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Abstract

This paper gives a method to construct indecomposable positive definite integral Hermitian
forms over an imaginary quadratic field Q(

√
−m) with given discriminant and given rank.

It is shown that for any natural numbers n and a, there are n-ary indecomposable positive

definite integral Hermitian lattices over Q(
√
−1) (resp. Q(

√
−2)) with discriminant a, except

for four (resp. one) exceptions. In these exceptional cases there are no lattices with the desired
properties.

Keywords Indecomposable lattice (form), Minimum of a lattice (form), Minimal vector,

Irreducible vector.
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§1. Introduction and Main Results

Let F = Q(
√
−m) be an imaginary quadratic field and Rm (m > 0 and square free)

the ring of algebraic integers of F . The aim of this paper is to construct indecomposable

positive definite Hermitian forms (hereafter simply written as H-forms) over Rm with given

rank and given discriminant. We shall establish the following theorems.

Theorem 1.1. For any natural numbers n and a, there are indecomposable positive

definite Hermitian R1-lattices of rank n with discriminant a, except for the four exceptions:

a = 1, n = 2, 3, 5; a = 3, n = 3. In these exceptional cases, there are no lattices with the

desired properties.

Theorem 1.2. For any natural numbers n and a, there are indecomposable positive

definite Hermitian R2-lattices of rank n with discriminant a, except for one exception: a = 1,

n = 3. In this exceptional case there are no lattices with the desired properties.

By an integral H-form we mean one whose associated Hermitian matrix has integral

entries or, in the language of lattices, one whose associated Hermitian lattice has integral

scale. We shall assume that all lattices are integral.

Our use of the word decomposition or splitting is the geometric one, i.e., L has a non-

trivial expression of the form L = M⊥N with M ̸= 0 and N ̸= 0. If no such expression

exists, we call L indecomposable. Indecomposable lattices describe completely all definite
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lattices in view of the absolute uniqueness of the indecomposable splittings. There is another

kind of decomposition, a more algebraic one. Consider the H-form

h(X1, · · · , Xn) =

n∑
j,k=1

ajkXjXk

with ajk ∈ Rm and ājk = akj . Call a positive definite H-form h non-decomposable if there

is no expression, except the trivial one, of the type

h(X1, · · · , Xn) = f(X1, · · · , Xn) + g(X1, · · · , Xn)

with f and g positive semidefinite. It follows directly from the definitions that

h(X1, · · · , Xn) (or the associated lattice L) non-decomposable

⇒ h(X1, · · · , Xn) (or L) indecomposable.

But the converse does not always hold. Nevertheless we can prove the following theorem.

Theorem 1.3[1]. If the positive definite Hermitian Rm-lattice L is unimodular, then L

is nondecomposable if and only if L is indecomposable.

Positive definite integral H-forms have an interesting history with applications and con-

nections in many branches of mathematics including number theory, geometry of numbers,

Lie group, Lie algebra, algebraic geometry and algebraic coding theory. First consider the

problem of indecomposability for n-ary positive definite H-forms of discriminant 1 over Rm,

i.e., the unimodular case over Rm. Recently the author shows the following theorem.

Theorem 1.4.∗ 1.[1−3] For any natural number n, we can construct explicitly indecom-

posable positive definite unimodular odd Hermitian Rm-lattices of rank n (m = 1, 2, 3, 5, 7, 11,

13, 15, 19, 43, 67, 163), except for a finite number of exceptions (see Table 1). In the excep-

tional cases there are no lattices with the desired properties.

2.[4,5] For any given natural numbers n and square-free m satisfying the following condi-

tions

m ≡ 1 (mod 4) and 4|n,

or (1.1)

m ≡ 2 (mod 4) and 2|n,

we can construct explicitly indecomposable positive definite unimodular even Hermitian Rm-

lattices of rank n. Moreover, these conditions on m and n are necessary for the existence of

such lattices.

Theorem 1.4 is an analogy of the well-known theorem of Erdös-Ko-Zhu[6−9], and Theorems

1.1 and 1.2 are analogies of the Theorem of O’Meara-Zhu-Shao[10−12] on quadratic forms.

Remark 1.1. The method of the proof given in Theorem 1.4 can solve completely

the problem of constructing indecomposable positive definite unimodular odd and even

Hermitian Rm-lattices of any rank n and any square-free m.

