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NEUMANN PROBLEM OF ELLIPTIC EQUATIONS WITH
LIMIT NONLINIEARITY IN BOUNDARY CONDITION*** - -

DENG YINBING* WANG XUJIA** WU SHAOPING**

Abstract

This paper deals with a problem proposed by H. Brezis on the existence of positive solutions
to the equation Au + u(®+2)/("=2) 4 f(z 4) = 0 under the Neumann boundary condition
Dyu = u™/(m=2) where f(x,u) is a lower order perturbation of u(*+2)/(»~2) at infinity.

Keywords Neumann problem, Semilinear elliptic equatlon, Positive solution.
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§1. Introduction .':

Let © be a bounded domain in R™ with ct boundary, n > 3. In this paper we are
concerned with the existence of positive solutions to the nonlinear elliptic equation

~Au = v? + f(z,u) in Q (1.1)
with the bouﬁdary condition
Dyu=u?  on 0, | (1.2)

where p = (n + 2)/(n — 2), ¢ = n/(n — 2), 7 denotes the unit outward normal to 9%, and
f(z,u) is a lower order perturbation of u? at infinity. :
We say u € H(Q) is a weak solution of (1.1), (1. 2) ifu>0, u#0, and

/ [D;uDyv — uPv ~ f(z,u)v]dz — / uvdo = 0, Yv € HY(R).
Q o9
Hence u is a critical point of the functional

- 1 1

_ 2 ptl _ q+1

J(u) = /Q [ | Du|* — " Y F(:v,u)] dz 751 Joa do, (1.3)

where F(z,u) = i’ f(z,t)dt, uy = max(u, 0). Note that both p + 1 and ¢ + 1 are critical
Sobolev exponents for the embeddings H*(Q) < LP*!(Q) and H'(Q) — L1*(9Q), which
causes new difficulties in treating the problem (1.1), (1.2).

The Dirichlet counterpart of (1.1), (1.2) was studied by Brezis and Nlrenberg[3] and later
by many other authors. In 1985 Brezis!!l proposed several open problems in this aspect,
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including the problem of finding a positive solution of (1.1) satlsfymg the homogeneous
Neumann condition
and the problem (1.1), (1.2).

Problem (1.1), (1.4) in the subcritical case 1 < p < (n + 2)/(n — 2) was studied in
[8], [6]. But in the critical case p = (n + 2)/(n — 2) it was studied by Wang(® in which
some delicate integral computation was made in order to estimate the critical value of the
associated functional. Both arguments in [3] and in [9] are based on the fact that the best
constant S in the Sobolev inequality

[ellp+1,mm < S[|Dullz,g (1.5)
is achieved by the function u(z) = (1 + {|?)®~™/2, But this fact can not be applied to

problem (1.1), (1.2) since we also have critical Sobolev exponents in the boundary condition.
Recently Escobarl®! considered the best constant Sa,b in the Sobolev inequality

allullp+1,r2 + bllullg+i,ory < Sapl|Dullz,rn (1.6)
and proved that S,  is achieved by the function ¢(z) = (1+|z'|? + |z +25|2)2~™)/2, where
a,b are nonnegative constants with a + b > 0, 22 is a constant depending only on g, b,n.
Escobar’s result enables us to deal with the problem (1.1),(1.2). The function ¢(m) will play
a crucial role in our argument.

We will prove for a class of f(z,u), for instance f(z,u) = —u, the existence of a positive
solution to (1.1), (1.2). In Section 2, Wwe present a general existence theorem which is based
on a variant of the Mountain Pass Lemma. In Section 3, by a way similar to the one in [9),
we verify the conditions of the above theorem to obtain solutions of (1.1), (1.2).

