# A COMPLETE METRIC OF POSITIVE CURVATURE ON R \* AND EXISTENCE OF CLOSED GEODESICS\*\*

#### ZHU DAXIN\*

#### Abstract

An example of complete Riemannian metric of positive (or nonnagative) curvature on  $\mathbb{R}^n$  such as  $ds^2 = a(x)dx^2$  is obtained by direct caculations. Furthermore, by using a geodesic convex condition and a theorem for complete noncompact Riemannian manifold, an existence result of periodic solution of prescribed energy for a singular Hamiltonian system is also obtained.

**Keywords** Positive curvature, Complete metric, Geodesic, Riemannian manifold, Hamiltonian system.

1991 MR Subject Classification 53C21.

### §1. Introduction

This paper is initiated by looking for a periodic solution of

$$q''(t) + V'(q(t)) = 0 (1.1)$$

such that

$$\frac{1}{2}|q'(t)|^2 + V(q(t)) = h, \ \forall t \in R.$$
 (1.2)

Here  $n \geq 2$ ,  $h \in R$  is a given number,  $q \in C^2(R, R^n \setminus \{0\})$ , q''(t) is the second derivative of q(t),  $V \in C^2(R^n \setminus \{0\}, R)$ , and V'(x) is the gradient of the function V at x.

Recently, many papers concern the study of prescribed energy problem (1.1)-(1.2) (see, for example, [2-4, 12, 20]). In [6] Benci-Giannoni studied the existence of periodic solution (1.1)-(1.2) confined in an annulus  $\{x \in \mathbb{R}^n; r_0 \leq |x| \leq r\}$  and in [23] we gave a geometric explanation for their result and proved the following

**Theorem 1.1.** Let  $h \in R$ , and  $D(y;t) = \{x \in R^n; |x-y| < t\}$  for  $y \in R^n$  and t > 0. Assume that there exist r > 0,  $r_i \in (0,r)$  and  $x^0$ ,  $x^i \in R^n$ ,  $i = 1, \ldots, m$ , such that  $\bigcup D(x^i;r_i) \subset D(x^0;r)$  and  $D(x^i;r_i) \cap D(x^j;r_j) = \phi$  for  $i \neq j$ . Set  $G = \overline{D}(x^0;r) \setminus \bigcup D(x^i;r_i)$ . If  $V \in C^2(G,R)$  satisfies

- (i) h V > 0 on G;
- (ii)  $h V(x) \frac{1}{2} \langle V'(x), x x^i \rangle < 0, \ \forall x \in \partial D(x^i; r_i), \ 1 \le i \le m;$
- (iii)  $h V(x) \frac{1}{2} \langle V'(x), x x^0 \rangle > 0, \ \forall x \in \partial D(x^0; r);$

then we can enlarge the Jacobi metric tensor  $(h-V)\delta_{ij}$  in a neighborhood of G so that G is geodesic convex with respect to the enlarged Jacobi metric.

Manuscript received March 29, 1992. Revised July 25, 1993.

<sup>\*</sup>Department of Mathematics, Tianjin University, Tianjin 300072, China.

<sup>\*\*</sup>Project supported by the National Natural Science Foundation of China.

This paper is largely motivated by the above result and the following result (see, for example, [13, Proposition 3] or [22, Theorem 4.3]).

**Theorem 1.2.** Let M be a complete Riemannian manifold with nonnegative sectional curvature outside some compact set. Then for any  $y \in M$  there is a family  $\{G(t); t > 0\}$  of compact totally convex sets with  $G(t) \subset G(s)$  for t < s and the balls  $B_t(y) := \{x \in M; d(x,y) < t\}$  are contained in G(t) for t > 0.

The main results of the paper can be stated as the following

**Theorem 1.3.** Let  $h \in R$  and let  $D(y;t) = \{x \in R^n; |x-y| < t\}$  for  $y \in R^n$  and t > 0. Assume that there exist  $r_i > 0$  and  $x^i \in R^n, i = 1, ..., m$ , such that  $D(x^i; r_i) \cap D(x^i; r_j) = \phi$  for  $i \neq j$ . Let  $G_0 = R^n \setminus \bigcup D(x^i; r_i)$ . If  $V \in C^2(G_0, R)$  satisfies

- (i) h V > 0 on  $G_0$  and there exists a constant C > 0 such that  $h V(x) \ge C|x|^{-2}$  for |x| big enough;
  - (ii)  $h V(x) \frac{1}{2} \langle V'(x), x x^i \rangle \le 0, \ \forall x \in \partial D(x^i; r_i), \ 1 \le i \le m;$
- (iii) the Hessian matrix V''(x) of V(x) is semi-positive definite for |x| big enough; then (1.1)-(1.2) possesses a nonconstant periodic solution in  $G_0$ .