∗The author proved recently a more genreral result, which generalizes the first part of Theorem 1.4 for
any Rm, and showed that there are no exceptions in case m ̸≡ 3(mod 4) if m ≥ 5 and in case m ≡ 3 (mod

4) if m ≥ 15. See [20]. (Note added May 17, 1994).
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Table 1

m \ n exceptions
1 2, 3, 4, 5
2 2, 3
3 2, 3, 4, 5, 7
7 2
11 3

5, 13, 15
19, 43, 67, 163 no exceptions

§2. Some Lemmas

Lemma 2.1[10,12]. For any natural numbers a and n ≥ 2, there are indecomposable

positive definite quadratic Z-lattices of rank n with discriminant a, except for a finite number

of exceptions. For n ≥ 3, there are exactly 44 exceptions, which are listed in the following

table.

Table 2

n dL = a
3 1, 2, 3, 5, 6, 9, 11, 14, 15
4 1, 2, 3, 6, 7, 10, 14, 26
5 1, 2, 3, 5, 7, 10, 13
6 1, 2, 5, 6, 14
7 1, 3, 7
8 2, 6, 10
9 1, 2, 3, 5
10 1, 2
11 1
12 2
13 1

In these exceptional cases, there are no lattices with the desired properties.

Lemma 2.2[3]. If L is an indecomposable positive definite quadratic Z-lattice, then L⊗Z

Rm is an indecomposable positive definite Hermitian Rm-lattice.

By Lemmas 2.1 and 2.2, we have

Lemma 2.3. For any natural numbers n and a, there exists an indecomposable positive

definite Hermitian Rm-lattice of rank n with discriminant a, except possibly for a finite

number of lattices with n = 2 and those (n, a) as listed in Table 2.

In order to determine whether the Hermitian lattices with values (n, a) in Table 2 are

indecomposable or not, we require following lemmas. First we introduce some definitions.

Let h be a Hermitian form with associated sesquilinear form ϕ. Then h(x) = ϕ(x, x)

for any vector x. The minimum of a Hermitian Rm-lattice with respect to its associated
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Hermitian form h is

minL = min
h

L = {|h(x)| | 0 ̸= x ∈ L}.

A vector v ∈ L is called minimal if v satisfies |h(v)| = minL. A nonzero vector x ∈ L

is called reducible in L if there exist nonzero vectors y, z ∈ L such that x = y + z and

ϕ(y, z) = 0, otherwise x is irreducible.

We shall use h’s, with or without subscripts, to denote Hermitian forms, and similarly ϕ’s

for the associated sesquilinear forms. If more than one form is present, we may prefix certain

adjectives with the relevant form: h-irreducible vectors, h-indecomposible lattices. We will

write (L, h) if otherwise confusion might arise over which form on L is being considered.

Let V be an n-dimensional vector space over F . A Hermitian form on V is positive definite

if h(x) > 0 for any nonzero x ∈ V and positive semidefinite or non-negative if h(x) ≥ 0 for

any nonzero x ∈ V . If h1 and h2 are positive H-forms on V , then so is h = h1 + h2. If h1 is

positive definite and h2 is positive, then h = h1+h2 is positive definite and h(x) ≥ h1(x) > 0

for any nonzero x ∈ V . If h1 and h2 are positive forms on the lattice L, then

min
h

L = min
h1

L+min
h2

L

holds if and only if h1 and h2 have a common minimal vector in L.

Lemma 2.4. Let L be an Rm-lattice on a positive definite Hermitian space over F , and

let X = {x1, · · · , xn} be a basis for L. If

1◦ L is indecomposable, then

2◦ ∀ y, z ∈ X , there is an ordering y = v1, · · · , vt = z of X such that ϕ(vj , vj+1) ̸= 0 for

1 ≤ j ≤ t− 1.

Moreover, if X consists of irreducible vectors, then 1◦ and 2◦ are equivalent.

This Lemma is easily proved by an analogy of a well-known theorem of Kneser[13].

Lemma 2.5. Let L be a Hermitian Rm-lattice, on which a positive definite form h0 and

a positive semidefinite form h1 have been defined, and let h = h0 + h1.

