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WEAK TRAVELLING WAVE FRONT SOLUTIONS OF

GENERALIZED DIFFUSION EQUATIONS WITH REACTION

Wang Junyu*

Abstract

The author demonstrate that the two-point boundary value problem{
p′(s) = f ′(s)− λpβ(s) for s ∈ (0, 1);β ∈ (0, 1),

p(0) = p(1) = 0, p(s) > 0 if s ∈ (0, 1),

has a solution (λ̄, p̄(s)), where |λ̄| is the smallest parameter, under the minimal stringent re-
strictions on f(s), by applying the shooting and regularization methods. In a classic paper,
Kolmogorov et. al. studied in 1937 a problem which can be converted into a special case of the

above problem.
The author also use the solution (λ̄, p̄(s)) to construct a weak travelling wave front solution

u(x, t) = y(ξ), ξ = x−Ct, C = λ̄N/(N +1), of the generalized diffusion equation with reaction
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where N > 0, k(s) > 0 a.e. on [0, 1], and f(s) := N+1
N

∫ s
0 g(t)k1/N (t)dt is absolutely continuous

on [0, 1], while y(ξ) is increasing and absolutely continuous on (−∞,+∞) and

(k(y(ξ))|y′(ξ)|N )′ = g(y(ξ))− Cy′(ξ) a.e. on (−∞,+∞),

y(−∞) = 0, y(+∞) = 1.
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§1. Introduction

The second-order quasilinear parabolic equation

∂

∂x

(
k(u)

∣∣∣∣∂u∂x
∣∣∣∣N−1

∂u

∂x

)
− ∂u

∂t
= 0 (1.1)

has been suggested as a model for certain generalized diffusion processes by Philip[1] and

some similarity solutions of (1.1) have been given by Atkinson and Bouillet[2], Bouillet and
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Gomes[3], and Wang[4], where N is a positive constant and k(u) is assumed to be positive

a.e. on (−∞,+∞) so that k1/N (u) is locally Lebesgue integrable in (−∞,+∞).

As the title suggests, this paper is concerned with the existence of weak travelling wave

front solutions of the equation (1.1) with reaction, namely

∂

∂x

(
k(u)

∣∣∣∣∂u∂x
∣∣∣∣N−1

∂u

∂x

)
− ∂u

∂t
= g(u). (1.2)

Throughout this paper the following hypotheses are adopted:

(H1) N is a positive constant.

(H2) k(s) is a measurable function which is defined and positive a.e. on (−∞,+∞) such

that k1/N (s) is Lebesgue integrable on [0, 1].

(H3) g(s) is a bounded measurable function defined on (−∞,+∞), and

g(s) = 0 for s ≤ 0 and s ≥ 1.

(H4) f(s) := N+1
N

∫ s

0
g(t)k1/N (t)dt is an absolutely continuous function defined on [0, 1]

such that one of the following five conditions holds:

(H41) There exists a point s = A ∈ (0, 1) such that f(s) is positive in (0, A) and negative

in (A, 1]. Moreover, D+f(s), the right hand lower derivative of f(s), is negative in (A, 1).

(H42) f(s) is negative in (0, 1] and D+f(s) is negative and bounded in (0, 1).

(H43) There is a point s = B ∈ (0, 1) such that f(s) − f(1) is negative in [0, B) and

positive in (B, 1). Moreover, D−f(s), the left hand upper derivative of f(s), is positive in

(0, B).

(H44) f(s) is positive in (0, 1] and D−f(s) is positive and bounded in (0, 1).

(H45) f(s) is positive in (0, 1) and f(1) = 0.

It goes without saying that for almost all s ∈ (0, 1), f ′(s), a derivative of f(s), exists and

D+f(s) = D−f(s) = f ′(s) =
N + 1

N
g(s)k1/N (s).

The following hypotheses (H′
2) and (H′

3) can replace (H2) and (H3), respectively, because

they also ensure that the function f(s) is absolutely continuous on [0, 1].

(H′
2) k(s) is a bounded measurable function defined on (−∞,+∞). Moreover, k(s) is

positive a.e. on (−∞,+∞).