**Theorem 1.4.** Let  $a \in C^2(\mathbb{R}^n, \mathbb{R})$  satisfy

- (i) a > 0 on  $\mathbb{R}^n$  and there exists a constat C > 0 such that  $a(x) \geq C|x|^{-2}$  for |x| big enough;
- (ii) The Hessian matrix a''(x) of a(x) is semi-negative (or negative) definite for all  $x \in \mathbb{R}^n$ .

Then the metric  $ds^2 = a(x)\sum dx_i^2$  is a complete one on  $\mathbb{R}^n$  with nonnegative (or resp. positive) sectional curvature.

**Remark 1.1.** It is well-known that the metric  $ds^2 = (1 + \frac{1}{4}K|x|^2)^{-2}\sum dx_i^2$  where K =constant> 0, defined on  $R^n$ , has curvature K. But unfortunately, this metric is not complete. In fact, letting  $x^m = (m, 0, \dots, 0)$  for  $m = 1, 2, \dots$ , we see that  $d(x^m; 0) \leq \int_0^m (1 + Kt^2)^{-2} dt \leq \int_0^{+\infty} (1 + Kt^2)^{-2} dt < \infty$  for all m and  $|x^m| \to \infty$  as  $m \to \infty$ . It seems that, as we know (cf. [9]), Theorem 1.4 is the simplest example of complete metrics with positive curvature on  $R^n$ .

Remark 1.2. Usually, there does not exist any closed geodesic in a complete, non-contractible and noncompact Riemannian manifold if we do not add other geometric conditions on the manifold. For example, by Gordon [11, Theorem 2], the metric  $ds^2 = (|x|^{-2} + |x|^{-1}) \sum dx_i^2$  defined on  $R^n \setminus \{0\}$  is complete, but no closed geodesic exists. In fact, let  $a(x) = |x|^{-2} + |x|^{-1}$  and suppose that p is a closed geodesic, then by Maupertuis-Jacobi principle (see [1] or [5]), there exists correspondingly a nonconstant T-period function  $q \in C^2(R, R^n \setminus \{0\})$  such that

$$q''(t) - a'(q(t)) = 0$$
 and  $\frac{1}{2}|q'(t)|^2 - a(q(t)) = 0$ .

Thus we have

$$\int_0^T (\langle q'', q \rangle - \langle a'(q), q) \rangle) dt = 0$$

and hence

$$\int_0^T (a(q) + \frac{1}{2} \langle a'(q), q) \rangle) dt = 0.$$

But this is impossible because  $a(x) + \frac{1}{2}\langle a'(x), x \rangle > 0$  for all  $x \in \mathbb{R}^n \setminus \{0\}$ .

The organization of the paper is as follows. We first give some preliminaries in Section 2, and then we show Theorems 1.3-1.4.

**Notations.** Throughout the paper we let  $\langle x, y \rangle = \sum x_i y_i$ ,  $\forall x, y \in R^n$  and  $|x| = (\langle x, x \rangle)^{\frac{1}{2}}$ . Given  $y \in R^n$ ,  $r > r_0 > 0$ , we denote  $D(y; r) = \{x \in R^n; |x - y| < r\}$ ,  $D(y; r_0, r) = \{x \in R^n; |x - y| < r\}$ , and  $D(r) = \{x \in R^n; |x| < r\}$ .

Given  $G \subset \mathbb{R}^n$ , we denote by  $\overline{G}$  its closure and by  $\partial G$  its boundary.

## §2. Preliminaries

We begin with the following defination (cf. [16] or [22]).

**Definition 2.1.** Let M be a Riemannian manifold.

- (i) A non-empty set G in M is called strongly convex, if for any  $x, y \in G$  there is a unique minimal geodesic joining x and y with image in G. A non-empty set G is called convex if for any  $x \in G$ , there exists an r = r(x) so that  $B_r(x) \cap G$  is strongly convex. Here  $B_r(x) := \{y \in M; d(x,y) < r\}$ .
- (ii) A non-empty set G in M is called totally convex, if for any  $x, y \in G$  and any geodesic segment p joining x and y, the image of p lies in G.
- **Remark 2.1.** From this definition, one can see that if G is a non-empty compact set in M, then G is convex if and only if there is an  $\eta > 0$  such that for any  $x, y \in G$ , with  $d(x,y) < \eta$ , there exists a unique minimal geodesic joining x and y with image in G.