1◦ Let µ0 = min
h0

L and µ1 = min
h1

(h1(L) − 0). Suppose that x is an h0-irreducible vector

in L with h(x) < 2(µ0 + µ1). Then x is h-irreducible.

2◦ Suppose that L is h0-indecomposable and has a basis X of vectors satisfying the con-

dition on x in 1◦. Suppose (L, h1) ≃ diag (c1, · · · , cn) with respect to X . Then L is h-

indecomposable.

Proof. 1◦ Suppose that x is h-reducible, say x = y+z with y ̸= 0, z ̸= 0 and ϕ(y, z) = 0.

Then

h(x) = h(y) + h(z) = h0(y) + h1(y) + h0(z) + h1(z) < 2(µ0 + µ1)

with h0(y) + h0(z) ≥ 2µ0. Hence h1(y) + h1(z) < 2µ1. Without loss of generality we can

assume h1(y) < µ1 and so h1(y) = 0. Since h1 is positive semidefinite, by Schwarz inequality

we have

|ϕ1(y, z)|2 ≤ h1(y)h1(z) = 0,

and hence ϕ1(y, z) = 0. But

0 = ϕ(y, z) = ϕ0(y, z) + ϕ1(y, z) = ϕ0(y, z).
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Hence x is h0-reducible, contrary to our hypothesis.

2◦ Let X = {z1, · · · , zn}. By 1◦ the vectors zj(1 ≤ j ≤ n) are h-irreducible. Since L is

h0-indecompos-

able, condition 2◦ of Lemma 2.4 holds for ϕ0. But ϕ0(zj , zk) = ϕ0(zj , zk) + ϕ1(zj , zk) for

j ̸= k. Hence L is (h0 + h1)-indecomposable.

Lemma 2.6[1,2]. Let h(Y ) =
n∑

j=1

Yj Ȳj +(
n∑

j=1

Yj)(
n∑

j=1

Ȳj), L(Y ) =
n∑

j=1

αjYj with αj ∈ Rm.

Then the Hermitian form

h(Y )− L(Y )L(Y )

is positive semidefinite if and only if L(Y ) = Yj (j = 1, · · · , n) or
n∑

j=1

Yj.

We now generalize [1, Lemma 7] and [2, Theorem 2] as follows.

Lemma 2.7. The n-ary Hermitian form

h(X) = aX1X̄1 + βX1X̄2 + β̄X̄1X2 + 2
n∑

j=2

XjX̄j +
n−1∑
j=2

X̄jXj+1 +
n−1∑
j=2

XjX̄j+1

over Rm with discriminant ∆n (0 < ∆n < n) is positive definite and non-decomposable (and

therefore indecomposable), where n ≥ 2, a ≥ 2, β = b1 + b2θ with bj ∈ Z, 0 ≤ bj < n,

and θ =
√
−m if m ̸≡ 3 (mod 4) or θ = 1

2 (1 +
√
−m) if m ≡ 3 (mod 4), and the following

conditions are satisfied:

1. a < ββ̄,

2. a− ββ̄ + 2b1 − n < 0,

3. a− ββ̄ +m(2b2 − n) < 0,

4. a− ββ̄ + 2b1 − n+m(2b2 − n) < 0

if m ̸≡ 3 (mod 4); and

1◦ a < ββ̄,

2◦ a− ββ̄ + 2b1 + b2 − n < 0,

3◦ a− ββ̄ + b1 +
1
2 (m+ 1)b2 − 1

4 (m+ 1)n < 0,

4◦ a− ββ̄ + 3b1 +
1
2 (m+ 3)b2 − 1

4 (m+ 9)n < 0

if m ≡ 3 (mod 4).

Proof. We need to prove only the case with m ̸≡ 3 (mod 4) since the proof of the case

with m ≡ 3 (mod 4) is similar. Clearly h(X) is positive definite, since its discriminant

∆n = na− (n− 1)ββ̄ > 0 and clearly all its principal minors are positive.

First, we shall show that nondecomposition of h(X) involving a linear norm exists. By

the unimodular transformation

X1 = −Y1, X2 = −Y2, Xj +Xj+1 = (−1)j−1Yj+1 (j = 2, · · · , n− 1),

h(X) is replaced by

h′(Y ) = aY1Ȳ1 + βY1Ȳ2 + β̄Ȳ1Y2 +
n∑

j=2

Yj Ȳj +
( n∑
j=2

Yj

)( n∑
j=2

Ȳj

)
.