We will always denote &’ = (21, ,%n-1), R} = R"N{z, > 0}. For simplicity we will '
write ||ullze(9) = ||ullo,n and |[ullLe(oa) = |ula,o0-

§2. An Existence Theorem

Let © be a bounded domain in R™ with C* boundary, n > 3. Assume that f(z,u) is
measurable in z, continuous in » and that sup{f(z,u);z € 2, 0 < u < M} < oo for every
M > 0. Consider the problem

Au—u-”+f(a: w) in Q, , '
u>0. in 0, ‘ - (2)

Bu __ ,.q
5y = U on 912,

where p = (n +2)/(n — 2), ¢-= n/(n ~ 2), v stands for the unit outward normal of 9.
Suppose that there exists a(z) € L>(f2) such that

hm f(z,u)/w = a(z) uniformly for z €0, (2.2)

lim - f(z,u)/u? = 0 uniformly for z € Q. (2.3)
u—

Moreover, we suppose that the elliptic operator —A + a(z) with the Neumann boundary
condition £ a = 0 has its least eigenvalue 1y positive, i.e.,

l1=-_-inf{ /ﬂ (|Du)? - a(z)u?)de; /9 ude='1} >0. (24
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The values of f(x,u) for 4 < 0 are irrelevant and we may define
f(z,u) = a(z)u forz€Qu<O.
Set F(z,u) = fou f(z,t)dt; and _ ,
— [ }_ 2 1 - 1 . q+1
Jwyié[ﬂpm i F@uﬂ o~ — do.  (25)
If uw € H(R) is a critical point of J(u), let u_ = max(—u,0), then '

/ (1Du_f? - a(ey? o = (7'(u),u_) =

which implies by (2.4) that u— = 0. Hence in order to obtain a solution of (2.1) it suﬁices
to find a nonzero critical point of J (u)
Set '

c= 1nf sup J@(t), | | (2.6)
Ye¥ 4e(0,1) _

where ¥ = {3 € C([0,1], H1($2)); ¥(0) = %o = to}, %o being a constant large enough so that
J(t1po) < 0 for all t > 1. By (2.4) we have :

J(u) > C||ull%: - Fa:,u-—a(:vu+ 1 p“ da:_—.—l—— ultldo

1
+1 +1
>(C’-e)||u||H1—C/uﬂ’_ da:—q+1/ uf’,_ do,
and hence o o _
c>0 - (@27
Before stating the main theorem we first introduce a few lemmas. ’
Lemma 2.1. For any constants a > 0 and b 20, the infimum

5(0,8) = ing {1Dullay/(allllprs, ey + Hulgssony) (28

is achieved by. the function (1 + &' + |n + o i ~2)/2 for some constant x? dependmg
only on a,b.

This lemma was proved by Escobar (see Theorem 3.3 in [5]). By the same argument as
that of Escobar we have '

Lemma 2.2. For any 9 € (0,1], the znﬁmum

So = ;&%{HDullz,Rg/(9||u”p+1,R:; +(1- 9)|U|Z+1,6R1)} - (2.9)

is achieved by the function uw(z) = (1 + |&'|2 + |zn + 25|2)3™)/2, or after rescaling by any
of the functions '

, (2.10)

. (n—2)/2
o= ()
where 0, is a constant depending only on n,0.

Since u.(z) reaches the infimum Sp, it verifies the. Eular-Langrange equation

{—M_mwm%, in R?,

5 - (2.11)
__5;:‘_ = (1 — 8)Soluly;{ oy u? on SR, | .
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From the Neumann condition it follows that

o 1-0

x, = o Sgl%1|q+1 OR7) Uy =u |8=1.