**Lemma 2.1.** If  $a \in C^2(\mathbb{R}^n, \mathbb{R})$  satisfies

- (i)  $a > 0 \text{ on } R^n$ ;
- (ii) there exists a proper  $C^3$  funtion U on  $R^n$  such that  $a(x) \ge |U'(x)|^2$  for all  $x \in R^n$ ; then the Riemannian metric  $ds^2 = a(x) \sum dx_i^2$  on  $R^n$  is complete.

Proof. See [11, Theorem 2].

From Lemma 2.1, we have the following

**Lemma 2.2.** If  $a \in C^2(\mathbb{R}^n, \mathbb{R})$  satisfies a > 0 on  $\mathbb{R}^n$  and there exists a constant C such that  $a(x) \geq C|x|^{-2}$  for |x| big enough, then the metric  $ds^2 = a(x) \sum dx_i^2$  on  $\mathbb{R}^n$  is complete.

**Proof.** From Lemma 2.1, we need only to prove that there exists a proper smooth function U on  $R^n$  such that  $a(x) \geq |U'(x)|^2$  for all  $x \in R^n$ . We first choose a smooth function  $U_1$  on  $R^n$  so that  $U_1(x) = \log |x|$  for |x| big enough. Then it is easy to see that there exists a constant  $C_1 > 0$  small enough so that  $U := C_1U_1$  satisfies  $a(x) \geq |U'(x)|^2$  for all  $x \in R^n$ . Furthermore, U is a proper function on  $R^n$  because  $U(x) \longrightarrow \infty$  as  $|x| \longrightarrow \infty$ .

## $\S 3.$ Proof of Theorems 1.3-1.4

In this section, we will first prove Theorem 1.4 and then prove Theorem 1.3. Now we first prove the following lemma.

**Lemma 3.1.** Let  $a \in C^2(\mathbb{R}^n, \mathbb{R})$  be a positive function. Then the sectional curvature K of the Riemannian metric  $ds^2 = a(x) \sum dx_i^2$  defined on  $\mathbb{R}^2$  can be calculated by

$$K(T_x R^2) = -\frac{1}{2a(\widetilde{x})} \left[ \frac{\partial}{\partial x_1} \left( \frac{1}{a(x)} \frac{\partial a(x)}{\partial x_1} \right) + \frac{\partial}{\partial x_2} \left( \frac{1}{a(x)} \frac{\partial a(x)}{\partial x_2} \right) \right]_{x=x}$$

where  $x = (x_1, x_2)$  is the standard coordinate system of  $R^2$  and  $T_x R^2$  is the tangent space of  $R^2$  at  $\widetilde{x}$ 

**Proof.** Let  $X = X^i \frac{\partial}{\partial x_i} = \frac{\partial}{\partial x_1}$  and  $Y = Y^i \frac{\partial}{\partial x_i} = \frac{\partial}{\partial x_2}$ , where  $X^1 = Y^2 = 1$  and  $X^2 = Y^1 = 0$ , be the tangent vectors correspounding to the coordinate  $x = (x_1, x_2)$  at  $\widetilde{x} \in \mathbb{R}^2$ . Then  $T_x \mathbb{R}^2 = \operatorname{span}\left\{\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}\right\}$ ,  $||X||^2 = a(\widetilde{x}) = ||Y||^2$  and XY = 0. Thus we have

$$K(T_x R^2) = -\frac{R(X, Y, X, Y)}{\|X\|^2 \|Y\|^2 XY} = -(a(x))^{-2} R(X, Y, X, Y).$$

