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global convergence with respect to the Newton method, nonlinear Gauss-Seidel method,
nonlinear SOR method and so on, respectively. These methods are shown to be rather effi-
cient when they are used to numerically solve the solutions of discretized nonlinear boundary
value problems or nonlinear network flow problems which have the characterizations of M-
functions. Paper [3] has studied this in a more detailed manner.

In this paper, we are absorbed to study the monotonous and the global convergence
of nonlinear multisplitting methods. By directly multisplitting the nonlinear mapping we
first set up a class of nonlinear multisplitting AOR methods, which have parallel compu-
tation functions and two-sided approximation properties, for solving the nonlinear system
of Equations (1.1). The different choices of the relaxation parameters not only can yield -
Gauss-Seidel method, SOR method, etc. in the sense of nonlinear multisplitting, but also
can impi'ove the coﬁvergence‘properties of these methods. That the methods can converge to
the maximum as well as the minimum solutions of nonlinear system of Equations (1.1) from
either side respectively is proved. In addition, we further discuss several sufficient conditions
which can guarantee the two-sided convergence and different convergence properties of the
methods which are resulted by different choices of the relaxation parameters. At last, we
enumerate a class of nonlinear boundary value problems and do numerical tests for them.
The computation results thorbughly coincide with our theory.

§2. The Nonlinear Multisplittihg 'ahd Relaxation Methods

Throughout this paper the i-th component of a column vector z € R" is denoted by z;
and e’ represents the i-th unit basis vector of R" for i = 1(1)n. The natural partial ordering
“<” and “<” on R™ are to be understood componentwise. We use the symbol N to denote
the set {1,2,--- ,n}. '

For k' =1,2,--+ ,a (o < n an integer), take S* to be a nonempty subset of N satisfying
ijJISk = N and Ej =diag(e¥,ek,--- ,ek) € L(R"™) a nonnegatively diagonal matrix defined
by ) _ .

B e; 20, forieS®

= 9 = 1 1 2.1

¢ {0, for i ¢ S¥, (Ln : (21)
o _ - _

with ZEk‘ = I (I € L(R") identity). It deserves to be mentioned that these S*(k =

k=1 :
1,2, - ,a) may overlap each other.

Consider nonlinear mapping F : D C R® — R"™. For k = 1,2,--- , o, if there exists a
mapping f®) : D x D ¢ R™ x R" such that f®*)(z;z) = F(z) for all z € D, then the
collection of pairs (f®), Ey), k =1,2,---,q, is called a nonlinear multisplitting of F'.

For k = 1,2,--- ,a if we particularly take

‘ - Fy((I = P®)g + Pk)y), - forie Sk,

'f-‘*):v-:t)={ CO0 =1 2.2
’ ( , ) Fi(mla"' 1 Pi—1sYis Tig1y" ,mn)’ fOl"L¢Sk, . ( ) , . ( )
where P(¥) : D C R™ — R™ is a projection operator given by
' ;,, forie Sk | ,
P& (g) = { T OLLES i —1()n, forallzeD, (23)

0, forig¢ S*,
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then (2. 2) (2.3) with the preceding deﬁned welghtmg ma,tnces Ek(k = 1,2,-+- ,a) form
a special but practical case of the nonlinear multisplitting. Of course, there are a lot of
meaningful examples of nonlmear multlsphttlngs and it is unnecessary to write them one by
one here. : : '
Making use of the above concepts, we can now set up the followmg parallel nonhnear.
multisplitting relaxation method. '

METHOD:
Given a starting vector z° € D C R” for m=0,1,2,.--, compute = ,
‘;11 el m,k X\ .m S :
g™ = ;Eka: + (1 T).'L' . | (2.4) |
with r,w € (0, +00), _where fork=1,2,- .., & the i-th element w?’k of z™* satisfies
Am, 1 . . ' -
™k = { +( 7'):1/:z , forie Sk, i=1(1)n, (2.5)
i, fori ¢ 8%, - : _

while 2™* satisfies ,
. _ . _
fz( )(:l:m;mT’k cor ic,mmk,wm_l,... , 2™ = 0,
ie sk - i=1()n.
Here, we call r a relaxation factor and w an acceleration factor.
In this method, (2.4) can be equivalently varied in another simplified form

m"'l—-wZe "mk+(1—-w)m1-", - 1 =11)n,

(2.6)

which will be used in stead of (2. 4) in the remainder statements of thls section.
More concretely, we consider linear mapping
F(z) = Az —b, A€ L(R") nonsingular, b€ R".