By Lemma 2.6, it follows that the only norms which need to be considered are

1◦ (α1Y1)(ᾱ1Ȳ1),
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2◦ (α1Y1 + Y2)(ᾱ1Ȳ1 + Ȳ2),

3◦ (α1Y1 + Yj)(ᾱ1Ȳ1 + Ȳj), (j = 3, · · · , n),

4◦
(
α1Y1 +

n∑
j=2

Yj

)(
ᾱ1Ȳ1 +

n∑
j=2

Ȳj

)
,

where α1 ̸= 0, α1 ∈ Rm.

The case 1◦ is ruled out, since the determinant of the matrix of the form h′(Y ) −
(α1Y1)(ᾱ1Ȳ1) is ∆n−nα1ᾱ1 < 0. For the cases 3◦ and 4◦, we need to consider only the norm

(α1Y1 + Y3)(ᾱ1Ȳ1 + Ȳ3), since h′(Y ) is symmetrical in Y3, · · · , Yn, and the transformation

Y3 → −
n∑

k=2

Yk, Yj → Yj (j = 1, 2, 4, 5, · · · , n) (1)

permutes Y3Ȳ3 and
( n∑
j=2

Yj

)( n∑
j=2

Ȳj

)
.

Consider first the H-form

K(Y ) = h′(Y )− (α1Y1 + Y2)(ᾱ1Ȳ1 + Ȳ2)

= (a− α1ᾱ1)Y1Ȳ1 + (β − α1)Y1Ȳ2 + (β̄ − ᾱ1)Ȳ1Y2 +

n∑
j=3

Yj Ȳj +
( n∑
j=2

Yj

)( n∑
j=2

Ȳj

)
.

By the transformation

Y2 = −
n∑

j=2

Zj , Yj = Zj (j = 1, 3, 4, · · · , n),

K(Y ) is replaced by

K1(Z) = (a− α1ᾱ1)Z1Z̄1 − (β − α1)Z1

( n∑
j=2

Z̄j

)
− (β̄ − ᾱ1)Z̄1

( n∑
j=2

Zj

)
+

n∑
j=2

ZjZ̄j

=

n∑
j=2

(Zj − (β − α1)Z1)(Z̄j − (β̄ − ᾱ1)Z̄1)

+ (a− α1ᾱ1 − (n− 1)(β − α1)(β̄ − ᾱ1))Z1Z̄1.

Write α1 = a1 + a2
√
−m and β = b1 + b2

√
−m, where a1, a2, b1, b2 are rational integers.

Then the coefficient of Z1Z̄1 can be expressed as

A = a− (a21 + a22m)− (n− 1)((b1 − a1)
2 + (b2 − a2)

2m).

Consider A = A(a1, a2) as a real function of two variables. A has a maximum for a1 = n−1
n b1,

a2 = n−1
n b2. Since 0 ≤ bj/n < 1 (j = 1, 2), we have for (a1, a2) = (b1, b2), (b1, b2 − 1),

(b1 − 1, b2) and (b1 − 1, b2 − 1), respectively,

A = a− (b21 +mb22) = a− ββ̄ < 0,

A = a− (b21 +m(b2 − 1)2)− (n− 1)m = a− ββ̄ +m(2b2 − n) < 0,

A = a− ((b1 − 1)2 +mb22)− (n− 1) = a− ββ̄ + 2b1 − n < 0,

and

A = a− ((b1 − 1)2 +m(b2 − 1)2)− (n− 1)(1 +m)

= a− ββ̄ + (2b1 − n) +m(2b2 − n) < 0,
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so that K1(Z) is indefinite. This settles the case 2◦.

Consider next the H-form

G(Y ) = h′(Y )− (α1Y1 + Y3)(ᾱ1Ȳ1 + Ȳ3)

= (a− α1ᾱ1)Y1Ȳ1 + βY1Ȳ2 + β̄Ȳ1Y2 + Y2Ȳ2 +
n∑

j=4

Yj Ȳj

+
( n∑
j=2

Yj

)( n∑
j=2

Ȳj

)
− α1Y1Ȳ3 − ᾱ1Ȳ1Y3.