(H′
3) g(s) is a Lebesgue integrable function defined on (−∞,+∞) and

g(s) = 0 for s ≤ 0 and s ≥ 1.

In their classic paper[5], Kolmogorov et. al. discussed the existence and stability of

travelling wave solutions for the simple parabolic equation

∂2u

∂x2
− ∂u

∂t
= g(u), (1.3)

where g(u) has the same properties as the function u(u − 1). Subsequently, many authors

have considered the existence and stability of travelling wave solutions of (1.3) under certain

restrictions on g(u). For details, see [6-11].

Aronson[12], Hosono[13], Grindrod and Sleeman[14], de Pablo and Vazquez[15], andWang[16]

have studied some special cases of (1.2) where N = 1, k(s) is a continuously differentiable
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function defined on [0,+∞) with k(0) = k′(0) = 0 and k′(s) > 0 for s > 0, and k(s)g(s)

has the same properties as the function −sα with α > 0 or sα(sβ − 1) with α, β > 0 or

sα(sβ − 1)(sγ − a) with α, β, γ > 0 and a ∈ (0, 1).

All of the above authors, including the authors of [6-11], applied the phase plane method

in proving the existence of (weak) travelling wave front solutions.

In the present paper, we demonstrate that under the hypothesis (H4) a two-point bound-

ary value problem of the form{
p′(s) = f ′(s)− λpβ(s) for s ∈ (0, 1);β ∈ (0, 1),

p(0) = p(1) = 0, p(s) > 0 if s ∈ (0, 1),
(1.4)

has a solution (λ̄, p̄(s)), by applying the shooting and regularization methods, where |λ̄| is
the smallest parameter. Subsequently, we construct a weak travelling wave front solution of

the equation (1.2) utilizing the solution (λ̄, p̄(s)).

§2. Formal Reduction

In this section we convert the problem of finding travelling wave front solutions of the

equation (1.2) into the two-point boundary value problem (1.4).

Definition 2.1. We call a function of the form

u(x, t) = y(ξ), ξ = x− Ct,

a weak travelling wave front solution of (1.2), if the following conditions hold:

(a) y(ξ) is an increasing, absolutely continuous function defined on (−∞,+∞).

(b) y(−∞) = 0 and y(+∞) = 1. (2.1)

(c) z(ξ) := k(y(ξ))|y′(ξ)|N is (equivalent to) an absolutely continuous function defined on

(−∞,+∞).

(d) z(−∞) = 0 and z(+∞) = 0. (2.2)

(e) There exists a finite real number C such that

g(y(ξ))− Cy′(ξ) = (k(y(ξ))|y′(ξ)|N )′ := z′(ξ) a.e. on (∞,+∞). (2.3)

Let u(x, t) = y(x−Ct) be a weak travelling wave front solution of (1.2). If y(ξ) is strictly

increasing, then the function ξ = v(s), inverse to s = y(ξ), exists, and hence s = y(v(s)) for

all s ∈ (0, 1) and y′(v(s)) = 1/v′(s) > 0 a.e. in (0, 1). Inserting ξ = v(s) into (2.3) and then

putting

w(s) := k(s)|v′(s)|−N , 0 < s < 1, (2.4)

i.e.,

v′(s) = k1/N (s)w−1/N (s), 0 < s < 1, (2.5)

we arrive at a two-point boundary value problem of the form{
w′(s) = g(s)k1/N (s)w−1/N (s)− C, 0 < s < 1,

w(0) = 0, w(1) = 0.
(2.6)

Let us denote

p(s) := w(N+1)/N (s), λ := C(N + 1)/N, β := 1/(N + 1). (2.7)
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Then the problem (2.6) is transformed into (1.4).

It must be pointed out that the two endpoints s = 0 and s = 1 are singular in (2.6) (resp.

(1.4)) and the parameter C (resp. λ) is unknown a priori and must be determined as part

of the solution.