When o = 1 the above method obviously reduces to the famous AOR method while for
1 < a < n it clearly becomes the parallel matrix multisplitting AOR method studled in [8]
for solving the linear system of equations Az = b. Therefore, it is reasonable for us to call
the above method nonlinear multisplitting AOR-type method. For the convenience of our
subsequent discussion, from now on, we simply denote the above method as. FNMAO r(r,w)-
method.

Evidently, when o = 1, the Fnmaor(r w)-method reduces to nonlinear AOR method
(simply denoted as Fy aor(r,w)-method ) in the sense of nonlinear splitting. If we specially
choose the relaxation parameters r and w in this type of method, we can obtain all the
known nonlinear relaxation methods as well as many new ones. For example,

if r = w, we get nonlinear SOR method ( Fnsor(w,w)-method);

if r = 1, we get extrapolated nonlinear Gauss-Seidel method ( Fg ~as(1,w)-method);

if r = w = 1, we get nonlinear Gauss-Seidel method ( Fngs(1, 1)-method);

ifr= O we get extrapolated nonlinear Jacobi method ( Fgns(0,w)-method);

if r = w = 0, we get nonlinear Jacobi method ( Fx.(0,0)-method).

There have been many literatures(3—5) studying the local, the monotonous as well as the
global convergence of the somewhat particular forms about the Fysor(w,w)-method, the
Fnas(1,1)-method, and the Fis(0,0)-method. :
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When a>1, by particularly selecting the relaxation parameters r and w in the new type
of method we can also get all the known nonlinear multisplitting relaxation methods as well
as many new ones. For instance, : '

if 7 = w, we obtain nonlinear mutlsphttlng SOR method (Fymsor(w,w)-method);

if r = 1, we obtain extrapolated nonhnear mutisplitting Gauss-Seidel method (Fg NMGS
(1 w)—method),

if »r = w = 1, we obtain nonlinear mutlspllttmg Gauss-Seidel method (fNMGs(l 1)
method);

if r = 0, we obtain extrapolated nonlinear mutlsphttmg Jacobi method (fENMJ(O w)-
method);

if » = w = 0, we obtain nonlinear mutisplitting Jacobi method (Fnar(0,0)-method).

The build of the Fypraor(r,w)-method affords a generally theoretical model for us
to systematically discuss nonlinear multlsphttmg relaxation methods. Notice that the
f'NMAOR(r, w)-method is merely an implicit iteration method due to the 1mphcltly non-
linear system of Equatlons (2.6). In practical computation we will rather implement it
approximately by using some efficiently numerical methods such as Newton method, chord
method, Steffensen method and so on than solve it exactly.

§3. Basic COngepts and Facts

We first recall the following concepts from [3] and [5].

Definition 3.1. F: D C R™ — R" is called

(i) isotone (antitone) on D if z,y € D,z <y zmplzes that F(z) < F(y)(F(z) = F(y));

(ii) strictly isotone (strzctly antitone) on' D if z,y € D,x < y wmplies that F(z) <

F(y)(F(z) > F(y)); |

(111) inverse isotone (strictly inverse zsotone) on D ifzx, ye€ D F(w) < F(y)(F(z) < F(y))
implies that z > y(z > y).

It is known that F : D C R — R" is inverse 1sotone 1f and only if Fis injective on D
and F~1: F(D) C R" - R" , the i inverse ma,ppmg of F is isotone.

