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Abstract '

A class of Goppa codes is constructed by using Artin-Schreier function fields, of which the
number of prime divisors of degree one is obtained for some cases, and their minimum distance,"
duality and self-duality are discussed. At last the subfield subcode of Artin-Schreier code is
investigated, the true dimension under certain conditions is given and the covering radius and
minimum distance are estimated.
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50. Introduction

Algebraic geometric codes, which we always call Goppa codes, were first: introduced by
Goppa and proved to be better than the Gilber-Varshamov bound. Many good expositions
about this topic can be found in [5,6,7,24,25]. New codes were constructed from Goppa’s
idea by using special curves such as elliptic curves. Hermitian curves, and their parameters
can be given for partial cases. o | - | .

In the present paper, we investigate the parameters of the algebraic geometric codes from
Artin-Schreier curves first introduced by Stichtenoth!!®l, The arrangement follows on this
line. Section 1 gives the basic facts about Artin-Schreier function fields, e.g. the number
of the prime divisors of degree one, the base and dimension of the function space L(m@),
etc. In Section 2, we construct Artin-Schreier codes and obtain their parameters for many
cases which generalize the results of [20]. In Section 3, we discuss the parameters of the
subfield subcodes of Artin-Schreier codes using Bombier’s reults about exponential sums.
This method was used by Helleseth, Teitavainen, Moreno and Moreno to get the parameters
of long BCH codes and Goppa codes such as their precise dimension and bounds on the
covering radius and minimum distance. '

1. Basic Facts About Artin-Schreier Function Fields
Suppose f(z) = i a;xt € GF(p)(a:) We associate it with a polynomial of the form
i=0 - .

n . )
f*(z) = Z a;z? , the so-called p-polynomial, f(z) and f *(x) are called p-associated of each

=0 . ) .
other. The polynomial F(z,y) = 2" — f* (y) is absolutely irreducible and the affine curve
C : z" = f*(z) is called Artin-Schreier curve. For our consideration, C is defined over
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K = GF(p*®), r|p® + 1 and f(z)|z%®® — 1. The function field K(C) of C is the finite
seperate extension K (z, y) of the single variable rational function field K (z). K(C) is called
Artin-Schreier function field. The genus of K(C) is g(K(C)) = (r — 1)(p"™ — 1)/2.

In this section, we alway assume f(z) = (22%® — 1)/G(z). In [8], the author obtained the
number of the roots g*(2") in K if r|p® + 1. From this result we can get the number of the
K-rational points of Artin-Schreier curve. For this reason, we need the following lemma. -

Lemma 1.1.] R(g*(z)) = f*(K). Here R(g* (:L')) is the root set of g*(z) in K; f*(K)
is the image set of f*(x) over K. '

Later we suppose R,(g*(2)) = {a € K|there exists 3 € R(¢g*(z)) such that 8 =a"}.

Theorem A.8 Suppose deg(f(z)) = n, the order of f(z) is e, i.e., the least integer such
that f(z)|z® -1, (f(z),9(z)) = 1, r|p?+ 1. If r|p?3® — 1/p* — 1, then the number of the roots
g*(z") in K is -

HRA0" (@) = 4" + (1) 18, (" - 1),
where _
r—1 if r odd or p* + 1/r even or b even,
5(r,t) { —~1 if r even, p* + 1/r odd and b odd.

Theorem B.[®! Suppose deg(f(x)) = n, the suborder of f(z) is e, i.e., the least integer
such that f(z)|z® — 1, (f(z),9(z)) = 1, r|p® + 1. If r|p?®® — 1/p® — 1, then the number of
the roots g*(z") in K is

#R,(g"(2)) = p***7" + (1) 'e(r, ()p™ " (0" - 1),

where if rlp?® — 1/2(p* 1), e(r,b) = 8(r,b); if r| 2 — 1/2(p° 1),
; -1 if roddor p*+1/r even or b even,

(r,b) r—1 if r even, p* + 1/r odd and b odd.