There is another formal reduction. In fact, (2.1)-(2.3) can be written as dy
dξ =

(
z

k(y)

)1/N
, dz

dξ = g(y)− C
(

z
k(y)

)1/N
, ξ ∈ (−∞,+∞),

(y, z)|ξ=−∞ = (0, 0), (y, z)|ξ=+∞ = (1, 0).
(2.8)

Eliminating ξ from (2.8), we obtain{
dz
dy = g(y)k1/N (y)z−1/N − C, 0 < y < 1,

z|y=0 = 0, z|y=1 = 0,

which is identical to (2.6).

Some particular cases of (2.8) have been investigated by many authors[5−16] in the (y, z)

phase plane. However, to our knowledge, the singular two-point boundary value problem

(1.4) has not been directly studied before.

§3. Two-Point Boundary Value Problem

The present section is the core of this paper. In this section we demonstrate that the

two-point boundary value problem (1.4) has at least one solution.

When f(1) ̸= 0, we need to consider the two-point boundary value problem only involving

one singular endpoint {
p′(s) = f ′(s)− λpβ(s), 0 < s < 1

p(0) = h ∈ (0,−f(1)), p(1) = 0
(1.4)−h

if f(1) < 0 or {
p′(s) = f ′(s)− λpβ(s), 0 < s < 1,

p(0) = 0, p(1) = h ∈ (0, f(1))
(1.4)+h

if f(1) > 0.

Definition 3.1. A pair (λ, p(s)) is called a solution of (1.4)−h (resp. (1.4)+h ), if

(a) λ is a finite real number,

(b) p(s) is a nonnegative, absolutely continuous function defined on [0, 1],

(c) p(0) = h and p(1) = 0 (resp. p(0) = 0 and p(1) = h), and

(d) p′(s) = f ′(s)− λpβ(s) a.e. on [0, 1]. (3.1)

In this definition, the parameter h is allowed to be zero. When h = 0, (1.4)−h (resp.

(1.4)+h ) is identical to (1.4).

Lemma 3.1. Let (λ, p(s)) be a solution of (1.4)−h (resp. (1.4)+h ). Then

λ =
f(1) + h∫ 1

0
pβ(s)ds

< 0

(
resp. λ =

f(1)− h∫ 1

0
pβ(s)ds

> 0

)
. (3.2)

Proof. Integrating (3.1) over [0, 1], we obtain (3.2).

Clearly, when f(1) = 0, the pair (0, f(s)) is a unique solution of (1.4).

Lemma 3.2. Let (λ, p(s)) be a solution of (1.4). Then p(s) > 0 in (0, 1).

Proof. When f(1) = 0, λ = 0, p(s) = f(s). The lemma is obviously true.
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First assume f(1) < 0. If p(s0) = 0, where s0 ∈ (0, 1), then Lemma 3.1 implies that

s0 ∈ (A, 1) when f(s) satisfies (H41). Integrating (3.1) over [s0, s0 + δ], a subinterval of

[s0, 1), dividing the result by δ and then letting δ ↓ 0, we get 0 ≤ D+p(s0) = D+f(s0) < 0,

which is absurd.

Next, assume f(1) > 0. If p(s0) = 0, where s0 ∈ (0, 1), then Lemma 3.1 implies that

s0 ∈ (0, B) when f(s) satisfies (H43). In the same way as above, we get

0 ≥ D−p(s0) = D−f(s0) > 0,

which is also absurd. This completes the proof of the lemma.

Lemma 3.3. Let (λ1, p1(s)) and (λ2, p2(s)) be solutions of (1.4)±h with h ≥ 0. If

p1(a) = p2(a), p1(b) = p2(b), 0 ≤ a < b ≤ 1, and p1(a) + p1(b) > 0,

then λ1 = λ2 and p1(s) ≡ p2(s) on [a, b].

Proof. If this is not the case, by Lemma 3.1 and the continuity of p1(s) and p2(s), we

may without loss of generality assume that λ1 < 0, λ2 < 0, and p1(s) < p2(s) in (a, b). Note

that

p′1(s)− p′2(s) = λ2p
β
2 (s)− λ1p

β
1 (s) a.e. in (0, 1). (3.3)

When λ2 ≤ λ1 < 0, we integrate (3.3) over [a, b] to give

0 = λ2

∫ b

a

[pβ2 (s)− pβ1 (s)]ds+ (λ2 − λ1)

∫ b

a

pβ1 (s)ds < 0,

which is a contradiction.