By the transformation (1), G(Y ) is replaced by

G1(Z) = (a− α1ᾱ1)Z1Z̄1 + βZ1Z̄2 + β̄Z̄1Z2 + α1Z1

( n∑
j=2

Z̄j

)
+ ᾱ1Z̄1

( n∑
j=2

Zj

)
+

n∑
j=2

ZjZ̄j

=

n∑
j=3

(Zj + α1Z1)(Z̄j + ᾱ1Z̄1) + (Z2 + (β + α1)Z1)(Z̄2 + (β̄ + ᾱ1)Z̄1)

+ (a− α1ᾱ1 − (β + α1)(β̄ + ᾱ1)− (n− 2)α1ᾱ1)Z1Z̄1.

Write α1 = a1 + a2
√
−m, β = b1 + b2

√
−m, where a1, a2, b1, b2 are rational integers. Then

the coefficient of Z1Z̄1 can be expressed as

B = a− (a21 +ma22)− ((b1 + a1)
2 +m(b2 + a2)

2)− (n− 2)(a21 +ma22).

Consider B = B(a1, a2) as a real function of two variables. B has a maximum for a1 =

−b1/n, a2 = −b2/n. Since −1 < −bj/n ≤ 0 (j = 1, 2), we have for (a1, a2) = (0, 0), (−1, 0),

(0,−1) and (−1,−1), respectively,

B = a− (b21 + b22m) = a− ββ̄ < 0,

B = a− 1− ((b1 − 1)2 +mb22 − (n− 2) = a− ββ̄ + 2b1 − n < 0,

B = a−m− (b21 +m(b2 − 1)2)−m(n− 2) = a− ββ̄ +m(2b2 − n) < 0,

and

B = a− (1 +m)− ((b1 − 1)2 +m(b2 − 1)2)− (n− 2)(1 +m)

= a− ββ̄ + (2b1 − n) +m(2b2 − n) < 0,

so that G1(Z) is indefinite. Cases 3◦ and 4◦ are also settled.

Suppose now that there is a decomposition

h(X) = f(X) + g(X),

where f(X) and g(X) are non-negative over Rm. No term XjX̄j (j ≥ 2) can occur in either

f(X) or g(X), for then a norm can be taken out of h(X). Hence we can assume that g(X),

say, has a term 2XnX̄n. Then g(X) must also contain Xn−1X̄n + X̄n−1Xn, for otherwise

f(X) assumes negative values by choice of Xn. Then g(X) contains also 2Xn−1X̄n−1, for

otherwise g(X) will assume negative values by choice of Xn−1. Proceeding in this way, g(X)

will contain all the terms of h(X) involving Xn, Xn−1, · · · , X2. Hence f(X) = aX1X̄1, and

so a norm X1X̄1 can be taken out of h(X), which contradicts what we have proved.

This completes the proof of Lemma 2.7.
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§3. Proofs of Main Theorems

Proof of Theorem 1.1. First, consider the case with m = 1, i.e., positive definite

H-forms over the domain of Gaussian integers R1 = Z[i], (i2 = −1). The method given here

can be applied to other cases with any Rm.

Proposition 3.1. The n-ary positive definite R1-lattice En ≃
(

2 1 + i
1− i Γn−1

)
of dis-

criminant 2 is indecomposable, where Γ1 = 2, Γ2 =

(
2 1
1 2

)
, · · · , Γs =

(
2 1
1 Γs−1

)
.

Proof. Let {z1, · · · , zn} be the basis with respect to which En has the above matrix.

Suppose, if possible, En = P⊥M is an orthogonal splitting of En. Since h(zj) = 2 (1 ≤
j ≤ n), ϕ(zj , zj+1) ̸= 0 (1 ≤ j ≤ n − 1), and 1 /∈ h(En), all z1, · · · , zn belong to the same

component P , say, of the splitting. Hence rank(P ) = n and so En = P is indecomposable.

Proposition 3.2. For any natural number a > 1, there exist binary Hermitian indecom-

posable R1-lattices of discriminant a.