Now we can get the number of the rational points of Artin-Schreier curve from the above
two theorems. If (z,y) is a sulotion of the equation z" = f*(y), then g*(z") = 0 by
Lemma 1.1. For one such z, there are p?*®~"y's such that 2" = g*(y). Therefore #C =
P"#R,(g*(x)). From this we prove the following two theorems analogus to Theorems A and

. B.

Theorem 1.1. Let the affine curve C : " = f*(y) be Artin-Schreier curve defined over

K, f(0) # 0, the order of f(y) be e, (F(1),9(¥)) = 1, f(W)gly) = y**®* 1, rlp® + 1. If
r|p?e® — 1/p® — 1, then the number of the rational points of C over K is

#C = p®® + (=1)*~16(r, b)p™ (p" — 1),

where

—1 if r even, p“ + 1/r odd and b odd.

Theorem 1.2. Let the affine curve C : z" = f*(y) be Artz'n;Schrez'er curve deﬁned over
K, f(0) # 0, the suborder of f(y) be e, (f(v),9(%)) =1, f(¥)9(y) =y?** -1, r|p®+1. If
2ab . 1/p® — 1, then the number of the rational points of C over K is

T|p
#C = p*® + (~1)>te(r, b)p™ (»™ — 1),

" [r—=1 if r odd or p*+ 1/r even or b even,
6(7'7b) = '
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where if rip?® — 1/2(0° — 1), e(r,b) = 8(r,b); i r{p*® - 1/20° ~ 1),
' b -1 ifroddorp®+1/r even or b even,
e(r,b) = r—1 if r even, p* + 1/r odd and b odd.

Remark 1.1. Later we always denote the number of the rational points of (affine curve)
C by N which can be obtained from the above two theorems. ‘ :

Since in K (C) the infinite prime divisor of K(z) = o0 = (1/x) is totally ramified, K(C)
has only one infinie prime divisor Q of degree one and.we have (1/z) = p"Q. Hence there are
N + 1 prime divisors of degree one in K(C) and we can conclude for which r and f, K(C)
has the maximal number (attaining the Hasse-Weil bound) of prime divisors of degree one
from Theorem 1.1 and Theorem 1.2.

Let (o, 8) € C, and P, g) be the prime divisor of degree one of K(C) which is corre-
sponding to the common zero of z — o and y — B. Every finite prime divisors of degree one
of K(C) has the form P, gy and we can get the following decompositions of the principal
divisors. :

@-a)= Y, Pap-0"Q

ar=F*(f)
"'PO_'"'Q lff*(ﬁ)’:Oa

(y—B) = 3" Pap-rQ if (B #0.
ar=f*(6) .

Given a divisor G defined over K, the function space L(G) is defined by L(G) = {t €
K(C)|(t) > —G}. Tt is well known that L(Q) is a finite dimensional vector space over K;
the dimension is denoted by I(G). For Artin-Schreier function field, we have the following

result. . '
" Proposition 1.1. Let m be an intger greater than or equal to 0.

(i) The set {hi(z)k;j(¥)|0 < 4; 0 < j <p"—1; ip" + jr <m, hi(z) € K(z), deg(hi) =
i, ki(y) € K(y), deg(k;) = 7} is a base of L(mQ) over K. :

(i)

m—g+1 ' if N>m>29-2,
KmQ) =4 S ((m — r)/p") +e if m <29 =2
_ =0
where ¢ = [m/r], [] denotes the integer part.

Proof. Since {ziy/|0 < 45 0 < j<p"— 1L " +jr < m} is a base of L(mQ), it is
easily seen that (i) holds. For (ii), the first is by Riemman-Roch theorem and the second by
counting the base set of (i). :

Let Q be the differential space of K(C) over K, G a divisor of K(C). The subspace of
Q(G) is defined by Q(G) = {w € Q|(w) > G}. Let 2 = g*(x")/z"~*. Then (2) = D — (N)Q,
where D = Y P; is the sum of all finite prime divisors P, (i = 1,2, -+ , N) of degree one of
K(C). Thus dz = (2g — 2)Q. For differential n = dz/z, we have

(n) = (d2) - (2) = 29 - 2)Q - D+ (N)Q = (N +29 - 2)Q@ - D.