When λ1 < λ2 < 0 and (say) p1(a) > 0, there exists a subinterval [a, s0] of [a, b), where

λ2p
β
2 (s)− λ1p

β
1 (s) > 0. Integrating (3.3) over [a, s0], we get

p1(s0)− p2(s0) > 0, s0 ∈ (a, b),

which contradicts the assumption that p1(s)− p2(s) < 0 in (a, b). The lemma is proved.

Corollary 3.1. (1.4)±h with h > 0 has at most one solution.

Corollary 3.2. Let both (λ1, p1(s)) and (λ2, p2(s)) be solutions of (1.4). Then either

p1(s) ≡ p2(s) on [0, 1], λ1 = λ2 or p1(s) > p2(s) in (0, 1), |λ1| < |λ2|.
Proof. From Lemma 3.2, we know that p1(s) > 0 and p2(s) > 0 in (0, 1). There are two

possibilities. If there exists a point c ∈ (0, 1) such that p1(c) = p2(c), then p1(s) ≡ p2(s) on

[0, 1] and λ1 = λ2, by Lemma 3.3. If there is no interior point of (0, 1) at which p1(s) = p2(s),

then (say) p1(s) > p2(s) in (0, 1) and hence

|λ1| = |f(1)|/
∫ 1

0

pβ1 (s)ds < |f(1)|/
∫ 1

0

pβ2 (s)ds = |λ2|

by Lemma 3.1. The proof concludes.

In what follows we demonstrate that under the hypothesis (H41) or (H42) the problem

(1.4)−h has a solution by applying the shooting and regularization methods.

Lemma 3.4. For each pair of fixed λ ≤ 0 and h ∈ (0,−f(1)), the initial value problem{
p′(s) = f ′(s)− λpβ(s), s > 0,

p(0) = h
(3.4)λh
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has a unique solution p(s;λ, h) on [0, r), its maximal interval of existence. If r < 1, then

p(r − 0;λ, h) = 0; if r = 1, then p(1 − 0;λ, h) ≥ 0. Moreover, p(s;λ, h) is continuous and

strictly increasing in h and −λ in the following sense:

(a) If h1 > h2 > 0, then p(s;λ, h1) > p(s;λ, h2) in the maximal interval of existence for

p(s;λ, h2).

(b) If −λ1 > −λ2 ≥ 0, then p(s;λ1, h) > p(s;λ2, h) in the maximal interval of existence

for p(s;λ2, h).

Although the proof of Lemma 3.4 (for the case when f ′(s) is continuous on [0, 1]) can be

found in [17, pp.8-15], we shall reproduce it here, in consideration of not only the complete-

ness but also the fact that a detailed knowledge of the properties of p will be important in

our discussion of existence.

Proof of Lemma 3.4. Let [0, δ] be a (maximal) subinterval of [0, 1] on which

q(s) :=
h

2
+ f(s)− λs

(
h

2

)β

≥ 0

and put

M1/β := max
s∈(0,δ)

{q(s)}, L := max

{
M,β

(
h

2

)β−1
}
,

p0(s) :=
h

2
, pn+1(s) := (Φpn)(s), n = 0, 1, 2, · · · , (3.5)

where

(Φp)(s) := h+ f(s)− λ

∫ s

0

pβ(t)dt. (3.6)

It is clear that

0 ≤ p1(s)− p0(s) = q(s) ≤ M1/β , s ∈ [0, δ],

and

0 ≤ pβ1 (s)− pβ0 (s) ≤ [p1(s)− p0(s)]
β ≤ L, s ∈ [0, δ].

Here we have used the inequality

(a+ b)β ≤ aβ + bβ for a, b ≥ 0, 0 < β < 1.