The value of Sy can be solved in the following way.
For 7 > 0, let

| (n—-2)/2 | A
bor(@) = ( ey/n(n—2) ) o [ (2.12)

€2+ [']? + |@, + eTal |2 " Vn-2

Simple computation shows that 1. , satisfies -

{ —Ay = uP in RY,
' ou ' : (2.13)
—————— q 7

B, TU on ORY. _

Let 0 = |4 ,.||”;1 Ry [(le, .,.||"’:|‘_1 Ry +7|te ,,-|q_,_1 oR? ), which is independent of . Then ¢ ,
reaches the mﬁmum Sy with

Sp = ”"/"e rlos p+1 Rz + 7'|"»L'e,f_|g-—|-i,aRgr )
and (2.13) is congruent to (2.11). '

Denote
B(u) = / [.1_|Du|2 . u”"'l] do — / ! utHdo (2.14) |
Ry 12 p+1t : aRn‘H'l o
and set ‘
A = inf sup ®(tu). (2.15)
uF#0 >0

Lemma 2.3. The infimum A is achzeved by Pe = t e 1.
Proof. Set

g
which is independent of ¢ > 0, then A< A .VVVe claim that A = A, Indeed, if A < A, thejl
there exists u € H*(R7?) with ||Dullz, Rz = |[[D¥e,0ll2,rr , such that A(u) = il;g d(tu) < A.A
If ‘ ‘
llull211, R"/|u|q+1 oR7 > Il¢e,0'“§+1,R$/l"/’e,ol3+1,agi y ,(2.16)_ '

since e o reaches the infimum S; m (2.9) we have

"Dunz R"/”u”p+1 Ry 2 51
This, together with (2.16), implies

(u) 2 sup <I>(t1/)€,0),
| >0
contradicting A(u) < A. If (2.16) is not true, there must be some 7 > 0 such that
el s, /NlGs,0mn = Ierllpes,ry /e rlirsonn - (2.17)
In this case since e, reaches the infimum Sy for some 6, we have
So < |\ Dull gy / Ollwlls1,mn +(1- 0)lulq+1 orz) 5
which also contradicts A(u) < A.
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Consequently A = A. Tt remains to verify A = sup ®(tehe,1). To show this, first note that

1/)5 1 is the only function in {¢¢, ;7 > 0} which satlsﬁes the Eular equation of ®. Next let
Pr(x) = 7724 (7). Then

- n'n_ : (n-2)/2
'(Z,,.(m) _’"ZO(:E) — (l €y ( 2) )

/|2 4 |zn + 0|2

as T — 00. Moreover ' .
A("/’e,‘r) = A(J'r) - A("ZO) > A

since {50 does not satisfy the Eular equation of ®. It therefore follows that A = sup®(tie).
Lo >0

Let Bg be the ball {z € R";|z| < R}, and B = By n{z, > h(z')}, where h(z') is a given
C! function defined on {z’ € R"1;|z'| < 1} with h, Dh vanishing at z’ = 0.
Lemma 2.4. V ¢ >0, 3§ > 0 depending only on & such that if |Dh| <6, we have

S =, it (Nl /Ol 5 + (1= Ol pp) 2 S0

Proof. By making the transformatlon Y =z ,yp =Tp— h(.'z:’ ), this lemma follows from
Lemma 2.2 immediately.
The main theorem of this section is
Theorem 2.1. Suppose that (2.2)-(2.4) hold, and

c<A (2.18)

Then there exists a solution u of (2.1) with J(u) < c..
Proof. By Theorem 2 in (3], there exists a sequence (u;) C HY(Q) such that J(u;) — ¢
and J'(uj) = 0in H™ 1(Q) as j — oo, that is,

— '2—
Jo oo =

[[Dwpe - @l - f@ueiie— [ @)teds =olllm@). @)
o) _ CJen T .

-Let ¢ = u;. We obtain
1o g, 1 / | Na+l
n fn(“’” Bt 1) Joal Dt
1
= / [F(z,u5) - 5uif (2, u5)ldz+ e+ o(1 + [lusllz2(s2))-

Since f (:v u) = a(z)u for u < 0, we have

("")pﬂ F(“”“")] d“”qilf{ag(uj)i“do%'c+o(i), (2.19)

(2.21)