Definition 3.2. F:DC R" — R" is called

(i) off-diagonally antitone on D if for all z € D the functions

$ij: {te R*|z+tel € D} — Rl,,, ¢z~,-(t) = E-(w+ te), 4,j=1()m, i#j

are antztone,
(ii) dzagonally isotone (stmctly diagonally isotone) on D if for all'x €D the functwns

{t€R1|w+te GD}-—>R1 ¢ii(t) = Fi(z + te'), z-—l(l)n

are isotone (strzctly isotone); 4

(iii) surjectively diagonally isotone if F is strzctly diagonally isotone -on R™ and for any
x € R™ each mapping ¢; defined in (ii) is surjective. .

A direct fact about the:above. definitions is that a 'continuous, surjective and inverse
isotone mapping F': R” — .R™ is a homeomorphism from R" onto itself.

Definition 3.3. F :DCR*— R? is called an M -function if F is inverse isotone and
off-diagonally antitone. :
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4 Obviously, the definition of M-function represents an extention of the M-matrix concept.
In other words, if A € L(R™) is an M-matrix, then.thé induced linear mapping A : R* — R"
is an M-function and vice versa. In addition, if ¢ : R — R™ is an isotone, diagonal mapping
and A € L(R™) is an M-matrix, then A+¢:R" — R™ is an M-function, too.

Evidently, a continuous, surjérctive M-function F': R® — R" is a hiomeomorphism from
R™ onto itself. ' S

§4. Convergence Analysis of the .fNM,'AO R(r,w)—Method

- We first set up one theorem which describes the two-sided approximation characterization
of the Fnmao r(r,w)-method.

Theorem 4.1. Let (f®), E¥)(k = 1,2,:--, o) be a nonlinear multisplitting of F' : D C
R™ — R™. Suppose that for each k € {1,2,-- ,a}, §®) (g;y) : Dx D C R*x R — R is
continuous, antitone for x on D , off-diagonally antitone and strictly diagonally isotone for
y on D. If there exist 2°,3° € D such that ' :

<y, J={zeR"|z°<z<y°}CD,

F(z®) <0< F(Y°), . R
then the sequences {x™} and {y™} generated by the Fnaraor(T, w)-method starting from z°
and y° respectively are well-defined on J and satisfy ' ‘

() 2° < @™ < o™t <y < y™ <y

(b) lim g™ =g* <y*= lim y™;

m-—+00 m—00

(c) z*,y* € J are solutions of (1.1); v .

(d) for any solution & € J of (1.1) there holds z* < & L y*
provided r € [0,1] and w € (0,1]. ‘ R

Proof. The proof of (a) is proceeded by induction.

Suppose that for some m > 0,7 > 1 and k=1,2,-- ,a:

L <z l<am <y <y <y (4-1)

22 < &P HF < TR < gt < grtb <yl j=1(1)(-1andje Sk (4.2)
T P P P N RS T} (R (D)

R <ol <P <yP <yt <y, F=116- ), (44)

where we stipulate that z~! = 20 for.z € R™ and (4.2)-(4.4) are vacuous for ¢ = 1.
Obviously, (4.1)~(4.4) hold for m = 0 and i = 1. '
For m fixed we now begin to prove that (4.1)-(4.4) still hold for j = i.
When i € S*, by the antitonieity of f(®)(g; ) for = and the off-diagonal antitonicity of it
for y we have : ‘

(k) .m, mk o mk am-Lk m m
fi ({13 ’wl’ P awi.—’1’$i. ’ ’wi+1,"' 7$n)

(k) .m—1, m=LEk . m—Lk am—Lk  m—1 m—1y __
sz (fl) 7 &y RPERRIPE Ak ] Y 7 ' RN 3 Ty )—0’

