies (H₄₁), we choose a $\lambda_0 < 0$ such that

$$\frac{h}{2} + f(1) - \lambda_0 A\left(\frac{h}{2}\right)^{\beta} = 0;$$

if f(s) satisfies (H₄₂), we pick out a $\lambda_0 < 0$ such that

$$\frac{h}{2} + \inf_{0 < s < 1} D_+ f(s) - \lambda_0 \left(\frac{h}{2}\right)^{\beta} = 0.$$

Therefore, for all $\lambda \leq \lambda_0$

$$q(s) := \frac{h}{2} + f(s) - \lambda s \left(\frac{h}{2}\right)^{\beta} \ge 0, \qquad s \in [0, 1]$$

and

$$p(s;\lambda,h) := \lim_{n \to \infty} p_n(s) \ge \frac{h}{2}, \qquad s \in [0,1].$$

This means that $(-\infty, \lambda_0] \subset E_h$.

Lemma 3.6. E_h is an open set.

Proof. The lemma follows from Lemma 3.4 and the fact that $\lambda = 0$ is not in E_h .

Lemma 3.7. $(1.4)_h^-$ with h > 0 has a solution $(\lambda(h), p(s, h))$. Moreover, p(s, h) and $\lambda(h)$ are continuous and strictly increasing in h > 0.

Proof. Let us define $\lambda(h) := \sup E_h(<0)$ and pick out a sequence $\{\lambda_j \in E_h; j = 1, 2, \dots\}$ which is strictly increasing and converges to $\lambda(h)$. Then the sequence $\{p(s; \lambda_j, h); j = 1, 2, \dots\}$ is strictly decreasing and converges to a limit p(s, h) uniformly on [0, 1]. Inserting the pair $(\lambda_j, p(s; \lambda_j, h))$ into the equation (2.8) and then letting $j \to \infty$, we get

$$p(s;h) = h + f(s) - \lambda(h) \int_0^x p^\beta(t,h) dt (\ge 0), \qquad x \in [0,1].$$
(3.9)

We claim that the pair $(\lambda(h), p(s, h))$ is a solution of $(1.4)_h^-$. It is enough to show that p(1, h) = 0. If p(1, h) > 0, then $\lambda(h) \in E_h$ by Lemma 3.4. This contradicts the fact that E_h is an open set.

If $h_1 > h_2 > 0$, then $p(s, h_1) > p(s, h_2) > 0$ in [0, 1) by Lemmas 3.3 and 3.2. From this it follows by (3.9) that

$$h_1 - h_2 = \lambda(h_1) \int_0^1 p^\beta(t, h_1) dt - \lambda(h_2) \int_0^1 p^\beta(t, h_2) dt > 0,$$

which implies that $0 > \lambda(h_1) > \lambda(h_2)$. This completes the proof.

Lemma 3.8. Let (H₄₁) or (H₄₂) hold. Then the problem (1.4) has a smallest parameter solution $(\bar{\lambda}, \bar{p}(s))$ in the following sense:

If $(\lambda, p(s))$ is any solution of (1.4), then $|\lambda| \ge |\overline{\lambda}|$ and $p(s) \le \overline{p}(s)$ in (0, 1).

Proof. Let $(\lambda(h), p(s, h))$ be a solution of $(1.4)_h^-$. Then p(s, h) and $\lambda(h)$ are continuous and strictly increasing in h > 0. Consequently,

$$\begin{split} \bar{p}(s) &:= \lim_{h \downarrow 0} p(s;h) (\geq 0) \text{ exists uniformly on } [0,1] \\ \bar{\lambda} &:= \lim_{h \downarrow 0} \lambda(h) = f(1) / \int_0^1 \bar{p}^\beta(s) ds < 0. \end{split}$$

Inserting $(\lambda(h), p(s, h))$ into (3.9) and then letting $h \downarrow 0$, we get

$$\bar{p}(s) = f(s) - \bar{\lambda} \int_0^s \bar{p}^\beta(t) dt \ge 0$$
 on $[0, 1]$,

which shows that $(\bar{\lambda}, \bar{p}(s))$ is a solution of (1.4) and $\bar{p}(s) > 0$ in (0,1) by Lemma 3.2.