F(:L' u) - —uf(:z: u) 0 foru <0.
From (2.21) it therefore follows that - o
[wpriass [ (u»q“dw < Ol

and hence by (2.19), |luj{lzr @) < C.
Extract a subsequence, still denoted by (u;), so that
uj — u weakly in H 1(Q) and in (LPH1(Q))*,

u; — u weakly in (L7T1(09))%,
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u; — u strongly in L*(2) for any t < p+ 1.
Passing to the limit in (2.20) we see that w is a critical point of J.
To show u # 0, we prove it by contradiction. If u = 0, we have (see [3])

/ F(z,uj)dz — 0, / u; f(z,u;)dz — 0 as j — oo. o (2.22)

Let € be a small positive constant to be determined, and let (pa)X_, be a unit partition on
Q with diam (suppy,) < 6 for each @, where diam(D) stands for the diameter of the set D.
Since 8Q € C1, from Lemma 2.4, it follows that

ID(upa)l3,0 = (So — €)BllwpalZira + (1 — O)lupaliiron)s Y1<a< N, ueHY(Q)
provided § is sufficiently small. For any 6 € (0, 1] we thus have
Ol [541,0 + (1 = Olujlzis o0

: N N
= 0| Z wau?”(pﬂ_)/z,n + (1 -0))| Z <Pa’u§|(q+1)/2,an

a—l a=1

<60 Z leatssll(p+1)/2.02 + (1 — 6) Z |<Pau |(a+1)/2, o0

a=1 a=1

< (Ss—e)7" Z 1Dz )30

a=1

< (8o — &) (L + €)1 Dujli3 .0 + Ce Ilua 13,0l

= (S — )" (L+¢)|Dyjll3 0 +o(1)  asj— o0

< (So — )7 (1 + 2€) || D13 - |
The last inequality holds provided j is large enough, say, j > jo. Similarly to the proof of
Lemma 2.3 we have

sup d(tu;) > A—Ke (2.23)
for some constant K independent of j > jo, where |
iy s P
Let ¢ = u; in (2.20). By (2.22) we find
10wl - )z as = [ @i)do =o(n) as = oo,
which implies ®(u;) = i;lg@(tuj) + o(1). Again by (2.22), and from (2.19), we conclude

®(uj) = J(u;) + o(1) = ¢+ o(1). This, combined with (2.23), leads to ¢ > A — (K + 1)
provided j is large enough, which contradicts (2.18) if € is small enough. Hence u # 0.
Finally we show that J(u) < c. Since u; — u weakly in H(2), we have

/F(w u;) d:z:—-»/quda:, /u,f(a:,uj)dw—»/ufwu

Set v; = u; — u. From [2] we have

/ (Uj)’fldw’- / (v3)5 dw + / uPldz + o(1),
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/ (u,)q"'lda:—/ (v;) q+1d:1;+/ uq"'ld:v+o(1)
o9
Obviously '

/ |Du;Pdz = / | Do, Pda + / \Duftdz + o(1).
» Q : Q o
Hence (2.19) and (2.20) reduce to-

J(u) +/ﬂ [%‘D'Ujlz _ 1(11,-)?]_“] T — ———/ (v)% q+1dcr =c+o(1)

qg+1
and

[, oo - ] o [ e =t

respectively. Consequently

W =cto)-7 [ (o) S . e

and hence J(u) <c.

§3. Verification of the Condition (2.18)

Set c* = 1nf{sup J(tu); v >

and u # 0}. Then ¢ < c* (see, e.g. [7]). Hence the

condition (2.18) i m Theorem 2.1 can be replaced by '

c* < A = sup ®(t1).). (H)
>0

We first consider the problem _
_Au=uP~)lu in Q,
 u>0 in Q, (3.1)
{ 33 ud . on O9.
Theorem 3.1. If 9Q € C?, then problem (3.1) admits a solution for any A > 0.

Proof. The functional associated with (3.1) is

1 +1 1 +1
sy = [ G100 + 530 = e | e - [ 62)
Let v = 1. Then sup J(tv) < A for A > 0 small enough, which implies by Theorem 2. 1 the

>0
existence of a solution to (3.1).