Proof. By [10, Theorem 4.11], for any not square-free a, there are indecomposable

positive definite binary quadratic Z-lattices of discriminant a, except for two exceptions:

a = 4 and 18. Hence by Lemma 2.2, we need only to show that if a = 2ep1p2 · · · ps with

e = 0, 1 and odd primes p1 < p2 < · · · < ps, and a = 4, 18 there are binary indecomposable

positive definite Hermitian R1-lattices of discriminant a.

For a = 4 and 18, we have the indecomposable lattices: L4 ≃
(

2 1 + i
1− i 3

)
and

L18 ≃
(

4 1 + i
1− i 5

)
respectively. Next, we consider the general case.

1◦ If e = 0, i.e., a = p1 · · · ps is odd, then the lattice La ≃
(
2 1
1 1

2 (a+ 1)

)
is indecom-

posable. In fact, if La = ⟨b⟩⊥⟨c⟩, then bc = a, so that b and c must be odd and ≥ 1.

This cannot represent 2 unless b = c = 1. But a ≥ 3. This contradiction shows that La is

indecomposable.

2◦ If e = 1, i.e., a = 2p1 · · · ps = 2k, say, with odd k, then La ≃
(

2 1 + i
1− i k + 1

)
is

an indecomposable Hermitian R1-lattice. In fact, if La = ⟨b⟩⊥⟨c⟩, then bc = a = 2k, so

that at least one of b, c must be odd. But La is even. This contradiction shows that La is

indecomposable.

In the following we need to consider only those cases with (n, a) and a ≥ 3, 3 ≤ n ≤ 9

listed in Table 2.

1◦ n = 3, a = 3, 5, 6, 9, 11, 14, 15.

From the proof of [14, Theorem 1] there are only two classes of ternary positive definite

H-forms with discriminant 3 over R1, which both represent 1, and hence there are no

indecomposable R1-lattices in the case n = a = 3.

Clearly each of the following ternary R1-lattices are indecomposable:

L3,5 ≃

 3 1 + i
1− i 2 1

1 2

 , L3,6 ≃

 2 1 + i
1− i 3 1

1 2

 , L3,9 ≃

 3 1 + i
1− i 2 1

1 3

 ,
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L3,11 ≃

 3 1 + i
1− i 3 1

1 2

 , L3,14 ≃

 2 1 + i
1− i 5 1

1 2

 .

We can prove this by Lemma 2.5 or by direct method. For instance, in Lemma 2.5 we take

h0 ≃

 2 1 + i
1− i 2 1

1 2

 ,

which is indecomposable by Proposition 3.1, and take h1 ≃ diag(1, 0, 0), diag(0, 1, 0),

diag(1, 0, 1), diag(1, 1, 0), diag(0, 3, 0) respectively. Then each of the lattices L3,a (a =

5, 6, 9, 11, 14) are indecomposable. For n = 3 and a = 15, we put

L3,15 ≃

 3 1 + i
1− i 3 1 + i

1− i 3

 .

Suppose L3,15 = P⊥M . Since h(ej) = 3 for j = 1, 2, 3, ϕ(ej , ej+1) ̸= 0 for j = 1, 2, and

L3,15 does not represent 1, (where {e1, e2, e3} is the basis with respect to which L3,15 has

the above matrix), all ej (j = 1, 2, 3) fall in the same component P , say, of the splitting.

Hence L3,15 = P is indecomposable.

2◦ n = 4, a = 3, 6, 7, 10, 14, 26.

For L4,3 and L4,7 we can take h0 ≃


2 1
1 2 1 + i

1− i 2 1
1 2

, which is indecomposable

by [1, Theorem 5], and h1 ≃ diag(0, 0, 0, 1) and diag(0, 0, 1, 0) respectively. By Lemma

2.5, L4,3 ≃


2 1
1 2 1 + i

1− i 2 1
1 3

 and L4,7 ≃


2 1
1 2 1 + i

1− i 3 1
1 2

 are both (h0 + h1)-

indecomposable.