We now prove that $|\bar{\lambda}|$ is the smallest parameter. If $(\bar{\lambda}, \bar{p}(s))$ is not the smallest parameter solution of (1.4), then there exists a solution $(\lambda, p(s))$ such that $|\lambda| < |\bar{\lambda}|$ and $p(s) > \bar{p}(s)$ in (0,1) by Corollary 3.2. Since $\bar{p}(s) = \lim_{h\downarrow 0} p(s,h)$, there are two numbers h > 0 and $a \in (0,1)$ such that p(a) = p(a,h). According to Lemma 3.3, $p(s,h) \equiv p(s)$ on [a,1]. This is not possible. The proof of Lemma 3.8 concludes.

In very much the same way, we can demonstrate that under the hypothesis (H₄₃) or (H₄₄) the problem (1.4) has a solution $(\bar{\lambda}, \bar{p}(s))$, where $|\bar{\lambda}|$ is the smallest parameter.

We summarize the results above in the following statement.

Theorem 3.1. Suppose that (H₄) holds. Then the smallest parameter solution $(\lambda, \bar{p}(s))$ of the problem (1.4) exists. Moreover, $\bar{p}(s)$ is positive in (0, 1).

§4. Weak Travelling Wave Front Solutions

In this section we construct a weak travelling wave front solution $u(x,t) = y(\xi), \xi = x - Ct$, of (1.2) for some constant wave speed C, utilizing the solution $(\bar{\lambda}, \bar{p}(s))$ of (1.4).

We first introduce four propositions that are used in the ensuing paragraphs.

Proposition 4.1 (Corollary 4 in [18]). If $y(\xi)$ is increasing on [a, b] and if w(s) is absolutely continuous on [y(a), y(b)], then $w(y(\xi))$ has a finite derivative a.e. on [a, b] and the chain rule

$$\frac{d}{d\xi}w(y(\xi)) = w'(y(\xi))y'(\xi)$$

holds.

Proposition 4.2 (Corollary 6 in [18]). Suppose that $y(\xi)$ is increasing and absolutely continuous on [a, b] and $\phi(s)$ is Lebesgue integrable on [y(a), y(b)]. Then $\phi(y(\xi))y'(\xi)$ is integrable on [y(a), y(b)] and the change of variables formula

$$\int_a^b \phi(y(\xi))y'(\xi)d\xi = \Phi(y(b)) - \Phi(y(a))$$

holds, where $\Phi(s)$ is an indefinite integral of $\phi(s)$.

- h

Proposition 4.3. If v(s) is strictly increasing and locally absolutely continuous in (0, 1), then the function $s = y(\xi)$, inverse to $\xi = v(s)$, is strictly increasing and absolutely continuous on (ξ_0, ξ_1) , where $\xi_0 := v(0+0)$ and $\xi_1 := v(1-0)$. Moreover,

$$y(\xi_0) := \lim_{\xi \downarrow \xi_0} y(\xi) = 0 \text{ and } y(\xi_1) := \lim_{\xi \uparrow \xi_1} y(\xi) = 1.$$

Proof. Clearly, it is enough to show that $y(\xi)$ is absolutely continuous on (ξ_0, ξ_1) .

Since $y(\xi)$ is strictly increasing and absolutely continuous in (ξ_0, ξ_1) , $y'(\xi)$ exists a.e. and is locally integrable in (ξ_0, ξ_1) . Let [a, b] be a subinterval of (0, 1). Then an application of the change of variables formula gives

$$\int_{v(a)}^{v(b)} y'(\xi) d\xi = \int_{\alpha}^{\beta} y'(v(s))v'(s) ds = b - a = y(v(b)) - y(v(a)).$$

Here we have used the fact that s = y(v(s)) in (0, 1). Letting $a \downarrow 0$ and $b \uparrow 1$ yields

$$\int_{\xi_0}^{\xi_1} y'(\xi) = 1,$$

which shows that $y(\xi)$ is absolutely continuous on (ξ_0, ξ_1) .

