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A COMPLETE METRIC OF POSITIVE CURVATURE
ON = * AND EXISTENCE OF CLOSED GEODESICS**
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Abstract

An example of complete Riemannian metric of positive (or nonnagative) curvature on R™
such as ds? = a(x)dx? is obtained by direct caculations. Furthermore, by using a geodesic con-
vex condition and a theorem for complete noncompact Riemannian manifold, an existence result
of periodic solution of prescribed energy for a singular Hamiltonian system is also obtained.
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§1. Introduction

This paper is initiated by looking for a periodic solution of

¢"(t) +V'(g(t)) =0 | (L1).
such that

LGP +Vie@) =h Ve R 12)

Heren > 2, heR is a given number, g€C2(R, R™\{0}), ¢"(t) is the second derivative of g(t),
VeC?(R"\{0}, R), and V'(z) is the gradient of the function V' at z. ‘

Recently, many papers concern the study of prescribed energy problem (1.1)-(1.2) (see, for
example, [2-4, 12, 20]). In [6] Benci-Giannoni studied the existence of periodic solution (1.1)-
(1.2) confined in an annulus {z€R™; ro<|z|<r} and in [23] we gave a geometric explanation
for their result and proved the following ‘ '

Theorem 1.1. Let h € R, and D(y;t) = {r € R%|z —y| < t} fory € R* and
t> 0. Assume that there exist r > 0, r; € (0,7) and 2%, zt € R*, i = 1,...,m,
such that |JD(a%;r;) C D(«%r) and D(z;r)\D(@%;r) = ¢ for i # j. Set G =
D(z%7)\UD(z%; 7). IfV € C*(G, R) satisfies

(@O h-V>00nG; ' .

(i) b - V(z) — (V'(z),z — 2*) <0, VzedD(zt;r;), 1<i<m;

(iii) h— V(z) — 3(V'(z),z —2°) >0, Vz € aD(z%r); .
then we can enlarge the Jacobi metric tensor (h—V)8;; in a neighborhood of G so that G is
geodesic convex with respect to the enlarged Jacobi metric. . ‘
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This paper is largely motivated by the above result and the following result (see, for
example, [13, Proposition 3] or [22, Theorem 4.3)). '

Theorem 1.2. Let M be a complete Riemannian manifold with nonnegative sectional
curvature outside some compact set. Then for any yeM there is o family {G@);t > 0}
of compact totally convex sets with G(t) C G(s) for t < s and the balls By(y) == {z €
M;d(z,y) < t} are contained in G(t) for t > 0.

The main results of the paper can be stated as the following

Theorem 1.3. Let h€R and let D(y;t) = {z € R™;|z — y| < t} for yeR"™ and t > 0.
Assume that there ezistr; > 0 and o € R™i=1,... ,m, such that D(z% ;) ( D(z%;r;) = ¢
forizj. Let Go = R™\|J D(z%r;). If V € C%(Go, R) satisfies

(i) A=V >0 on Gy and there exists a constant C > 0 such that h — V(z) > Clz|~2 for
|z| big enough; ,

(i) A —V(2) — 3(V'(z),z — 2%) <0, Yz € D(z%;7;), 1<i<m;

(iii) the Hessian matriz V" (z) of V(z) is semi-positive definite for |z| big enough;
then (1.1)-(1.2) possesses ‘a nonconstant periodic solution in Gy. :

Theorem 1.4. Let a € C%(R", R) satisfy

(i) @ > 0 on R™ and there exists a constat C > 0 such that a(z) > Clz|~2 for |z| big
enough;

(i) The Hessian matriz o”(z) of a(z) is semi-negative (or negative) definite for allx €
R". '

Then the metric ds? = a(z)Y.dx? is a complete one on R™ with nonnegative (or resp.
positive) sectional curvature. :

Remark 1.1. It is well-known that the metric ds? = (1 + 1K|xz|?)~2Y dz? where
K =constant> 0, defined on R", has curvature K. But unfortunately, this metric is not
complete. In fact, letting 2™ = (m,0,...,0) for m = 1,2,..., we see that d(z™;0) <
o (1 + Kt?)~2dt < f0+'°°(1 + Kt?)~2dt < oo for all m and |[£™| —» 0o as m — co. It.
seems that, as we know (cf. [9]), Theorem 1.4 is the simplest example of complete metrics

with positive curvature on R™. ‘

Remark 1.2. Usually, there does not exist any closed geodesic in a complete, non-
contractible and noncompact Riemannian manifold if we do not add other geometric con-
ditions on the manifold. For example, by Gordon [11, Theorem 2], the metric ds?® =
(lz|=2 + |2|~1)Yda? defined on R™\{0} is complete, but no closed geodesic exists. In
fact, let a(z) = |z|~2 + |z|~! and suppose that p is a closed geodesic, then by Maupertuis-
Jacobi principle (see [1] or [5]), there exists correspondingly a nonconstant T-period function
q € C*(R, R™\{0}) such that

¢ -d@®)=0 and Z|eO) - a(q)) = 0.

