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Abstract

This paper continues the studies of the essential spectrum of nonsemi-bounded pseudodif-

ferential operators. The author improves the results in [5] in some sense. For the relativistic

Schrödinger operator,
√
−∆+m2 + v(x), complete results are obtained.
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§1. Introduction

The purpose of this paper is to continue the study of the essential spectrum of pseudodif-

ferential operators. In [4], [5], we studied the self-adjointness and the essential spectrum of

nonsemi-bounded pseudodifferential operators with symbol p(ξ) + q(x) +Q(x, ξ). They in-

clude the Schödinger operator, −∆+v(x), and its relativistic corrections,
√
−∆+m2+v(x),

with potential v(x) tending to negative infinity, as |x| tends to infinity. There exists an im-

portant literature on the studies of the spectral properties of the relativistic Hamiltonians√
−∆+m2+v(x), (see [2] and the references there). Most of them are under the assumption

that the negative part of the potential v(x) is small in some sense at the infinity (see [3,

7, 8, 11]). In [4], [5], we studied them with v(x) large at infinity, especially, v(x) → −∞,

as x → ∞ in some directions. For the spectral properties of global elliptic pseudodiffer-

ential operators on Rn, see [6]. Here, we consider the spectrum in Hilbert space L2(Rn)

and the operator under consideration is not global elliptic. For the spectral properties of

pseudodifferential operators on Banach space (see [12]).

Our studies on the essential spectrum of pseudodifferential operators are motivated by

Titchmarsh’s work on spectrum for one dimensional differential operator −d2/dx2+ q(x) on

L2(R+), with q(x) → −∞, q′(x) < 0 and q′(x) = O(|q(x)|c), (0 < c < 3/2). He proved that

if
∫∞ |q(x)|−1/2dx is divergent, then there is a continuous spectrum over (−∞,+∞) and if∫∞ |q(x)|−1/2dx is convergent, then the spectrum is discrete over (−∞,+∞) (see [10]).
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§2. Preliminaries and the Statements of Results

For a symbol σ(x, ξ) ∈ C∞(Rn × Rn), the corresponding operator σ(x,D) is defined by

σ(x,D)f(x) =

∫
e2πix·ξσ(x, ξ)f̂(ξ)dξ. (2.1)

The motivation for this definition is that if σ is a polynomial in ξ, say σ(x, ξ) =
∑

aα(x)ξ
α,

then σ(x,D) =
∑

aα(x)D
α. So one obtains differential operators written in the usual way,

with the differentiation on the right. For the relativistic Schrödinger operator, the corre-

sponding symbol is
√
ξ2 +m2 + v(x).

In order to perform effective calculations, one needs to restrict attention to some class

of symbols and operators. For our purpose, we assume that σ(x, ξ) is polynomial bounded,

that is, there is a positive polynomial m(x, ξ) such that

|Dα
xD

β
ξ σ(x, ξ)| ≤ Cαβm(x, ξ)⟨x⟩−|α|⟨ξ⟩−|β|. (2.2)

We use S(m) to denote the set of all functions which satisfy (2.2), use Sm,k to denote

S(⟨x⟩k⟨ξ⟩m), where

⟨x⟩ = (1 + |x|2)1/2, ⟨ξ⟩ = (1 + |ξ|2)1/2.

Another symbol class which we frequently use is the Hörmander class Sm
ρ,δ defined by

Sm
ρ,δ = {σ(x, ξ) ∈ C∞(R2n), |Dα

xD
β
ξ σ(x, ξ)| ≤ Cα,β⟨ξ⟩m−ρ|β|+δ|α|},

where 0 ≤ δ ≤ ρ ≤ 1; usually one uses Sm to denote Sm
1,0. In [5], we get the following result

about the essential spectrum of pseudodifferential operators.