Proposition 4.4. Let $y(\xi)$ be an increasing, absolutely continuous function defined on $(-\infty, +\infty)$ with $y(-\infty) = 0$ and $y(+\infty) = 1$ and let w(s) be an absolutely continuous function defined on [0,1]. The $w(y(\xi))$ is absolutely continuous on $(-\infty, +\infty)$.

Proof. The lemma is an immediate consequence of Propositions 4.1 and 4.2.

Let $(\bar{\lambda}, \bar{p}(s))$ be the smallest parameter solution of (1.4) and let

$$w(s) := \bar{p}^{N/(N+1)}(s), \quad C := \frac{\bar{\lambda}N}{N+1}, \quad N := \frac{1-\beta}{\beta}, \quad v(s) := \int_{\frac{1}{2}}^{s} \left(\frac{k(t)}{w(t)}\right)^{1/N} dt.$$

Then

$$w(0) = w(1) = 0, w(s) > 0 \text{ in } (0, 1),$$

$$w'(s) = k^{1/N}(s)w^{-1/N}(s) = 0 \text{ in } (0, 1)$$
(4.1)

$$v'(s) = k^{1/N}(s)w^{-1/N}(s)$$
 a.e. in (0,1), (4.1)

$$w'(s) = g(s)v'(s) - C \text{ a.e. in } (0,1), \tag{4.2}$$

and

$$w(s) = k(s)|v'(s)|^{-N}$$
 a.e. in (0,1). (4.3)

It follows from (4.1) that v(s) is strictly increasing and locally absolutely continuous in (0, 1) and hence the function $s = y(\xi)$, inverse to $\xi = v(s)$, exists in (ξ_0, ξ_1) , where

$$\xi_0 := v(0+0), \quad \xi_1 := v(1-0), \quad \text{i.e., } y(\xi_0) = 0, y(\xi_1) = 1.$$

Proposition 4.3 asserts that $y(\xi)$ is absolutely continuous and strictly increasing on (ξ_0, ξ_1) . When ξ_0 (resp. ξ_1) is finite, we define

$$y(\xi) = 0$$
 for all $\xi \le \xi_0$ (resp. $y(\xi) = 1$ for all $\xi \ge \xi_1$).

Clearly, $y(\xi)$ is increasing and absolutely continuous on $(-\infty, +\infty)$ no matter whether ξ_0 (or ξ_1) is finite or not.

Inserting $s = y(\xi)$ into (4.2) and (4.3), we obtain

$$w'(y(\xi))y'(\xi) = g(y(\xi)) - Cy'(\xi) \text{ a.e. in } (\xi_0, \xi_1),$$
(4.4)

$$w(y(\xi)) = k(y(\xi))|y'(\xi)|^{N-1}y'(\xi) \text{ a.e. in } (\xi_0, \xi_1),$$
(4.5)

and

$$\lim_{\xi \downarrow \xi_0} w(y(\xi)) = \lim_{\xi \uparrow \xi_1} w(y(\xi)) = 0,$$

and hence (by the chain rule)

$$\begin{aligned} (k(y(\xi))|y'(\xi)|^{N-1}y'(\xi))' &= w'(y(\xi))y'(\xi) \\ &= g(y(\xi)) - Cy'(\xi) \text{ a.e. in } (\xi_0,\xi_1). \end{aligned}$$
(4.6)

Here we have used the fact that $y'(\xi) = 1/v'(y(\xi)) > 0$ a.e. in (ξ_0, ξ_1) . When ξ_0 (or ξ_1) is finite, the equalities (4.4), (4.5) and (4.6) read 0 = 0 on $(-\infty, \xi_0]$ (or on $[\xi_1, +\infty)$).