But to show (3.1) has a solution for A > 0 large is much harder, we follow the outline of
[9] and proceed as follows.

Let B(a: R) be a ball containing € so that 8B(Z, R) NoN # 0. Let zo € 8B(Z, R) N 0K,
and oy, ,0n—1 denote the principal curvatures of 8N at zp (relative to the inner normal).
Then a; > R~! for each 1 < i < n— 1. Without loss of. generality we may suppose that zo
is the origin and Q C {a:n > 0}. Hence the boundary 8 near the origin can be fepresented
by (rotating the x3,-- ,Tn—1 axes if needed) -

-h(:c =—Za,m + o(|z']?),
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for &' = (z1,-+- ,xn) € D(0,6) = :{z' € R*Y |2'] < 6} for some § > 0. Set

e(z) = ( ey/n(n—2) )(n 2)/2, mg ) n- .

€2 + |z'|2 + |z, + e2f? “Vn-2
We claim that
Y. =supJ(ty:) < A ‘ (3.4)
>0

for € > 0 sufficiently small, and hence (H) holds.
Denote

Ki(e) = / |Dye|?dz, Ks(e) = /Q YP+ide, Ks(e) = /6 Q¢'§+1da.

Let g(z') = Z a;z2 . The proof of (3.4) is divided into two cases.
Case 1, n 2 4 We have

h(z")
Ki(e) = |D1/)€|2dm / do’ / | DY 2dn + O(e™2)
D(0,6)

; o) M .
/ DY Pz — / dm/ /D(M)/() |D¢€| da:n+0(e” )
n~1 gml

Observing that
9(=")
I(e) =: / dx' / | D2 de,
-1 0

_ 9 |2+ |z + 202
— _ 2 20 n-—Z/ d I/ n n
(n=2°Cue™™ f ¥y TR+ [+ el

. eg(¥’) | |2+l 4 20 12
=(n—2 2C d I/ Y Un n
=2Cr Jens @ Jy T WP+ Iy + 20P

where C,, = [n(n — 2)]*~2)/2, we obtain

-1 2 (Iy'1* + =2 )9 ") . .
hme I(e) = (n—2)°C, /n~ 1+|:L'°|2+|y|2)ndy

(22, WP+,
= 2= 2 f L p+wpr® =1

(3.5)

Next by

11(6)

h(z") '
=: / dz’ / | Dpe|*dzy
D(0,5) g9(z’)

. h(z') .2 om0 ]2
— (,n . Z)ZCnEn—zf dm'/ 5 l.’B I ,'2*' Iwn + swnlo > T,
D05 Jg@) (E2+ |2+ |z, +ex0|2)n

<0 BN G CO TR
Do) TP+ [z + el P)?

and noting that |h(z') — g(z')| = o(|2’|2), we obtain I;(e) = o(c). Hence ‘
K1(€) = KI,O — I(S) + 0(6), (36)
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where K10 = |, Ry | Dip|2dz, which is independent of e. Similarly we have

h(z')
Ks(e) = / P de — / i’ / WP+ oy + O(e)
R} D(0,6) o .
‘ ro(=") h(z")
= Y2 Hide — / de’ / + / -dd’ / PP ldp, + O(e™).
R} n—1 0 D(0,6) g(z")

, g(=") "
I(e) = / do fo WP,
1

9(z")
= Cle" da’ d
C"e'fnn—l m/o @+ 5P + fan 2l P "

o oy eg(y’) 1 p
- "’/n—x y’[; 1+ [y + lyn + 22)" oo

where C!, = [n(n — 2)]"/2, we obtain

Since

’ - .
lix%_s“lll(s) = C;‘/ 9(¢/) dy =: I. 87

re-r (L+ (23 + 2"

' | h(z')
/ dx' / PP dz,|
D(0,5) g(=’)

K () = Kz — I(e) + oe), (3.8)
where Ka0 = [p» Y27 dz. To estimate K3(e), we extend h(z') to R** so that |h(z')| +
+ ) )
|Dh(z')|? = O|z'|?) as |a'| — co. We have

Similarly we have

Ii(e) = =b(e) | ase— 0.