(k) m, m,k m,k Am-—lk m i
fi CALSE SRR FAPY /Y A S PR ) Ty)

k -1,,m-1k -1,k am—1,k  m—1 -1y _
—>—fz( )(ym ;yT ,"',yﬁ-l 1?/? ’yg’q a"',y'rT )fo'
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Makmg use of the continuity of f! (k) (a:, y) and the strlctly diagonal 1sotonlclty of it for Y, we
can therefore conclude that there exists. unique £} ke (& ~h k, :&:"_1 k] such that

f(k)(mm mk ’m;nic,:%mk z+1’ HE) 'n,)= * . o (4'5)
Similarly, we can conclude that there exists unique yi [ m—1, k, g —L k] such that
(k)(ym m’k ) ’yz—l ’g:n k’yﬁ_-la “yYn) =0. (4.6)
Notice that '
k k sm,k
f( )(wm m, cee ,mzul,y:n Z’i—l’“. ,m;n) (4.7)

f(k)(ym mk ) ’yz 1’g:nk’yz+1 ’yn)"' .
From (4.5) and (4 7) by using the strictly diagonal isotonicity of f(k) (z;9) for y again we
obtain ) » .
RS g, L @)
which means that (4.2) is true for j = 4. |

We now turn to (4.3).
Noticing (2.5) and r € [0,1], when i € §* we have

mm’k = (L—7r)az +r2MF > (1 = )zt 4 rg] bk = g k
—(l—r)y, +r/~m,k S'(l_r)yi 1+1,Am 'lk_y:n -1,k
and g™ = (1 - )P +ra™* < (1 - )y -|—'ryi>’ =Y m.k,
~when i ¢ S* we easily get '
. zm lk_wm—-1<w m,ls:<ymk:__yz y:n _y:n-—llk

- , 4
Therefore, we know that (4 3) holds for g = z, too.
By (2.4) and (2 5) we have

gt —wZe “mk+(1 — w)z
> wZe,- e (| — w)z™
- _

= @ ~ (1 - w2 ™) + (1~ )
= o + (1 - w)(af —aP"™") 2 o],
Analogously, we have y"""‘1 < yi. Making use of (4.8) additionally, we obtain
m+1 _“’Ze kgam,k +(1 —w)w}"

<wZe “mk+(1-—w)yz .-yz

Thus, (4. 4) is proved for j = 1.
The above discussion shows us that (4 2)—(4.4) hold for a,ll @ € N, therefore

. ’ w <mm+1<ym+1 <y
By induction we know that (a) is true.

- (b) is clearly direct from (a).
- We only take z* as a sample to prove (c).
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Through the proving process of (a) we know that the sequences {:?:m’k}(j =1(1)n,j € S¥)
and {z}" *1(j = 1(1)n) are.upper bounded and monotone nondecreasing with respect to m
fork=1,2,--- ,0; thus they converge as m tends to infinity . We denote their correspondmg
limit points by &k(j = 1(1)n,j € S*) and #%(j = 1(1)n) respectively, for k =1,2,

Write N
| K@) ={k|icS*k=12,---,a}, i=1Ln
Take limits for (2.4)-(2.6), we accordingly have

( o
z; =) efdf= ) iy,
k=1 keK(4) s
< N _ g j=11)n; (4.9)
* ks kxk
T =Zejw§= Z €5%5>
\ k=1 keK(5)
k ~ : :
f( d@idh, o B theln ) =0 g (410)
i€ 85 k=1,2,0
and .
kL { rak + (1 —r)z}, forie S¥, |
2 fori¢ S*,  i=11)n. (4.11)
k=12, ,0, ‘
For each j € N, define
k(@) = min 2%
5T hek()
#5@ = max g5,
o keK(5) ’
As ) ef =1, it is obvious that |
keK(3)
' Ako(J) < w < Akl(J) (4 12)
j e Sl n Sk1(.1) j=11)n. N

We now show that the following facts are correct by induction:

Fj(z*) =0, j=11)n; ’ . (4.13)
#h=u}, j=lnend jeS k=120 (414
=gl j=1nk=12", | (4.15)

When j = 1, by (4. 12) and the strictly dlagonal isotonicity of f(’“) (z; y)(k =1,2,-+,a)
for y we have .