If P is a simple zero, then P is a simple pole of dz/z and the residue is 1. We have
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Proposition 1.2. The conditions as above, Resp,(n) =1, i =1,2,--- ,N.

§2. Construction of Goppa Codes
by Artin-Schreier Function Fields

Let D = P, + P +- - -+ P, be a divisor of K(C) over K, where P; is the prime divisor of
~degree one of K(C). Let G be an arbitrary divisor of K(C), whose support is disjoint from
that of D. Then the codes C(G, D) and C*(G, D) are defined by

- 0@GD)= {(f(P), f(P2),---  f(P))If € L(G)) |
C*(G D) = {(Resp, (w), Resp,(w),- -+ ,Resp, (w))|lw € UD — G)}.

Later we assume G = mQ@ and D = E P;. Now we can obtain the following results which
is a modification of [5]. : :

Theorem 2.1. C(mQ, D) and C((N +2g — 2 —m)Q, D) are dual to each other for any

m € Z. In particular, if p =2 and m = (N + 2g — 2)/2, C(mQ, D) is self-dual.
Proof. We know that C(mQ,D) and C*(m@, D) are dual to each other. Since 7 is a
base of §2, we have

un € QD — G)¢>(u)+(17)>D G
e @>2D-G-(n)=(N+2-2)Q
& u € L(N + 29 - 2)Q).
By Proposition 1.2, we have _
(Resp, (un), Resp, (un), - - - Resp, (un))
= (u(P1)Resp, (1), u(P2)Resp, (1), - ~u(Pn)Resp, ()
= (w(P),u(P2), -+ ,u(Pn)).
Hence C(mQ, D) = C((N + 2g — 2)Q, D). The theorem is proved.
Next we consider the dimension of C(m@), D). It is easily seen that dimC(m@, D) = 0 if
m < 0 and dimC(mQ, D) = N — 1 if m > N + 2g — 2. For other m, we have
Theorem 2.2. Suppose 0 < m < N +2g — 2. Then
dimC(mQ,D) = m+1l—g if 20—2<m <N,
N —I((N +2g — 2)Q) zf m > N
Here I(mQ) 4s given by Proposition 1.1.
Proof. The first is by Proposutlon 1 1, the second by Rlemman-Roch theorem, the last
by Theorem 2.1. ' o
Now we discuss the minimum distance of C(m@, D). As in [18], we define

A(m) {0<l<m]therearez>0and0<y<p —1suchthatl—-zp +_77'},

= max{l|l € A(m)}

Then we have A(m) = A(m"’) and C(mQ, D) = C(m"’Q, D). For the general minimum

distance d(C(m@, D)) of Goppa code C(m@; D)), from [7,20] we have
Theorem 2.3. Let 0 <m < N. d(C(mQ,D)) >N —m”~.
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In general, the bound above is not tight, but we can try to obtain some cases with equlity.
For this reason, we cpnstruct some special rational functions in L(m@Q) which have the zeros
in C as many as possible.

Proposition 2.1. If one of the following conditions holds, then there exists a rational
function v € L(mQ) with ezactly m distinct zeros. ’

(i) m = ip™ < N. |

(i) m=ig" +jr <N = (r—1)p", 0<4, 0<j<p"—1L.

Proof. (i) Let S be a subset of R.(g*(z)) such that #S = 4. Then Hs(w — o) € L(mQ)

’ oc

and []J(z — a) has ip™ zeros.
(ii) Let A € Rr(g*(@))\{0},
AN ={BeK|f*B) ="} and A={a€ Kla™ # A"}

Then #A(\) = p" and #A = #(R(g*(z)) — r). Since m < N—(r—=1)p" and N =
p"#R.(g%(x)), i < #A. Take a subset 5y of A()) such that #S; = j and a subset Sa

of A such that #S, = 4. The rational function t; = [I (¥ ~ B) has jr different zeros;
: BES :
to = [] (z— ) has ip™ different zeros. We see that the zeros of t; are different from those
aESa . o
of to. Hence t1t2 has ip™ + jr distinct zeros.

Theorem 2.4. Letm = ip™ +jr < N -1, 0 <4, 0<j<p*-11Ifj=0or
m<N=(r- 1)p®, then d(C(m@Q, D))) = N-—m. : .