Theorem. Let p(ξ) ∈ Sm, m > 0, and

p(ξ) ≥ C|ξ|m, (2.3)

for |ξ| sufficiently large in some directions. Assume that q(x) is a real value function and,

for some k > 0, satisfies

|Dαq(x)| ≤ Cα|x|k−|α|, q(x) ≤ −C|x|k, (2.4)

for |x| sufficiently large, where c > 0 is a constant.

If 1
m + 1

k > 2, then σe(p(D) + q(x)) = R.
We note that the condition 1

m + 1
k > 2 in this theorem is not necessary. By Titchmarsh’s

results, we think the best possible condition is 1
m + 1

k ≥ 1. In this paper, our purpose is to

prove the following theorem, which in some sense improves the results in [5].

Theorem 2.1. Let p(x, ξ) ∈ C∞(R2n) be polynomial bounded, and for some N > 0,

C0 > 0 sufficiently large,

|Dβ
ξ p(x, ξ)| ≤ Cβ⟨ξ⟩N−|β|

for any β with |β| ≥ C0 where Cβ is a constant. For λ ∈ C, when |x| is sufficiently large,

there is a C∞ function Φ(x) with the following properties:

(i) p(x,▽Φ(x)) = λ,

(ii) | ▽ Φ(x)| ∼ |x|l, 0 < l, as |x| → ∞ and |Dα(▽Φ(x))| ≤ Cα|x|l−|α|,

(iii) |∂α
x ∂

β
ξ p(x,▽Φ(x))| ≤ Cαβ |x|k−|α|−|β|l.

If k < l + 1, then λ ∈ σe(p(x,D)).
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We will give its proof in next section. First, we notice the following remark.

Remark. The condition (i) means that there is a Lagrangian manifold Λn ⊂ p−1(λ),

such that Λn admits diffeomorphic projection on x-space. In the one dimensional case, any

smooth curve (x, ϕ(x)) in R2 is a Lagrangian manifold which admits diffeomorphic projection

on x-space. Therefore, if there is a function ϕ(x) satisfies the conditions in Theorem 2.1

with ϕ instead of ▽Φ, then we also have λ ∈ σe(P (x,D)).

From the remark above, we get the following theorem in one dimensional case.

Theorem 2.2. Suppose n = 1. Let p(ξ) ∈ Sm, m > 0, and

p(ξ) ≥ C|ξ|m, |p′(ξ)| ∼ |ξ|m−1, (2.5)

for |ξ| sufficiently large. Assume that q(x) is a real valued function and, for k > 0, satisfies

|Dαq(x)| ≤ Cα|x|k−α, q(x) ≤ −C|x|k. (2.6)

If 1
m + 1

k > 1, then σe(p(D) + q(x)) = R.
This result improves the result in [5] in one dimensional case. The proof is easy. For any

λ ∈ R, by (2.5), (2.6), there is a function ϕ such that p(ϕ(x)) + q(x) = λ, and ϕ(x) satisfies

the conditions in Theorem 2.1 with ϕ instead of ▽Φ. Therefore the results follows from the

remark.

For the relativistic Schrödinger operator
√
−∆+m2+ v(x), we have the following result.

Theorem 2.3. If v(x) ∈ C∞(Rn) and satisfies

|Dαv(x)| ≤ C|x|k−|α| and v(x) ≤ −C|x|k (2.7)

for some k > 0 and any α ≥ 0 when |x| is sufficiently large, then

σe(
√
−∆+m2 + v(x)) = R.

Proof. To prove this theorem, it is sufficient to show that for any λ ∈ R there is a function

Φ satisfying the conditions in Theorem 2.1 with p(x, ξ) =
√
ξ2 +m2+v(x). We use d(x, x0)

to denote the distance between x and x0 under the Agmon metric ((λ− v(x))2 −m2)+dx
2.

By (2.7), when |x| is sufficiently large, it is easy to see that Φ(x) = d(x, x0) satisfies the

conditions in Theorem 2.1.