The definition of Φ implies that

h

2
= p0(s) ≤ p1(s) ≤ · · · ≤ pn(s) ≤ pn+1(s) ≤ · · · , s ∈ [0, δ],

and hence

0 ≤ pβn+1(s)− pβn(s) ≤ L[pn+1(s)− pn(s)], s ∈ [0, δ], n = 1, 2, · · · .

Thus, it is readily verified by induction that

0 ≤ pn+1(s)− pn(s) ≤
1

n!
(−λLs)n, s ∈ [0, δ], n = 1, 2, · · · .

It follows that the series

p1(s) +
∞∑

n=1

[pn+1(s)− pn(s)]
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is uniformly convergent on [0, δ], that is,

p(s;λ, h) := lim
n→∞

pn(s) exists uniformly on [0, δ]. (3.7)

Thus, term-by-term integration is applicable to the integrals in (3.5) and gives

p(s;λ, h) = h+ f(s)− λ

∫ s

0

pβ(t;λ, h)dt. (3.8)

Therefore, (3.7) is a solution of (3.4)λh on [0, δ].

When δ < 1, we consider the initial value problem{
p′(s) = f ′(s)− λpβ(s), s ≥ δ,

p(δ) = h1 := p(δ;λ, h).

Repeating the above argument, we can conclude that there is a subinterval [0, δ+δ1] of [0, 1]

on which a solution p(s;λ, h) of (3.4)λh is defined. Continuing this procedure, we can obtain

a solution p(s;λ, h) of (3.4)λh on [0, r), where r = δ + δ1 + δ2 + · · · .
The local Lipschitz continuity of the nonlinear function pβ with respect to p > 0 implies

the uniqueness of p(s;λ, h). The remainders of Lemma 3.4 follows from Lemma 3.3 and the

part of Lemma 3.4 which has already been proved.

Lemma 3.5. Let Eh := {λ ≤ 0; p(1 − 0;λ, h) > 0}. Then there is a λ0 < 0 such that

(−∞, λ0] ⊂ Eh.

Proof. If f(s) satisfies (H41), we choose a λ0 < 0 such that

h

2
+ f(1)− λ0A

(
h

2

)β

= 0;

if f(s) satisfies (H42), we pick out a λ0 < 0 such that

h

2
+ inf

0<s<1
D+f(s)− λ0

(
h

2

)β

= 0.

Therefore, for all λ ≤ λ0

q(s) :=
h

2
+ f(s)− λs

(
h

2

)β

≥ 0, s ∈ [0, 1]

and

p(s;λ, h) := lim
n→∞

pn(s) ≥
h

2
, s ∈ [0, 1].

This means that (−∞, λ0] ⊂ Eh.

Lemma 3.6. Eh is an open set.

Proof. The lemma follows from Lemma 3.4 and the fact that λ = 0 is not in Eh.

Lemma 3.7. (1.4)−h with h > 0 has a solution (λ(h), p(s, h)). Moreover, p(s, h) and λ(h)

are continuous and strictly increasing in h > 0.

Proof. Let us define λ(h) := supEh(< 0) and pick out a sequence {λj ∈ Eh; j = 1, 2, · · · }
which is strictly increasing and converges to λ(h). Then the sequence {p(s;λj , h); j =

1, 2, · · · } is strictly decreasing and converges to a limit p(s, h) uniformly on [0, 1]. Inserting

the pair (λj , p(s;λj , h)) into the equation (2.8) and then letting j → ∞, we get

p(s;h) = h+ f(s)− λ(h)

∫ x

0

pβ(t, h)dt(≥ 0), x ∈ [0, 1]. (3.9)
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We claim that the pair (λ(h), p(s, h)) is a solution of (1.4)−h . It is enough to show that

p(1, h) = 0. If p(1, h) > 0, then λ(h) ∈ Eh by Lemma 3.4. This contradicts the fact that Eh

is an open set.

If h1 > h2 > 0, then p(s, h1) > p(s, h2) > 0 in [0, 1) by Lemmas 3.3 and 3.2. From this it

follows by (3.9) that

h1 − h2 = λ(h1)

∫ 1

0

pβ(t, h1)dt− λ(h2)

∫ 1

0

pβ(t, h2)dt > 0,

which implies that 0 > λ(h1) > λ(h2). This completes the proof.