Proof. Take t € L{(mQ) such that ¢ has m distinct zeros. The weight of the vector
(u(Py),u(P2),- -+ ,u(Pn)) is N.—m. By Theorem 2.1, d(C(mQ, D)) = N —m.

Corollary 2.1. If (p" —1)r <m < N — (r — 1)p", then d(C(mQ, D)) = N —m.

Proof. Since (r,p") =1, {m— jr|0 < j < p™ — 1} is a residue system modula p”. Hence
there exists j such that p®|m — jr. Let i = (m — jr)/p™. Then i > 0 and m = ip" + jr. By
Theorem 2.4, the corollary holds. ' c o :

At last we give a generator matrix and a parity check matrix bf Ci- Let {hi(z)g; (y)} be
a bage of L(mQ) from Proposition 1.1 and ug; be the Tow vector (hi(@)g;(B)) where (e, B)
runs thfough all rational points of C. We use the M,, to denote the matrix with row vector
u;j. Then we have

Theorem 2.5. (i) f0<m <N -1, My isa generator matriz of C(mQ, D).

(i) If2g—2<n<N+29~ 2, Mny24-2 i  parity check matriz of C(mQ, D).

Remark 2.1. By the proof of Proposition 2.1, we can use Proposition 1.1 to make My,
simpler. :

Proof. Directly by Proposition 1.1 and Theorem 2.1.

§3. Subfield Subcode of Artin-Schreier Code Over ¢ r (p)

In thgis second, we discuss the parameters of the subfield subcode, which is denotéd by
C;(mQ, D), of C* (mQ, D) over GF(p). First of all, we give a generalization of Delsarte’s
result about the dual of the subfield subcode of Goppa code. ,

Theorem 3.1.12 The dual of the subfield subcode of C*(mQ, G) is given by Cy (m@,D) =
o(C(mQ, D)) where o(z) = w+aPaP 4 2?7 forz € K zs the absolute trace function
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of K to GF(p) and

o(C(m@, D)) = {(o(f(P1)),o(f(P2)), -+ ,o(f(P)))If € L(mQ)}.

In [17], [27], a few estimates about the parameters of the subfield subcode of Goppa code
are obtained, which have been generalized in [9]. Now we use the method of [9], which is a
combination of [17] and [27], to get the parameters of Cj;(G, D). First we need the following
estimate based on Bombieri’s resultst.

‘We say f € K(C) satisfies condition (B) if

(B) f # h? — h for any h € K(C), where K is the algebraic closure of K.

Theorem 3.2. If f € L(mQ) and f satisfies condition (B), then

N
IZ -\If(a(f(Pz')))l < (m+2g — 1)p®,
t=1

where U(z) = e2™/P is the canonical additive character of GF(p).

Remark 3.1. In Bombieri’s original result, C' is complete nonsingular. In our cases,
C is not always complete nonsingular. But for the complete nonsingular model of C, the
image of f under the birational isomorphism only has-the possible pole corresponding to Q
of order < m. Thus Bombieri’s statement still holds.

Next we always assume 2g —2 < m < N — 1 and in Theorem 2.6 we take hi(z) = z* and
9i(y) = 3. Then the corresponding matrix My is a parity check matrix of C*(m@, D) (T =
N +2g — 2 — m) by Theorem 2.2 and hence My is a parity check matrix C;(m@, D). Next
we want to 31mphfy the parity check matrix M. For this reason let

A(m) = () € AP g.cd, 7} and Ay(m) = {67) € Alm) |plg.c.d(i)),

where g.c.d(i,j) denotes the greatest common divisor of 4,7, A(m) = A’'(m)U Ap(m). Now
we delete the rows u; ; of Mr such that (i,7) € Ay(m), (4,5) # (0,0), to get a matrix Mz
and use I'(mQ) to denote the subspace of L(mQ) generated by {z'y’|(i,7) € A’ (m)} ‘

Theorem 3.3. (i) MT is a parity check matriz of Cy(m@, D).