Proposition 4.4 claims that the function $w(y(\xi))$ is absolutely continuous on $(-\infty, +\infty)$ and hence u(x,t) = y(x - Ct) is a weak travelling wave front solution of the equation (1.2), where $|C| = |\overline{\lambda}|N/(N+1)$ is the smallest wave speed.

We can summarize the preceding discussion in the following statement.

Theorem 4.1. Let (H₁)-(H₄) hold. Then the equation (1.2) possesses a weak travelling wave front solution u(x,t) = y(x - Ct) with $|C| = |\bar{\lambda}|N/(N+1)$ being the smallest wave speed, where $\bar{\lambda}$ is given by Theorem 3.1.

References

- [1] Philip, J. R., n-diffusion, Australian J. Phys., 14 (1961), 1-13.
- [2] Atkinson, C. & Bouillet, J. E., Some qualitative properties of solutions of a generalized diffusion equaiton, Math. Proc. Camb. Phil. Soc., 86 (1979), 495-510.
- [3] Bouillet, J. E. & Gomes, S. M., An equation with a singular nonlinearity related to diffusion problems in one dimension, Q. Appl. Math., 395-402.
- [4] Wang Junyu, A free boundary problem for a generalized diffusion equation, Nonlinear Analysis TMA, 14 (1990), 691-700.
- [5] Kolmogorov, A. N., Petrovsky, I. G. & Piskunov, N. S., Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bull. Univ. Moskov. Ser. Internat., Sect. A, 1: 6 (1937), 1-25.
- [6] Aronson, D. G. & Weinberger, H. F., Nonlinear diffusion in population genetics, combustion and nerve propagation, in "Partial Differential Equations and Related Topics", *Lecture Notes in Mathematics*, 5-49, Pub., New York, 1975.
- [7] Hadeler, K. P. & Rothe, F., Travelling fronts in nonlinear diffusion equations, J. Math. Biol., 2 (1975), 251-263.
- [8] Sattinger, D. H., On stability of waves of nonlinear parabolic systems, Advances in Math., 229 (1976), 312-355.
- [9] Fife, P. C. & MoLoed, J. B., The approach of solutions of nonlinear diffusion equations to travelling front solutions, Arch. Rational Mech. Anal., 65 (1977), 335-361.
- [10] Fife, P. C. & McLoed, J. B., A phase plane discussion of convergence to travelling fronts for nonlinear diffusion, Arch. Rational Mech. Anal., 75 (1981), 281-314.

- [11] Ye Qixiao & Li Zhengyuan, An introduction of reaction-diffusion equations, 74-103, Scientific Literature Publishing House, Beijing, 1990.
- [12] Aronson D. G., Density dependent interaction diffusion systems, in Dynamics and Modeling of Reaction Systems, 161-176, Academic Press, New York, 1980.
- [13] Hosono Y., Travelling wave solutions for some density dependent diffusion equations, Japan J. Appl. Math., 3 (1986), 163-196.
- [14] Grindrod P. & Sleeman B. D., Weak travelling fronts for population models with density dependent dispersion, Math. Meth. in the Appl. Sci., 9 (1987), 576-586.
- [15] de Pablo A. & Vazquez J. L., Travelling waves and finite propagation in a reaction-diffusion equation, J. differential Equations, 93 (1991), 19-61.
- [16] Wang Mingxin, Travelling waves solutions of degenerate parabolic equaitons, Chin. Ann. of Math., 12A:5 (1991), 627-635.
- [17] Hartman P., Ordinary differential equations, Second Edition, Birkhäuser, Boston, 1982.
- [18] Serrin J. & Varbeg D., A general chain rule for derivatives and the change of variables formula for the Lebesgue integral, Amer. Math. Monthly, 76 (1969), 514-520.