Lemma 3.8. Let (H41) or (H42) hold. Then the problem (1.4) has a smallest parameter

solution (λ̄, p̄(s)) in the following sense:

If (λ, p(s)) is any solution of (1.4), then |λ| ≥ |λ̄| and p(s) ≤ p̄(s) in (0, 1).

Proof. Let (λ(h), p(s, h)) be a solution of (1.4)−h . Then p(s, h) and λ(h) are continuous

and strictly increasing in h > 0. Consequently,

p̄(s) := lim
h↓0

p(s;h)(≥ 0) exists uniformly on [0, 1],

λ̄ := lim
h↓0

λ(h) = f(1)/

∫ 1

0

p̄β(s)ds < 0.

Inserting (λ(h), p(s, h)) into (3.9) and then letting h ↓ 0, we get

p̄(s) = f(s)− λ̄

∫ s

0

p̄β(t)dt ≥ 0 on [0, 1],

which shows that (λ̄, p̄(s)) is a solution of (1.4) and p̄(s) > 0 in (0, 1) by Lemma 3.2.

We now prove that |λ̄| is the smallest parameter. If (λ̄, p̄(s)) is not the smallest parameter

solution of (1.4), then there exists a solution (λ, p(s)) such that |λ| < |λ̄| and p(s) > p̄(s) in

(0, 1) by Corollary 3.2. Since p̄(s) = lim
h↓0

p(s, h), there are two numbers h > 0 and a ∈ (0, 1)

such that p(a) = p(a, h). According to Lemma 3.3, p(s, h) ≡ p(s) on [a, 1]. This is not

possible. The proof of Lemma 3.8 concludes.

In very much the same way, we can demonstrate that under the hypothesis (H43) or (H44)

the problem (1.4) has a solution (λ̄, p̄(s)), where |λ̄| is the smallest parameter.

We summarize the results above in the following statement.

Theorem 3.1. Suppose that (H4) holds. Then the smallest parameter solution (λ̄, p̄(s))

of the problem (1.4) exists. Moreover, p̄(s) is positive in (0, 1).

§4. Weak Travelling Wave Front Solutions

In this section we construct a weak travelling wave front solution u(x, t) = y(ξ), ξ = x−Ct,

of (1.2) for some constant wave speed C, utilizing the solution (λ̄, p̄(s)) of (1.4).

We first introduce four propositions that are used in the ensuing paragraphs.

Proposition 4.1 (Corollary 4 in [18]). If y(ξ) is increasing on [a, b] and if w(s) is

absolutely continuous on [y(a), y(b)], then w(y(ξ)) has a finite derivative a.e. on [a, b] and

the chain rule
d

dξ
w(y(ξ)) = w′(y(ξ))y′(ξ)
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holds.

Proposition 4.2 (Corollary 6 in [18]). Suppose that y(ξ) is increasing and absolutely

continuous on [a, b] and ϕ(s) is Lebesgue integrable on [y(a), y(b)]. Then ϕ(y(ξ))y′(ξ) is

integrable on [y(a), y(b)] and the change of variables formula∫ b

a

ϕ(y(ξ))y′(ξ)dξ = Φ(y(b))− Φ(y(a))

holds, where Φ(s) is an indefinite integral of ϕ(s).

Proposition 4.3. If v(s) is strictly increasing and locally absolutely continuous in (0, 1),

then the function s = y(ξ), inverse to ξ = v(s), is strictly increasing and absolutely contin-

uous on (ξ0, ξ1), where ξ0 := v(0 + 0) and ξ1 := v(1− 0). Moreover,

y(ξ0) := lim
ξ↓ξ0

y(ξ) = 0 and y(ξ1) := lim
ξ↑ξ1

y(ξ) = 1.

Proof. Clearly, it is enough to show that y(ξ) is absolutely continuous on (ξ0, ξ1).