(i) If f € L'(mQ), then f satisfies condition (B) and the dimension of L'(mQ) is
(mQ) = HmQ) — (m/|Q):

Proof. (i) Let ¢ = (c1,¢2,*yen—1) € Ci(mQ, D). If i = pi’; j = pj’, i > 0,5 >0, then

u; ¢t =0 & uf) ,c =0 (uyyrc’)? =06 uyjct =0.

Therefore we can delete the row u;; in My to get a matrix which is also a parity check
matrix. From this (i) holds. -
(ii) At this time we take L(m@) and L'(mQ) to be the vector space over the- algebralc

closure K of K. It is familiar that {u;;} is still a base of L(mQ) Let f= Y fupatyd
(i,)€A’ (m)

be non-costant and in L' (mQ), firir € K. If f does not satisfy condition (B), suppose
f=HW —h, he K(C) in L'(mQ), firj € K. Then h € L'([m/p], Q), suppose h = 3_ h;jz byl
"and (im,Jm) be the pair such that (i,7) € A([m/p]), hi; # 0 and ip" + jr is largest. We
- have
f= Y fepatyl =hE; aPimying N

(m)eA’(m)
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But this will produce h;,,;,, = 0 since {z’y¥|(, 5) € A(m)} is a base of L(m@).
It is a contradiction. So f satisfies condition (B).
It is easily seen that #A,(m) = #A([m/p]), hence
I'(m) = #Ap(m) = I(mQ) — U([m/p))Q)-

Now we can give a result on the minimum distance of o(C(mQ, D)). But we first need a
simple fact: if ¢ € GF(p), then :

' Pil 2wics/p pife=0,
(A =
| 0 if ¢ #£0.

a=_0 .

From now on we denote the Hamming weight of a codeword V' by w(V).
Theorem 3.4. The minimum distance of o(C(m@, D)) is at least

{N — (m+2g - 1)p™*}(p—1)/p.

Proof. Let V € a(C(mQ,D)). Then V = (o(f(P1)),0(f(Pz))," -~ ,a(f(PN))j for f €
L(mQ). If f is a constant, the weight of V is 0 or N.If f = h? — h/for some h € K(C), then
V = 0. Therefore we can assume that f is non-constant and satisfies condition (B). At this
time we have ‘

: N p—1
N-w(V)=(1/p)) ) Uso(f(P))
=0 8=0
p—1 N o

= (1/p) )Y Vo(sf(P)))

8=0 i=0
p—1 N

= /DN + Y3 Uolsf(P)}-

s=1 i=1 .

By Theorem we have the following estimate.
p—~1 N '

IPIRICTIED

8=1 i=1

< (p—1)(m+2g - 1)p*.

So we get
w(V) > {N - @m +29)p"}p ~ 1)/p.

Now we deal with the dimension, covering radius and minimum distance of Cp(mQ, D).
The following discussions are similar to [15]. Later we denote the base {u;;} of L'(mQ) by
{u1,uz, -+ ,ur}, where I’ = I'(mQ). Then '

1 1 1

| wa(P) wa(P2) - w(Pw)
Méw= U2(P1) uz(Pz) ’le(PN‘) ‘
() w(®) o w(Py)

Tt is will known that we can get a parity check matrix H of C;(mQ, D) over GF(p) from
M},.. The dimension of Cy(mQ, D) equals to N — r(H), r(H) is the rank of H. For arbitary
given by,ba,---by € K, c1,02,°* " ;Cuw € GF(p), ¢; # 0, i = 1,2,--+ ,w, we consider the
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solvability of the following system for the variable X; in C
c1u1 (X1) + cour (Xa) + - - - + epur(Xw) = b1,
crug(X1) + coua(Xs) + - -« + cytuz(Xw) = b,

............

crup (X1) + cour (X2) + - -+ + cprir (Xy) = by.

We can conclude that if there exists always a solution X = (X1, X, ,Xw) € C* of
(%) for some integer w > 0, the rank of H’' must be abl’, where H’ is the submatrix of H
corresponding to M"T which is obtained by deleting the first row of M.