Since

$$\begin{split} R(X,Y,X,Y) &= R_{ijkl}X^iY^jX^kY^l = R_{1212} = R^m_{112}g_{m2} = a(x)R^2_{112}, \\ R^j_{ikl} &= \frac{\partial T_{il}}{\partial x_k} - \frac{\partial T_{ik}}{\partial x_l} + T^m_{il}T^j_{mk} - T^m_{ik}T^j_{ml}, \\ T_{ij} &= \frac{1}{2}g^{kl}\left(\frac{\partial g_{il}}{\partial x_j} + \frac{\partial g_{jl}}{\partial x_i} - \frac{\partial g_{ij}}{\partial x_l}\right) = \frac{1}{2a(x)}\left(\frac{\partial g_{ik}}{\partial x_j} + \frac{\partial g_{jk}}{\partial x_i} - \frac{\partial g_{ij}}{\partial x_l}\right), \end{split}$$

where  $g_{ij} = a(x)\delta_{ij}$  and  $g^{ij} = \delta_{ij}/a(x)$ , it follows that

$$R_{112}^{2} = \frac{\partial T_{12}}{\partial x_{1}} - \frac{\partial T_{11}}{\partial x_{2}} + T_{12}^{1}T_{11}^{2} + T_{12}^{2}T_{21}^{2} - T_{11}^{1}T_{12}^{2} - T_{11}^{2}T_{22}^{2}$$

$$= \frac{\partial T_{12}}{\partial x_{1}} - \frac{\partial T_{11}}{\partial x_{2}} + T_{11}^{2}(T_{12}^{1} - T_{22}^{2}) + T_{21}^{2}(T_{21}^{2} - T_{11}^{1}).$$

But we have by direct calculations

$$T_{12}^2 = \frac{1}{2a(x)} \frac{\partial a(x)}{\partial x_1} = T_{21}^1 = T_{11}^1, \quad T_{11}^2 = -\frac{1}{2a(x)} \frac{\partial a(x)}{\partial x_2} = T_{12}^1 = T_{22}^2.$$

Thus

$$R_{112}^2 = -\frac{\partial}{\partial x_1} \left( \frac{1}{2a(x)} \frac{\partial a(x)}{\partial x_1} \right) + \frac{\partial}{\partial x_2} \left( \frac{1}{2a(x)} \frac{\partial a(x)}{\partial x_2} \right),$$

and hence the claim of the lemma follows.

**Proof of Theorem 1.4.** By Lemma 2.2, we need only to show that the sectional curvature K of the metric  $ds^2$  is nonnegative (or positive) if a''(x) is semi-negative (resp. negative) definite for any  $x \in \mathbb{R}^n$ . For convienience, we only consider the case that a'' is semi-negative definite.

If n=2, then by Lemma 3.1 it is easy to see that  $K(T_xR^2)\geq 0$  for any  $x\in R^2$ .

Now we assume that n > 2.  $\forall \tilde{x} \in R$ , let  $E \subset T_x(R^n)$  be an arbitrary two dimensional tangent subspace. We can assume that there exist  $X, Y \in E$  such that ||X|| = ||Y|| = 1 and XY = 0. Then we can expand X, Y to an orthonormal base  $X_1 = X, X_2 = Y, X_3, \ldots, X_n$  in  $T_x(R^n)$ . Let

$$X_i = d_{ij} \frac{\partial}{\partial x_i}, i = 1, \dots, n, \text{ and } D := (d_{ij}).$$

Then  $a(\tilde{x})DD^T = (\delta_{ij})$ , where  $D^T$  is the transposed matrix of D. If we choose  $u_i = d_{ij}x_j$ ,  $i = 1, \ldots, n$ , as a new coordinate system of  $R^n$  and let  $\tilde{u} = D\tilde{x}$ , then we have

$$X_1 = \frac{\partial}{\partial u_1}, \ X_2 = \frac{\partial}{\partial u_2}, \dots, \ X_n = \frac{\partial}{\partial u_n}$$

and

$$ds^{2} = a(x)dx_{i}^{2} = \frac{a(D^{-1}u)}{a(\widetilde{x})}du_{i}^{2} = \widetilde{a}(u)du_{i}^{2},$$

where  $\widetilde{a}(u) := \frac{a(D^{-1}u)}{a(x)}$  and  $\widetilde{a}(\widetilde{u}) = 1$ .