Since y(ξ) is strictly increasing and absolutely continuous in (ξ0, ξ1), y
′(ξ) exists a.e. and

is locally integrable in (ξ0, ξ1). Let [a, b] be a subinterval of (0, 1). Then an application of

the change of variables formula gives∫ v(b)

v(a)

y′(ξ)dξ =

∫ β

α

y′(v(s))v′(s)ds = b− a = y(v(b))− y(v(a)).

Here we have used the fact that s = y(v(s)) in (0, 1). Letting a ↓ 0 and b ↑ 1 yields∫ ξ1

ξ0

y′(ξ) = 1,

which shows that y(ξ) is absolutely continuous on (ξ0, ξ1).

Proposition 4.4. Let y(ξ) be an increasing, absolutely continuous function defined on

(−∞,+∞) with y(−∞) = 0 and y(+∞) = 1 and let w(s) be an absolutely continuous

function defined on [0, 1]. The w(y(ξ)) is absolutely continuous on (−∞,+∞).

Proof. The lemma is an immediate consequence of Propositions 4.1 and 4.2.

Let (λ̄, p̄(s)) be the smallest parameter solution of (1.4) and let

w(s) := p̄N/(N+1)(s), C :=
λ̄N

N + 1
, N :=

1− β

β
, v(s) :=

∫ s

1
2

(
k(t)

w(t)

)1/N

dt.

Then

w(0) = w(1) = 0, w(s) > 0 in (0, 1),

v′(s) = k1/N (s)w−1/N (s) a.e. in (0, 1), (4.1)

w′(s) = g(s)v′(s)− C a.e. in (0, 1), (4.2)

and

w(s) = k(s)|v′(s)|−N a.e. in (0, 1). (4.3)

It follows from (4.1) that v(s) is strictly increasing and locally absolutely continuous in (0, 1)

and hence the function s = y(ξ), inverse to ξ = v(s), exists in (ξ0, ξ1), where

ξ0 := v(0 + 0), ξ1 := v(1− 0), i.e., y(ξ0) = 0, y(ξ1) = 1.
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Proposition 4.3 asserts that y(ξ) is absolutely continuous and strictly increasing on (ξ0, ξ1).

When ξ0 (resp. ξ1) is finite, we define

y(ξ) = 0 for all ξ ≤ ξ0 (resp. y(ξ) = 1 for all ξ ≥ ξ1).

Clearly, y(ξ) is increasing and absolutely continuous on (−∞,+∞) no matter whether ξ0
(or ξ1) is finite or not.

Inserting s = y(ξ) into (4.2) and (4.3), we obtain

w′(y(ξ))y′(ξ) = g(y(ξ))− Cy′(ξ) a.e. in (ξ0, ξ1), (4.4)

w(y(ξ)) = k(y(ξ))|y′(ξ)|N−1y′(ξ) a.e. in (ξ0, ξ1), (4.5)

and lim
ξ↓ξ0

w(y(ξ)) = lim
ξ↑ξ1

w(y(ξ)) = 0,

and hence (by the chain rule)

(k(y(ξ))|y′(ξ)|N−1y′(ξ))′ = w′(y(ξ))y′(ξ)

= g(y(ξ))− Cy′(ξ) a.e. in (ξ0, ξ1). (4.6)

Here we have used the fact that y′(ξ) = 1/v′(y(ξ)) > 0 a.e. in (ξ0, ξ1). When ξ0 (or ξ1) is

finite, the equalities (4.4), (4.5) and (4.6) read 0 = 0 on (−∞, ξ0] (or on [ξ1,+∞)).

Proposition 4.4 claims that the function w(y(ξ)) is absolutely continuous on (−∞,+∞)

and hence u(x, t) = y(x−Ct) is a weak travelling wave front solution of the equation (1.2),

where |C| = |λ̄|N/(N + 1) is the smallest wave speed.

We can summarize the preceding discussion in the following statement.

Theorem 4.1. Let (H1)-(H4) hold. Then the equation (1.2) possesses a weak travelling

wave front solution u(x, t) = y(x − Ct) with |C| = |λ̄|N/(N + 1) being the smallest wave

speed, where λ̄ is given by Theorem 3.1.
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