Next we use the techniques of character sum to investigate when () has a solution. First
let C; = 1. We recall the following orthogonal relation

: 2ab
5 W(olee) = {” hort
oK 0 ifa=0.
We use N, to denote the number of the solutions X = (X1, X2, -+ ,Xy) of () in C*. Then
U :

PNy = Y T Tnai(Xo) + us(Xa) + -+ (X))

. XeCvi=1lq;€K

= 2 I X veala(X:) +ua(Xy) + - 4wl (X))

a;eK, =1 X,€K

)

o<l _ .
= 3 3 W (X) +ua(X) +-o + il (X))
ai€K, X€K '
o<i<l/ _
Because of the choice of u;, we know that except @y = as = -++ = ay = 0, wy(X) +

ug(X)+ -+ uy(X) is non-constant and satisfies condition (B). So we have the following -
estimate L '
lg" N — N¥| < (¢ — D)(AVD)¥,
where A =m +2g — 1. If N, =0, then '
N¥ < ¢" A¥(y/7)* and A > Ng(g™"/™).

Therefore if we take A < N \/ﬁ(q""/ W), Ny > 0. But for any

. bi,ba, -+ ,bn € K, c1,6, 0 ,Cuw € GF(p), i #0,i=1,2,--+ ,w
we can 'take,arbitrary,_la{rge_w_td get'a'sqlution X = (X1,X3, -+ ,Xyw). Hence if A <
N(ya) —1, () always has a solution and r(H') = 2abl’. At last since ci,cz,--- ,cn are
arbitrarily given, we must have r(H) = r(H’)+1 = 2abl’ +1. The following result is:proved.

- Theorem 3.5. Ifm+2g—1 < N(,/q) — 1, the dimension of C;(mQ, D) is N —2abl’' —1.

Now we consider the covering radius. The character sum trick is used to investigate the
covering radius of long BCH code first by Herlleseth, then by_Tieta,vainen, further by Moreno
and Moreno for Goppa codes. Our discussion is similar. It is well known that estimating
the covering radius of a linear code with parity check matrix H' is-equivalent to finding the

least integer w such that the system of equation M¥ic® = b* is solvable with any

b= (by,bg, - ,by) €KY, c=(c1,c2, "+ ,cw) € GF(p)?, c;i #0.
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By the previous discussion, MJict = b¢ is solvable if A < N \/E(q""/“’), i;e.,

w > I"Ing/In(n) — In(A) = (In(q)/2).
At last considering the solvability of equation ¢; + c2 + +++ + cw = bo for any by € GF(p)

such that ¢; #0, i = 1,2,--- ,w, we prove :
Theorem 3.6. Let t be the covering radius-of C;(MQ,D):. Then
t < 1n(g)/(In(N) — In(4) — (In(g)/2)) +p - 1.

Corollary 3.1. If N > A%'+2 we have t < 2m — 2g+p—1.

At last we will give an upper bound of the minimum distance of Cy (mQ, D). To do this,
in the system of equation (*) let w be an integer and ¢ = ¢z = =+ = Cy—1 = 1, ¢y =
~w+1; fr=Pp=-=Pu=0. The solutions of (*) may produce the trivial codeword
(0,0, ,0), the number of those solution is IV [w/p], where [w/p] is the least integer which
is greater than or equal to w/p. If there are only such that-solutions, by the inequlity before
we have '

|Nw . ql"N[w/p” < ql'Aquw/2_ »
If W, denotes the least integer w such that the above inequality is not safisﬁed, ie.,
' ’lN'w _ ql'Nrw/p'll > ql'Awqw/2’

then we have o ' ' .
Theorem 3.7. Let d be the minimum distance of C; (mQ, D). Then

m+u(m)—29+2<d < Wh,

where : : '
1, if m=p—1lmodp,
w(m) = 0, otherwise. '

Remark 3.1. The first inequality is from [27].
Corollary 8.2. If N > AZ'+2 w,, <2l' +2. »
Proof, Take w = 21’ +2. Since N > g+ 1, Nv~1 — g’ Nw/2 > g'+w/2, Then

- N < (N* = ¢" N¥/2)[g" /2 < (N — ¢ N*/7) /g /2,
Therefore if N > A2'+2,
NY — ql'Nw/p Z qu'+'w/2 Z'ql'Awq’LU/z.

We get W, <2I' +2.
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