Thus v(fe have
[ @ - @@ona=o

and hence

| @)+ 3@ ana=o.
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But this is impossible because a(z) + 3(a’(x),z) > 0 for all z € R"\{0}.
The organization of the paper is as follows. We first give some preliminaries in Section
2, and then we show Theorems 1.3-1.4. ”
Notations. Throughout the paper we let (z,y) = ¥ z:¥i, Vaﬁ y € R™ and |z| = ((=, ) ER
Given y € R™,r > 1o > 0, we denote D(y;7) = {x € R";|z - y| <r}, D(y;ro,7) ={z €
R™ 1o < |z —y| <r}, and D(r) = {x € R*;|z| <r}.
Given G C R", we denote by G its closure and by OG its boundary.

- §2. Preliminaries

We begin with the following defination (cf. [16] or [22}).

Definition 2.1. Let M be a Riemannian manifold.

(i) A non-empty set G in M is called stmngly convez, if for any z,y€G there is a unique
minimal geodesic joining © and y with image in G. A non-empty.set G is called convex
if for any x € G, there exists an v = r(z) so that By (z) N G is strongly convex. Here
B,(z) = {y € M;d(z,y) <7}

(ii) A non-empty set G in M is called totally convez, if for any x,y€G and any geodesic
segment p joining = and y, the image of p lies in G.

Remark 2.1. From this definition, one can see that if G is a non-empty compact set
in M, then G is convex if and only if there is an 7 > 0 such that for any z,y€G, with
d(z,y) < 7, there exists a unique minimal geodesic joining z and y with image in G. ‘

Lemma 2.1. If a € C?(R"™, R) satisfies

(i) @ > 0 on R™;

(ii) there exists a proper C3_ funtion U on R™ such that a(z) 2 |U'(z)? for all z€R";
then the Riemannian metric ds® = a(z)3_dz; on R™ is complete. :

Proof. See [11, Theorem 2].

From Lemma 2.1, we have the following '

Lemma 2.2. Ifa € C2(R", R) satisfies a >0 on R" and there e.'msts a constant C such
that a(x) > C|z|~2 for |z| big enough, then the metric ds? = a(z)Y.dz? on R™ is complete.

Proof. From Lemma 2.1, we need only to prove that there exists a proper smooth
function U on R™ such that a(z) > [U'(x)[? for all z€R™. We first choose a smooth function
Uy on R™ so that Uy(z) = log|z| for |z| big enough. Then it is easy to see that there exists
a constant C; > 0 small enough so that U := C1U; satifies a(z) > |U'(z)|? for all zeR™.
Furthermore, U is a proper function on R™ because U(z) — oo as |z| — oo.

§3. Proof of Theorems 1.3-1.4

In this section, we will first prove Theorem 1.4 and then prove Theorem 1.3. Now we first
prove the following lemma. .

Lemma 3.1. Let a € C?(R", R) be a positive function.: Then the sectional curvature K
of the Riemannian metric ds* = a(z)S dz? defined on R? can be calculated by

' ,K (T:R?) = —'2a1(:5) [3?31 (a(lw) a;i?) +'aiz (“(133) agg))] %=m




296 CHIN. ANN. OF MATH. Vol.15 Ser.B

where & = (21, %2) is the standard coordinate system of R* and TyR2is the tangent space of
R? at T

Proof. Let X = X':2 = £ and Y = YiZ = 2, where X! = ¥2 = 1 and
X?2 =Y! =0, be the tangent vectors correspoundmg to the coordinate z = (z1,22) at
T € R?. Then T R? = span { Bor sz} y 1 X2 = a(Z) = ||Y]|? and XY = 0. Thus we have

X,Y,X,Y ' ‘
K(TyR?) = ~ R(X,Y, X, V) = —(a(z))?R(X,Y, X,Y).

IXIPIY )P XY
Since ‘
R(X,Y,X,Y) = RijuX'Y'X*Y' = Ri215 = R}39m2 = a(z)R%,,
o1y _ om, |
a:L'k 6:131
T = _1_gkz Oga  Ogjn _ 09\ _ 1 (g , Ogin _ 0gij
K 2 3:Uj aa}i 6:1:, 2(1,_(:8) ij Bwi aa?l ’
where g;; = a(x)6;; and g = 6;;/a(z), it follows that

Rzlcl

ml?

+ T-TT,{;,C — T

T} oT; :
R}, = 63:112 T Oz =+ T12T11 +THT - THTS, — TATS,
T} 6T ,
amllz Bz == A (T — TE) + T3 (T2, — TY).
But we have by direct calculations ,
1 Oa(z) 1 Oda(z)
2 ) e 1l 2 = e e e 2 1 = 2 .
12 = 2a(a:) Dzy =Ty =T, T Sa(z) Oy .T12 S

Thus

B2 3} ( 1 Ba,(w))_l_ o ( 1 60,(:1:))
12 = " Bz 2a(z) Oz 0z2 \2a(x) Ozy )’
and hence the claim of the lemma follows. ' ,

Proof of Theorem 1.4. By Lemma 2.2, we need only to show that the sectional
curvature K of the metric ds® is nonnegative (or positive) if a”(z) is semi-negative (resp.
negative) definite for any zcR™. For convienience, we only consider the case that a”
semi-negative definite.