Now according to the proof of Lemma 2.1 we have

$$K(E) = -R(X_1, X_2, X_1, X_2) = -R_{1212} = -R_{112}^2$$

$$= -\frac{1}{2} \left[ \frac{\partial}{\partial u_1} \left( \frac{1}{\widetilde{a}(u)} \frac{\partial \widetilde{a}(u)}{\partial u_1} \right) + \frac{\partial}{\partial u_2} \left( \frac{1}{\widetilde{a}(u)} \frac{\partial \widetilde{a}(u)}{\partial u_2} \right) \right]_{u=u}.$$

It follows that  $K(E) \ge 0$  if and only if

$$\left[\frac{\partial^2 \widetilde{a}(u)}{\partial u_1^2} + \frac{\partial^2 \widetilde{a}(u)}{\partial u_2^2}\right]_{u=u} \le \left[\left(\frac{\partial \widetilde{a}(u)}{\partial u_1}\right)^2 + \left(\frac{\partial \widetilde{a}(u)}{\partial u_2}\right)^2\right]_{u=u}.$$

But the assumption that a''(x) is semi-negative definite implies

$$\frac{\partial^2 \widetilde{a}(\widetilde{u})}{\partial u_1^2} + \frac{\partial^2 \widetilde{a}(\widetilde{u})}{\partial u_2^2} = \frac{1}{a(\widetilde{x})} \left[ \frac{\partial^2 a(x)}{\partial x_i \partial x_j} \frac{\partial x_i}{\partial u_1} \frac{\partial x_j}{\partial u_1} + \frac{\partial^2 a(x)}{\partial x_i \partial x_j} \frac{\partial x_i}{\partial u_2} \frac{\partial x_j}{\partial u_2} \right]_{x=x} \le 0.$$

Thus we have  $K(E) \ge 0$ .

Remark 3.1. From the proof of Theorem 1.4 and because of a theorem of [8], one can see that we have actually proved the following

**Proposition 3.1.** Let M be a complete noncompact Riemannian manifold which is locally conformal to  $R^n$  with its usual Euclidean metric, and the locally conformal functions have their positive definite Hessians. Then M is a complete manifold with positive curvature and hence M is diffeomorphic to  $R^n$ .

**Proof of Theorem 1.3.** First we can choose a  $C^2$  function  $\widetilde{V}$  on  $R^n$  such that  $\widetilde{V}(x) = V(x)$  for any  $x \in G_0 = R^n \setminus \bigcup D(x^i; r_i)$  and  $h - \widetilde{V} > 0$  on  $R^n$ . Then by the assumptions (i), (ii) and the proof of Theorem 1.4, we see that, with respect to the enlarged Jacobi metric  $ds^2 = (h - \widetilde{V}) \sum dx_i^2$ ,  $R^n$  is a complete Riemannian manifold with nonnegative sectional curvature outside some compact set. Thus, from Theorem 1.4, it follows that for any fixed  $y \in R^n$  there is a family  $\{G(t); t > 0\}$  of compact totally convex set with  $G(t) \subset G(s)$  for t < s and the balls  $B_t(y) = \{x \in R^n; d(x,y) < t\}$  are contained in G(t) for t > 0. Since the (n-1)-th homotopy group  $\prod_{n=1} (G_0) \neq 0$  (see [7, Proposition 17.11]), there is a homotopically non-trivial map  $f: S^{n-1} \longrightarrow G_0$ . Thus there exist a  $t_0 > 0$  big enough and an  $r > \max\{r_1, \ldots, r_m\}$  such that the image of f is contained in  $G(t_0)$  and  $\bigcup D(x^i; r_i, r) \subset G(t_0)$ . Let  $G = G(t_0) \cap G_0$ . Then  $\prod_{n=1} (G) \neq 0$  because f is of course homotopically trivial in  $G_0$  if it is in G (see [19, p.405, Corollary 24]).

Now we first assume that V satisfies the following strict inequalities other than the inequalities (ii) of Theorem 1.3.

$$h - V(x) - \frac{1}{2} \langle V'(x), x - x^i \rangle < 0, \quad \forall x \in \partial D(x^i; r_i), \ 1 \le i \le m.$$
 (3.1)

Then according to the proof of Theorem 1.1 (see [23, Proposition 1.4]), by (3.1) and the convexity of  $G(t_0)$ , one can see that G is actually geodesic convex. Now by [22, Theorem 2] or by an argument similar to the proof of [15, Appendix, Theorem A.1.5], there exists a closed geodesic p in G. Thus p coorespounds to a nonconstant periodic solution of (1.1)-(1.2) in G because  $\widetilde{V} = V$  on  $G_0$  and  $G \subset G_0$ .