§3. The Proofs of the Results

In this section, we will give the proofs of the results in section 2. We assume that the

symbol p(x, ξ) satisfies the conditions in Theorem 2.1. To prove Theorem 2.1, we will use

the following criterion on the essential spectrum.

Proposition 3.1. Let A be a closed linear operator on Hilbert space H. If there exists

{xn} ⊂ D(A) such that

(i) ∥xn∥ = 1, (A− λ)xn → 0, n → ∞,

(ii) no convergent subsequence exists in {xn},
then λ ∈ σe(A).

The proof of this proposition can be found in [9]. We notice that if {xn} is an othonormal

sequence, then fn → 0 weakly. Therefore no convergent subsequence exists in {xn}. If we
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can construct an orthonormal sequence {fs} in L2(Rn) such that

(p(x,D)− λ)fs → 0, s → ∞,

then from Proposition 3.1 we have λ ∈ σe(p(x,D)). Usually the sequence which satisfies (i)

and (ii) in Proposition 3.1 is called singular sequence.

In [5], we constructed a singular sequence {fs} such that the function fs is concentrated

in a box Qs, and

Qs ⊂ p−1([λ, λ+ |xs|−δ]), |Qs| = c,

where the sequence xs → ∞, as s → ∞ and c is a constant. Here the construction of fs
also follows this idea, but we should concentrate fs in a curved box Q̃s in phase space,

because there are no disjoint boxes with volume larger than a constant c contained in

p−1([λ, λ+ |xs|−δ]) for s sufficiently large.

Since k − l < 1, for any M > 0, and δ > 0 sufficiently small such that 0 < k − l + δ < 1,

exists a sequence {xs} ∈ Rn such that

Bs = {x : |x− xs| ≤ 2M |xs|k−l+δ}

are disjoint from each other. Let

Qs = {(x, ξ) : |x− xs| ≤ M |xs|k−l+δ, |ξ| ≤ M |xs|l−k−δ} = Q1s ×Q2s,

and

Q̃s = {(x, ξ) : |x− xs| ≤ M |xs|k−l+δ, |ξ −▽Φ(x)| ≤ M |xs|l−k−δ}.

Put Φs : Q̃s → Qs defined by Φs(y, η) = (y, η −▽Φ(y)). Then

Φ−1
s (x, ξ) = (x, ξ +▽Φ(x)).

It is easy to see that Φs is a canonical transformation and the function Ss(y, ξ) = y ·ξ+Φ(y)

is a generating function.

Lemma 3.1. Assume that p(x, ξ) satisfies the conditions in Theorem 2.1. Then

|p(x, ξ)χQ̃s
(x, ξ)− λ| ≤ C(M)|xs|−δ. (3.1)

Proof. For (x, ξ) ∈ Q̃s,

|p(x, ξ)− P (x,▽Φ(x)| = | ▽ξ p(x,▽Φ(x) + t · ξ)(ξ −▽Φ(x))|
≤ C(M)|xs|k−l|ξ −▽Φ(x)|
≤ C(M)|xs|k−l|xs|l−k−δ

≤ C(M)|xs|−δ.

This is (3.1).

In order to study the concentrate in a curved box, we should consider the Fourier integral

operator associated to Φs. That is

Usf(y) =

∫∫
e2πi(Ss(y,ξ)−x·ξ)as(y, ξ)f(x)dxdξ, (3.2)

where as(y, ξ) ∈ C∞ supported in Q⋆
s, as(y, ξ) = 1 for (y, ξ) ∈ Qs, Q

⋆
s denotes the box which

has the same center as Qs and double side lengths. For the studies about this operator, one

can see [1].
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Lemma 3.2. There exists {fs} ⊂ L2(Rn) with the following properties:

(i) ∥fs∥ = 1,

(ii) ∥Usfs∥L2(Rn) ≥ c > 0,

(iii) (Us1fs1 , Us2fs2) = 0, for s1 ̸= s2.