Therefore

Ka(e) = e 1C" / V1+|Dh]? s+ 0 )
O Jotoy @R +estP
1+ [Dh*(ey’) | _
o C”/ : d I+ O n—1 .
: ™ Jan-1 (L+ Y2 + |%h(ey') + w%lz)“‘l Y (5 )
where Cy, = [n(n — 2)](=1/2. Since h(z') = g(z') + o(|z'|?), we obtain

] !
%K3(8)|e=o = —(n=1)C" /R 20090) g0 —. _1I. (3.9)

et (L[R2 + [y'12)"

Hence R
_ K2(5) = Kg,o - ﬂ[(a) -+ 0(6), _ . (3.10)
where K30 = [gn-1 $3+'do. Moreover, we have (see [3])
| 0(8)1 n=3,
Ky(e) = / Y2dz = { O(e’loge), n=4, ' (3.11)
2 0(e?), = n25.

Let t. > 0 be a constant such that
J(tetpe) =Ye = i‘;g J(t1e)

1 Kg(s) Kg(a)
— = Y 2 — DA et S\ et
| 31;%) [Z(Kl(e) + K4<e)) i .
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Then %J (t¥e) = 0 at ¢ = t., that is, ¢, is the positive root of

Ki(e) + AK4(e) — Ka(e)t*™! = K3(e)t?™! = 0. (3.12)
Noting that p— 1 = 2(q—1)=4/(n - 2), we have °
-1 = [..1rg(e)++ V/I(g(e)-+-41¥§(e)(1(1(é)-+ AKy(e)| [2Ka(e). (3.13)

From (3.5)-(3.11) we thus conclude At. =: t. — 1 =0() ase—0.
By Lemma 2.3 it follows that '

1 1
A ='§K1,0 - ——K20-

K3 . : 3.14

and vK1,0 h Kz,o — Ka,o = (. Hence

J(te) = %(_Kl(e) +.K4(s))t2 K2(5)tp+1 K3(e) t‘1+1

p+1° +1
1 5 K I(e K. (e
= Lo~ 12 - —————2°+1()£+1 Koo~ @ 11 1 o

= ';'(Kl,o - I(e)) - m(Kz,o - 1(6)) _ .q—_l'_"l"(Ks’o - I (¢)) (3.15)
+ (K10 — Kz —Ks 0)Ate +o(s) .
=A- <%I(€) - II( )~ Jlr(e)) +o(e)
1 1 1
=A“(§I—p+1 —q+'1M)a+o(e).
To verify (3.4) it suffices to show ' , |
) 1> 2pe 222y (3.16)
on n—1

. n,--l :
Set ap = 5?751:17 z—z1 a;. Noting that C, = n(n — 2)C,,C, = \/n(n — 2)Cy, and recalling

 that 2§ = , /725, by (3.7) and (3.9) we deduce

1 (n—2_ n-2_\ - (n—2)2%2'|? 2n(n — 2)|z'|? ,
aocn( n “n—l”’)‘/ — [(1+lw°lz+lw'|2) T AT RE+ P
I|2

=n-2n-2) [ | G o

On the other hand, by (3.5),

‘ lwllz ("'75"+|-'17'|2)
—( — 9)2 n-2 /
asn =2 [ e

Hence we need only to check

] s 2An=1) LA
d . _
Jos TTRF TR > 27 fp Tr PR O

To show (3.17), observe that V 8 < 2n — 1, integrating by parts we have

/°° rB~2 g = 2(n—1) /°° B P
o @+ 1T TgIT f) @
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Next by