Fy(e") = f{* a0, 1)

< fl(k%(l))(w*; g k) =0
and :
Fu(a*) = £ g% 2%, ,ak)

> floD (g 4700, - yan) = 0.
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* Obviously, (4.17)~(4.20) hold for m =0 and ¢ =1. A
For m fixed we now start to prove that (4.18)-(4.20) also hold for j = 1.
When i € 8% for k =1,2,- -+ ,a, by the off-diagonal antitonicity and the strictly diagonal
isotonicity of f()(z;y) with respect to y we have . - .
fz( )(wm; a:;ngk, PR ,m;ri’f’w;nsk, mﬁl’ e ,a}?)
k)~ k Eom L my
=0= fz( )({L',.’E) < fz( )(mm;mT’k’ the ’wﬁf,miamﬁla o ):B:zn)
and therefore, ﬁzzn’k < #;. Similarly, we can get §;" * >z Hence, (4.18) is true for j = .
We now prove (4.19). ' ‘ '
Noting (2.5) and 7 € [0,1], when i € §* we have
g™ = (1 — ) +ra]* < (1 -1)& +rdi =&,
yé"’k =(1-r)y + rz’}Z"’k > —7)Ei+rd =%
when i ¢ S* we easily get o

P

M= <E Syt =y

?
Therefore, we know that (4.19) holds for j ="i, too.
By (2.4) and (2.5) we have

gt =w Z k2™ 4 (1 - w)z < wz efi; + (1 - w)."i:, = ;.

T

Similarly, we have g™ > &;. Thus, (4.20) is proved for j = 1.

The above discussion shows that (4.18)~(4.20) hold for-all i € N; therefore
- ™ < § < gy,

By induction we know that (d) is correct. u _ A
The following theorem characterizes the dependence of Fyxuaor(r;w) -method upon the
choice of the acceleration factor. A _ '
Theorem 4.2. Suppose that the conditions of Theorem 4.1 are satisfied and let w,w’ €
(0,1], r € [0,1] be given for which '
0<w<w <1 v (4.21)
In all cases with y° as starting point, let {y™} and {y'™} be sequences yielded by Fnuaor
(r, w)-method with {r,w} and {r, w'} being the iteration parameters respectively. By Theorem
4.1 these sequences are well-defined, momotonously non-increasingly converge to a solution
y* of F(z) =0 in J and-any other solution & € J of F(&) = 0 satisfies & < y*. Moreover,
it holds that '

ey ey, m=012. (422

The corresponding results, with all inequalities reversed, hold for the sequences starting -
from 0. - ‘ . :
Proof. Suppose that for some m > 0 and ¢ > 1,

ym >y | ()

~m,k

gk, §=11)E-1) and eS8, 24)
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g2y, =161y (4.25)
y;“+1>y’;"“, j=1()(¢-1) - (426)

hold for k = 1,2,--- ,a. Here we stipulate that (4.24)—(4.26) are vacuous for 4 = 1. They
are clearly valid for m = 0 and i = 1. Then for i € S*, by the antitonicity of f*)(z;y) for
z and off-diagonal antitonicity of it for y we have

k s ~m,k )
f( )(ym mk * ’yz-lﬁy:n ,yﬂla"'ayzz), _
k & ko ~mok
=0= f( )(y/m;yr;n ' ay’:nlay’ ’y,ﬁl,"' ’y'?)

f(k)(ym mk v ’yi—,l"y’i ! ,yﬂl’..- ,y;’zn), |
The strict diagonal isotonicity of f(*)(z;y) for y 1mphes that ;" mk > y . SQ we have
tested (4.24) for j =i € S*.
For (4.25) when i € S* we easily have

ym,k,

yi* = gt + (=) >ryy A+ (= =y -
when ¢ ¢ S* there obviously hold ; mk = yr >y =y :”,k So (4.25) has also been tested
for j = =1, '
Now, we turn to (4.26).

Fas Wl Gl

’

4.27)
1 A, M, k (
—y’Z""L + (' -W)(yZ”— esy's )

)
If w = W', we easily have y™t! = 3/ M+, when o' > w > 0, by noticing

~m,k Am-

1,k
v, <, , forieS*

and

b=k _ 1 10 et
eyz +( —_)y’:n ’
k

we have
—Ze, >~ —)(y Y720

From (4.27) we get
+1 Ak, 1
g >y T 4 (W — W)y - Z by ) 2y

The above discussion indicates that (4.24)-(4.26) hold for all i € N. Therefore, ym+1 >

’m+1
Y

By induction we have completed the proof of this theorem.