Proof. For s1 ̸= s2, the support Us1fs1 ∩ support Us2fs2 = ∅. We have (Us1fs1 ,

Us2fs2) = 0, this is (iii). Next, we will prove (i) and (ii).

For the integral

Usf(y) =

∫∫
e2πi(Ss(y,ξ)−x·ξ)as(y, ξ)f(x)dxdξ,

the critical point is x = y, ξ = 0. By the stationary method, we have

Usfs(y) = e2πiΦ(y)as(y, 0)fs(y) +O(∂ξas(y, ξ) · ∂xfs(x)).

Denote by lQ1s and lQ2s the radias of the balls Q1s and Q2s respectively. We can choose a

function fs(y) such that

∥fs∥ = 1, ∥e2πiΦ(y)as(y, 0)fs(y)∥ ≥ c,

and

∥∂fs∥ ≤ c

lQ1s

.

We notice that in (3.2) one can choose as(x, ξ) such that

|∂ξas(y, ξ)| ≤
c

2lQ2s

.

Therefore

∥Usfs(y)∥ ≥ ∥e2πiΦ(y)as(y, 0)fs(y)∥ −
c

lQ1s
lQ2s

≥ c− c0
M2

.

When M is sufficiently large, we get ∥Usfs∥ ≥ c. This finishes the proof.

In order to study the action of p(x,D) on Usfs(x), we will study the composition of

p(x,D) and Us. It is easy to see that

p(x,D)Usf(x)

=

∫
e2πi(x−y)·ζ+2πi(Ss(y,ξ)−x′ξ)as(y, ξ)p(x, ζ)f(x

′)dx′dζdξdy

=

∫
e2πixξp̃(x, ξ)f̂(ξ)dξ,

where

p̃(x, ξ) =

∫
e2πi((x−y)ζ+Ss(y,ξ)−xξ)as(y, ξ)p(x, ζ)dζdy. (3.3)

Let T = (x − y)ζ − xξ + Ss(y, ξ). The critical point of T with respect to (y, ζ) is

(x,▽Φ(x) + ξ). We can change the coordinates (y, ζ) to (ỹ, ζ̃), so that

T = −ỹζ̃ +Φ(x),
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the Jacobi J(x,ξ)(ỹ, ζ̃) = 1, and

|∂y
∂ỹ

| ≤ c, |∂ζ
∂ζ̃

| ≤ c,

|∂y
∂ζ̃

| = 0, |∂
αζ

∂ỹα
| ≤ |Dα ▽ Φ| ≤ C|xs|l−|α|.

Lemma 3.3. With the above notations, one has

(i) P̃ (x, ξ)χ2Q1s
(x, ξ) = p(x,▽Φ(x) + ξ)χ2Q1s

(x, ξ) +Rs(x, ξ),

where supptRs(x, ξ) ⊂ 2Qs, and for some δ0 > 0,

|Rs(x, ξ)| ≤ C|xs|−δ0 .

(ii) |P̃ (x, ξ)(1− χ2Q1s(x, ξ))| ≤ Cr|x− xs|−2r(M |xs|k−l+δ)n, for r sufficiently large.

Proof. (i) From (3.3), and J(x,ξ)(ỹ, ζ̃) = 1, one has

p̃(x, ξ) =

∫∫
e−2πi(ỹζ̃−Φ(x))σ(ỹ, ζ̃)dζ̃dỹ, (3.4)

where σ(ỹ, ζ̃) = as(y, ξ)p(x, ζ). By the stationary method, we get

P̃ (x, ξ)χ2Q1s(x, ξ) = e2πiΦ(x)p(x,▽Φ(x) + ξ)χ2Q1s(x, ξ) +Rs(x, ξ)

with

|Rs(x, ξ)| ∼ | ∂
2σ

∂ỹ∂ζ̃
|.