00 ’l"ﬂ p oo ,,,ﬁ—z p 5 oo - rﬂ_z P
/0 (@ + 2" ’""/0 (@ + r2)n1 r—a /0 @+

00 M (IB - 1)&2 o pp-=2
/0 (a2 + rz)ndr T 2n—-p-1 /0 (a? +7'2)”dr'

Letting 8 = n + 2, we conclude

[ PF ., (DA WP
gn-1 (14 ]28]2 + |2'|?)™ n—3 g1 (1 + [z8|2)"
_2(n+1)(n— 1) |z'|2 ,

= dz,
(n—3)(n~2) Jgo—r A+ |20+ |2'|*)n
which implies (3.17) and hence (3.4) holds. '
Case 2, n = 3. Let a,a* be two positive constants such that a|z'|? < h(z') < a*|z'|? for

z' € D(0,6). We have

h(z")
Ky(e) = / | D |?dz — / dw’/ |Dype|?dmr, + O(e™2)
R} ’ - JD(0,5) 0 .
a.|a:'|2
<Kio- [ & [ Dvulds+OE")
D(0,5) 0
The second term of the right hand side

acly’|? ly/ 2 | 02

. Y +lyn t o |

>C dy’/ Z dyn > Coe|logel.
D(0,6/¢) 0 A+ WP+ lyn+a32)m "

We conclude

Ki(e) < Ky 0 — Coelloge| + O(e). : (3.18)
In the same way we have
Ki(e) > K10 — Cigl|loge| + O(e). (3.19)
Similarly to (3.8), (3.10) we have Kj(¢) = Ka,o + O(€), K3(¢) = Kz + O(e). Let t. > 0 so
that J(tepe) =Ye = il;g.] (te). From (3.12), (3.13) and by (3.18), (3.19) we infer that
At, =1 —t. = O(ellogel).
Hence by (3.11)

1 ' 1 '
I(tetpe) = 'Z-Kl(ﬁ)tﬁ o 1K2,0"«“é”r1 ~ 7 1K3,ot§+1 + O(¢e)
1, 1 1
< LKy~ Coellogel) - —— Ko — ——K
< 5(K1o 0e| logel) oo ke (3.20)

4 (Kl,o - Kz,o —_ Ks,o)Ate -+ 0(6)
=A- %Coe.log e|+0(e)< A

provided € > 0 is small enough. This completes the proof.
We now turn to the general problem (2.1).
Theorem 3.2. Suppose that OQ € C?, (2.2)-(2.4) holds. If

f(z,u) > —Clu+u*), VeeQu=>0 (3.21)
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for some C >0, and o € (1,n/(n — 2)), then there exists a solution of (2.1).

Proof. Let zg € 89 so that the principal curvatures ay,- - ,a,—1 of O at xo (relative
to the inner normal) are positive. We may suppose that zg is the origin and Q C {z, > 0}.
Let 9. and K;(¢), Ka(€), K3(¢) be as in the proof of Theorem 3.1. Set

Ka(e) = Ka(e,t) = /Q F(z, t.)dz.

From (3.21) we have

K2 {99 "3Y. (3:22)

Let t. > 0 so that J(t.4.) = supJ(t1).), where
>0

1 1 1
Jw) = [ |Z|Dul? - pHl _ ,']d— 1 wtids -
(w) /Q [2| u| p TU+ F(z,u)| dz Ti1 anu+ o

is the functional associated with the problem (2.1). Similarly to the proof of Theorem 3.1
we conclude that {. — 1 and hence

. ~ 0(6), n =3,
J(tetfe) < sup D(tife) + { o(e), n >4,

where ®(u) = J(u) + fﬂ F(z,u)dz. We have verified in the proof of Theorem 3.1 that

= A —Ce|loge|, n=3,
i‘iﬁq’(t‘/’s) < { A — CE, n>4,

for some C > 0 (see (3.15) and (3.20)). Hence J(t.%.) < A for € > 0 small enough. This

completes the proof. ‘
Remark. More delicate result has been recently obtained by J. Escobarl0.
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