Ifn=2, then by Lemma 3.1 it is easy to see that K(T,R?)>0 for any z€R?.

Now we assume that n > 2. VZ € R, let E C T;(R") be an arbitrary two dimensional
tangent subspace. We can assume that there exist X,Y € E such that IX]| = IY]| =1 and
XY = 0. Then we can expand X, Y to an orthonormal base X; = X, Xo=Y, X3,..., X,
in T, (R™). Let

X'=dijai‘,i=1 cee g M and D:= (dw)
Then a(Z)DDT = (§;;), where DT is the transposed matrix of D. If we choose u; = dijzj,i =
1,...,n, as a new coordinate system of R™ and let % = D%, then we have -
0 0 %)
X = ——, X9 = ey Xp = e §
YU 0w P Guy T T B,
and -
' D
ds® = a(z)dz? = ﬁ(_'"’) 2= a(u)du,,

a(Z)
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where a(u) := 95;112(;—;‘—‘2 and a(z) = 1.

Now according to the proof of Lemma 2.1 we have

K(E) = —R(X1, X2, X1,X2) = —~Rya12 = —Rlyy

179 (1 Ba(u) L0 (L -
N 2 | 0uy \a(u) Oug Ouz \a(u) Oug )|, —n
It follows that K (F)>0 if and only if

][5 (1)

But the assumption that a'(z) is semi-negative definite implies
626(’17) 6%’(&) 1 Bza(a:) aw, 6:12_,' 32(1(:11) 3:1)2 6.’12j
du? u2  a(@) [8mi8a:j Auq Ouy T 020z Oug 8u2] -
Thus we have K(E)>0. ' ' .
Remark 3.1. From the proof of Theorem 1.4 and because of a theorem of [8], one can

u=u

<0..

see that we have actually proved the following

Proposition 3.1. Let M be a compleie noncompact Riemannian manifold which is locally
conformal to R™ with its usual Euclidean metric, and the locally confof'mal functions have
their positive definite Hessians. Then M is a complete mamfold with positive curvature and
hence M is diffeomorphic to R™.

Proof of Theorem 1.3. First we can choose a C2 function V on R™ such that V(z) =
V(z) for any = € Go = R"\J D(z%;7;) and h — V > 0 on R". Then by the assumptions (i);
(ii) and the proof of Theorem 1.4, we see that, with respect to the enlarged Jacobi metric
ds? = (h — V)Y da?, R™ is a complete Riemannian manifold with nonnegative sectional
curvature outside some compact set. Thus, from Theorem 1.4, it follows that for any fixed
yER™ there is a family {G(t);t > 0} of compact totally convex set with G(t)cG(s)fort <s
and the balls By(y) = {x € R"d(z,y) < t} are contained in G(?) for t > 0. Since the
(n— 1)-th homotopy group H (Go)70 (see [7, Proposition 17.11]), there is a homotoplcally

n——
non-trivial map f: S"7 -1 — Gy. Thus there exist a top > 0 big enough and an r >

max {r1,... ,7m} such that the image of f is contained in G(to) and | D(z%;7;,7) C G(to)-
Let G = G(to) N Go. Then H (G) # 0 because f is of course homotoplcally trivial in G if

itisin G (see [19, p.405, Corollary 24]).
Now we first assume that V satisfies the following strict inequalities other than the in-
equalities (ii) of Theorem 1.3.

h—V(z)— —;—(V’(:I:),az ~a*) <0, VzedD(zhr), 1<i<m. (3.1)

Then according to the proof of Theorem 1.1 (see [23, Proposition 1.4]), by (3.1) and the
convexity of G(to), one can see that G is actually geodesic convex. Now by [22, Theorem
2] or by an argument similar to the proof of [15, Appendix, Theorem Al 5], there exists a
closed geodesic p in G. Thus p coorespounds to a nonconstant periodic solution of (1.1)-(1.2)
in G because V = V on Gy and GCGo.

'Now assume that V satisfies all hypotheses of Theorem 1.3. Then we can modify V' only
in a sufficiently small neighborhood N of |J&D(z*;7;) to get a sequence of approximate
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potentials Vi, € C2(Go,R),k = 1,2,... such that (3.1) holds with V' replaced by each
Vi, Vi(z) = V(z) for z € Go\N, and

Jim sup [|Vi(z) - V(@)| + [Vi(z) - V()] = 0
=0 Gy

But according to the construction of G(ty), there exists ko big enough so that for each k > %o,
G = G(to)NGy is also geodesic convex with fespect to the metric (h —V%)6;;. Hence, by the
conclusion of the first part, for each k > ko there is a closed geodesic p* in G with respect to
the metric (h — V})d;;. Finally by an argument similar to the proof of [23, Theorem 1.2], we
can also deduce that there is a closed geodesic in G with respect to the metric (h — V))é;;.
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