Consequently, from the hypothesis (iii) in Theorem 2.1, one has

|Rs(x, ξ)| ≤ |∂as
∂y

||∂p
∂ζ

|+ |∂
2p

∂ζ2
||∂ζ
∂ỹ

|

≤ C((M |xs|k−l+δ)−1|xs|k−l + |xs|k−2l|xs|l−1)

≤ C(M−1|xs|−δ + |xs|k−l−1)

≤ C|xs|−δ0

for some δ0 > 0.

(ii) To estimate P̃ (x, ξ)(1− χ2Q1s(x, ξ)), we substitute

e2πiỹζ̃ = (2π)−2r|ỹ|−2r∂2r
ζ̃
e−2πiỹζ̃

in the integral representation (3.4) of p̃(x, ξ). We have

P̃ (x, ξ)(1− χ2Q1s(x, ξ))

=

∫
|ỹ|−2r∂2r

ζ̃
e−2πiỹζ̃(1− χ2Q1s(x, ξ))σ(ỹ, ζ̃)dζ̃dỹ

= (2π)−2r

∫
(1− χ2Q1s(x, ξ))|ỹ|−2re−2πiỹζ̃∂2r

ζ̃
σ(ỹ, ζ̃)dζ̃dỹ

= (2π)−2r

∫
(1− χ2Q1s(x, ξ))|ỹ|−2re−2πiỹζ̃as(y, ξ)∂

2r
ζ̃
p(x, ζ)dζ̃dỹ.
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Therefore

|P̃ (x, ξ)(1− χ2Q1s(x, ξ))|

≤ C|x− xs|−2r(M |xs|(k−l+δ))n
∫

|∂2r
ζ̃
p(x, ζ)|dζ̃

≤ Cr|x− xs|−2r(M |xs|k−l+δ)n.

This finishes the proof of the lemma.

Proof of Theorem 2.1. To prove Theorem 2.1, by Lemma 3.2 and Proposition 3.1, it

suffices to prove that

∥(p(x,D)− λ)Usfs∥ → 0, s → ∞. (3.5)

Let ps(x, ξ) denote the symbol of operator (p(x,D) − λ)Us. Then from (3.2), (3.3), one

has

ps(x, ξ)

= p̃(x, ξ)− λe2πiΦ(x)as(x, ξ)

= (p̃(x, ξ)χ2Q1s(x, ξ)− λe2πiΦ(x)as(x, ξ)) + p̃(x, ξ)(1− χ2Q1s(x, ξ))

= pIs(x, ξ) + pIIs .

By the results in (i) of Lemma 3.3 and (3.1) in Lemma 3.1, one has

∥pIs(x,D)∥L2 ≤ C|xs|−δ2 (3.6)

for some δ2 > 0 sufficiently small. From (ii) of Lemma 3.3, we have∫∫
|pIIs (x, ξ)|2dxdξ

≤ |xs|2n(k−l+δ)

∫
x/∈2Q1s

|x− xs|−4rdx

∫
Q2s

dξ

≤ C|xs|2n(k−l+δ)|xs|(k−l+δ)(n−4r)|xs|n(l−k−δ)

≤ C|xs|(2n−4r)(k−l+δ).

When r is sufficiently large, we obtain∫∫
|pIIs (x, ξ)|2dxdξ ≤ C|xs|−2δ2 .

Therefore the operator pIIs (x,D) is a Hilbert-Schmidt operator with H-S norm

∥pIIs (x,D)∥HS ≤ C|xs|−δ2 .

One obtains

∥pIIs (x,D)∥L2 ≤ C|xs|−δ2 . (3.7)

From (3.7), (3.6), we have

∥ps(x,D)∥ ≤ C|xs|−δ2 .

Notice that from the (i) of Lemma 3.2 we have

∥(p(x,D)− λ)Usfs∥ ≤ C|xs|−δ2∥fs∥
≤ C|xs|−δ2 .
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From this we get (3.5). This finishes the proof of Theorem 2.1.

Acknowledgment. It is a pleasure for me to thank Professor J. Nourrigat for his helpful

discussion.
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