Now assume that V satisfies all hypotheses of Theorem 1.3. Then we can modify V only in a sufficiently small neighborhood N of  $\bigcup \partial D(x^i; r_i)$  to get a sequence of approximate

potentials  $V_k \in C^2(G_0, R), k = 1, 2, ...$  such that (3.1) holds with V replaced by each  $V_k, V_k(x) = V(x)$  for  $x \in G_0 \setminus N$ , and

$$\lim_{k \to \infty} \sup_{x \in G_0} \left[ |V_k(x) - V(x)| + |V'_k(x) - V'(x)| \right] = 0.$$

But according to the construction of  $G(t_0)$ , there exists  $k_0$  big enough so that for each  $k > k_0$ ,  $G = G(t_0) \cap G_0$  is also geodesic convex with respect to the metric  $(h - V_k)\delta_{ij}$ . Hence, by the conclusion of the first part, for each  $k > k_0$  there is a closed geodesic  $p^k$  in G with respect to the metric  $(h - V_k)\delta_{ij}$ . Finally by an argument similar to the proof of [23, Theorem 1.2], we can also deduce that there is a closed geodesic in G with respect to the metric  $(h - V)\delta_{ij}$ .

#### REFERENCES

- [1] Arnold, V.I., Mathematical methods of classical mechanics, Springer-Verlag, 1977.
- [2] Ambrosetti, A. & Bessi, U., Bifurcation of periodic solutions for Keplerian problems, Rend. Math. Acc. Lincei, S. 9, 2(1991), 11-15.
- [3] Ambrosetti, A. & Bessi, U., Multiple closed orbits for perturbed Keplerian problems, Scuola Normale Sup. di Pisa, 1990.
- [4] Ambrosetti, A. & Coti Zelati, V., Closed orbits of fixed energy for singular Hamiltonian systems, Arch. Rational Mech. Anal., 112(1990), 339-362.
- [5] Benci, V., Closed geodesic for the Jacobi metric and periodic solutions of prescribed energy of natural Hamiltonian systems, Ann. Inst. H. Poincare, Anal. Non Lineare, 1(1984), 404-412.
- [6] Benci, V. & Giannoni, F., Periodic solutions of prescribed energy for a class of Hamiltonian systems, with singular potentials, *J.Diff. Eq.*, 82(1989), 60-70.
- [7] Bott, R., Differential forms in algebraic topology, GTM 82, Springer-Verlag, 1982.
- [8] Gromoll, D. & Meyer, W., On complete open manifolds of positive curvature, Ann. of Math., 90(1969), 75-90.
- [9] Gromoll, D. & Meyer, W.T., Examples of complete manifolds with positive Ricci curvature, T.D. Geom., 21(1985), 195-211.
- [10] Gorden, W. B., Conservative dynamical systems involving strong forces, *Trans. Amer. Math. Soc.*, **204**(1975), 113-135.
- [11] Gorden, W. B., An analytical criterion for the completeness of Riemannian manifolds, *Proc. Amer. Math. Soc.*, 37, 221-225. Corrections, ibid, 45(1974), 130-131.
- [12] Greco, C., Remarks on periodic solutions, with prescribed energy, for singular Hamiltonian systems, Comment. Math. Univ. Carlinae, 28(1987), 661-672.
- [13] Greene, R. & Wu, H., Integrals of subhamonic functions on manifolds of nonnegative curvature, *Invent. Math.*, 27(1974), 265-298.
- [14] Hayashi, K., Periodic solutions of classical Hamiltonian systems, Tokyo J. Math., 6(1983), 473-486.
- [15] Klingenberg, W., Lectures on closed geodesics, Springer-Verlag, 1977.
- [16] Klingenberg, W., Riemannian geometry, Walter de Gruyter, Berlin, 1982.
- [17] Ruiz, O.R., Existence of brake orbits in Finsler mechanical systems, Lect. Notes in Math., 597, Springer-Verlag, 1977.
- [18] Seifert, H., Perodische Bewegungen mechanischer systeme, Math. Z., 51(1948), 197-216.
- [19] Spanier, E., Algebraic topology, New York-London, McGraw Hill, 1966.
- [20] Tanaka, K., Prescribed energy problem for a singular Hamiltonian system with week force, Preprint, Nagoya Univ., 1991.
- [21] Thorbergsson, G., Closed geodesics on noncompact Riemannian manifolds, Math. Z., 159(1978), 249-258.
- [22] Weinstein, A., Periodic orbits for convex Hamiltonian systems, Ann. of Math., 108(1978), 507-518.
- [23] Zhu, D., A geometric approach to a result of Benci and Giannoni for Hamiltonian systems with singular potentials, Manus. Math., 72(1991), 405-414.