'Besides the conditions of Theorem 4.1, if we assume furthermore that F' is surJectlve,
inverse isotone, we can deal with the global convergence of Fyaraor(r,w)-method. This
fact is preciesely stated by the followmg theorem :

Theorem 4.3. Let (f®,E*)(k = 1,2,- *, ) be a nonlinear multzsplzttzng of a sur-

jective, inverse isotone function F : R® — R™.  Suppose that for each k € {1,2,--- ,a},"
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for y we have

. p(k) m,k m,k am,k .
f ('”myv1 PR X 1,3" a'vm—la"' m)
(k) m, mk mk sm,k _m |
<.f (:L’ * T 1’37 ’ T AR PR ,wT)
— k), m, mk mk am,k
0= .f( )(’U PR Y B 17” ’vm—li ot ,,U;rln)

Using the strictly diagonal isotonicity we get 7™ k< oy k. Similarly, we can obtain iy mk <
2™*. Then (4.34) holds for j =i € S*. : - ’
Easily, we can also show that (4.35)-(4.36) hold for j = i.
Therefore, (4. 34) (4.36) hold for all ¢ € N.and we can then conclude that

m+1 < xm+1 < ,Um+1

By induction we have show that (4.33)-(4. 36) are valid. Now, taklng limit in (4 33) for
m to infinity we obtain -

lim z™ =z*,
oam ;

which fulﬁlls our proof . .

At the end of this section, we make the following three remarks.

Remark 4.1. There are examples which show that each assumptlon in Theorem 4.3 is
indispensable for ensunng its conclusron to hold. For the length of this paper, we will not
list them here.

~ Remark 4.2. For the special nonlinear multisplitting defined by (2.2)-(2.3), replace the
condition ‘f® (z;y)(k = 1,2, - , ) are antitone for z on D and off-diagonal antitone for y
on D' by ‘F: D C R® — R" is off-diagonally antitone on' D’, all the conclusions of Theorem
4.1 and Theorem 4.2 still hold.

Remark 4.8. For the above mentioned spemal nonlinear multlsphttmg, the assumptlon
‘F : R® — R" is a surjective M-function’ is sufficient for guaranteemg the conclusmn of
Theorem 4.3.

§56. Numerical Results

In order to test the correctnesses of the preceding results, we consider the following two
point boundary value problem: of weak nonlinear ordinary differential equation

%Z_g =Lu?, 0<t<1, (5.1)

By discretizing it with equidistant step size b =1 /(n+1), we get a class of special sysfem

of n-unkown (uy,--- ,u,) nonlinear equations
F(u) = Au+ ¢(u) =0, (5.2)
where
2 -1 CEy
-1 2 -1 ul
A= . , ¢(u)
-1 2 -u‘i —_ .’.:% i
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Obviously, we see that here A is an M-matrix and $(u) is strictly diagonally isotone.
Therefore, the system of equations (5.2) has unique solution on R™.. For the system of
equations (5.2), by taking n = 6 and three kinds of different multisplitting cases

a) subsets :

S'=1{1,2}, S2=1{3,4}, S°=1{5,6)
and corresponding weighting matrices .
- Ey = dla'g(l’ 1, 0’ 0, 0, 0)’ »
E, = diag(0,0,1,1,0,0),
Ej = diag(0,0,0,0,1,1).
b) subsets ' |
8 ={1,23), §'= {2,3,4,5}, S$°={4,56} .
and corresponding weighting matrices o |
| E; = diag(1,1/2,1/2,0,0,0),
E, = diag (0, 1/2a"1/2’ 1/2,1/2, 0),
E; = diag (0,0,0,1/2,1/2,1),

c) subsets . o S
Sl = 8% =8%={1,2,3,4,5,6}
and corresponding weighting matrices By = F3 = E3 = %I , We do’ numerously numerical
experiments about the Fyaraor-method combined with (2.6) being solved a,ppi‘oximafoely
by Newton method for choosing different pairs of the parameters r and w. The stbp'piﬁg"‘
criteria and the starting vectors are S S '
flumt?t — um"oo <2x107% or ||F(um+1)||oo <2x107™*
and

w0 =[4,4,4,4,4,4" € R*

(obviovusly,AF(uo‘)' > 0), respeeti{rely. All the results obtained are ‘satisfe,ctory and closely -

coincide with our theory. For the length of our paper, we jﬁst gelect the best one for each
case and list them in the following tables. Here, ‘we denote “IT” as iteration numbers.

Tab'le_(i):’ FNM AOR(0.9,0.95')-method (ce,se’a,)'

IT| 10 | 40 | 60 90 110 130 | 150 - | 160 | 170

w1 0.3 |—1.0] —1.2 [-1.280{—1.292 —1.296|—1.2984 [—1.2989| —1.299
ug | 1.6 |—1.1|—-1.43 | —1.54 [—1.562 |~1.571| —1.574 —1.575 | —1.576
us | 2.0 |-1.3| -1.6 | —1.76 —~1.79 |—1.806{ -1.811 | —1.812 —1.813
ug | 1.9 |—1.4[-1.80 | —1.94|—1.971 |-1.983 —1.987 | —1.988 | —1.989
ug | 1.0 |—1.6/-1.93 | —2.04 |—2.070 |—2.080 —2.084 |-2.0851{—2.0857
ug |—0.3 |—1.8]—2.00 | —2.06 [-2.081 |—2.086 —2.088 |—2.0890|—-2.0893
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Table(2): Fnmaor(0.99,1.0)-method (case b)

150

IT| 20 | 40 70 100 | ‘120 140 160
up |[—0.6 | —1.1 |-1.26 {—1.292|—1.297 [—1.2988|—1.2992 {—1.2994
ug |-0.3 | —-1.2 [-1.51 [~-1.563|—-1.572 | —~1.575 |—1.5760 {—1.5765
ug (—0.4 | ~1.4 |-1.73 | -1.79 |-1.808 | —1.812 |—1.8131 |—1.8137
ug (—0.4 | —=1.5 |-1.90 [-1.972|—1.984 | —1.988 | —1.989 | —1.99
ug |—0.9 | —1.7 [—2.02.1—2.072{~2.081 | —2.084 | —2.085 | —2.086.
ug {—1.3 |—1.90|—2.05 {—2.081|—2.086 |—2.0888|—2.0893 [—2.0895
Table(3): Fnumaor(0.8,0.99)-method (case c)
IT| 10 | 30 | 50 70 100 | 120 140 150
u | 0.2 |—0.9{—-1.20 {—1.26(-1.292 |—1.296{—1.2987 (—1.299
ug | 1.2 |-0.9| ~1.3 |-1.51(-1.563 [-1.571| —1.6756 |—1.576
ug | 1.5 |-1.0| -1.5 |-1.73| -1.79 - [-1.807; —1.812 [-1.813
ug | 1.6 |—1.2| —1.7 |-1.90{—1.972 {—1.983| —1.988 |—1.989
us | 0.6 |—1.4] —1.8 |—2.01{—2.071 [—2.081( —2.084 |—2.085
ug [—0.4 |—1.7) —=1.9 |—2.05{—2.081 |{—2.086(—2.0887 |—2.089

For the convenience we just list several decimal parts of our numerical results which are

. sufficient for us to illustrate the monoton1c1ty of our new method. The numerical results

in these tables further verify that when (r,w) C [0, 1] x (0,1], the Fnamaor(0.9,0.95)-

method, Fnmaor(0.99,1.0)-method and Fnar40r(0.8,0.99)-method corresponding to the
above weighting matrices converge monotonously to the unique solution of the system of
equations (5.2) with iterations 174, 160 and 158, respectively.
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