For L4,6, L4,10, L4,14 and L4,26 we can take h0 ≃


2 1 + i

1− i 2 1
1 2 1

1 2

, which is inde-

composable by Proposition 3.1, and h1 ≃ diag(0, 0, 1, 0), diag(0, 0, 2, 0), diag(0, 2, 0, 0) and

diag(0, 1, 1, 1) respectively. Then by Lemma 2.5,

L4,6 ≃


2 1 + i

1− i 2 1
1 3 1

1 2

 , L4,10 ≃


2 1 + i

1− i 2 1
1 4 1

1 2

 ,

L4,14 ≃


2 1 + i

1− i 4 1
1 2 1

1 2

 , L4,26 ≃


2 1 + i

1− i 3 1
1 3 1

1 3


are all (h0 + h1)-indecomposable.

3◦ n = 5, a = 3, 5, 7, 10, 13.

Clearly, L5,3 ≃
(

7 2(1 + i)
2(1− i) Γ4

)
is indecomposable by Lemma 2.7, and L5,5 ≃
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
Γ2 1 + i
1− i 2 1

1 3 1 + i
1− i 3

 is indecomposable by the method for L3,15. For L5,7, L5,10

and L5,13 we take h0 ≃
(

2 1 + i
1− i Γ4

)
, which is indecomposable by Proposition 3.1, and

h1 ≃ diag(1, 0, 0, 0, 0), diag(0, 0, 0, 1, 1) and diag(1, 0, 0, 0, 1) respectively. By Lemma 2.5,

the lattices

L5,7 ≃
(

3 1 + i
1− i Γ4

)
, L5,10 ≃


2 1 + i

1− i Γ2 1
1 3 1

1 3

 ,

L5,13 ≃

 3 1 + i
1− i Γ3 1

1 3


are (h0 + h1)-indecomposable.

4◦ n = 6, a = 5, 6, 14.

It is clear that L6,5 ≃


2 1 + i

1− i Γ3 1
1 3 1

1 3

 is indecomposable. For L6,6 and L6,14

we take h0 ≃
(

2 1 + i
1− i Γ5

)
, which is indecomposable by Proposition 3.1, and h1 ≃

diag(0, 0, 0, 0, 1, 0) and diag(0, 0, 0, 1, 0, 1) respectively. Then by Lemma 2.5, the lattices

L6,6 ≃


2 1 + i

1− i Γ3 1
1 3 1

1 2

 , L6,14 ≃


2 1 + i

1− i Γ2 1
1 3 1

1 2 1
1 3


are (h0 + h1)-indecomposable.

5◦ n = 7, a = 3, 7.

Clearly L7,3 ≃
(

9 3 + i
3− i Γ6

)
is indecomposable by Lemma 2.7 and

L7,7 ≃


3 1 + i

1− i Γ2 1
1 3 1

1 2 1 + i
1− i Γ2


is indecomposable by the method for L3,15.

6◦ n = 8, a = 6, 10.

L8,6 ≃


2 1 + i

1− i Γ5 1
1 3 1

1 2

 and L8,10 ≃


2 1 + i

1− i Γ5 1
1 3 1

1 3

 are indecomposable

by the method for L3,15, or by Lemma 2.5 with h0 ≃
(

2 1 + i
1− i Γ7

)
.



No.3 Zhu, F. Z. CONSTRUCTION OF INDECOMPOSABLE DEFINITE HERMITIAN FORMS 359

7◦ n = 9, a = 3, 5.

Clearly L9,5 ≃
(

29 4(1 + i)
4(1− i) Γ8

)
is indecomposable by Lemma 2.7. Taking h0 ≃(

9 3 + i
3− i Γ8

)
, which is indecomposable by Lemma 2.7, and h1 ≃ diag(0, 0, 0, 0, 0, 0, 0, 0, 1),

we see that, by Lemma 2.5, L9,3 ≃

 9 3 + i
3− i Γ7 1

1 3

 is (h0 + h1)-indecomposable.

This completes the proof of Theorem 1.1.

Proof of Theorem 1.2. Next, consider the case with m = 2, i.e., positive defi-

nite H-forms over R2 = Z[
√
2i]. In view of the proof of Theorem 1.1, we can obtain

analogous results for the case with R2, if we replace the pair (1 + i, 1 − i) in the proof

of Theorem 1.1 by (
√
2i,−

√
2i) and make some supplement. For instance, by chang-

ing 1 + i (resp. 1 − i) into
√
2i (resp. −

√
2i), En ≃

(
2 1 + i

1− i Γn−1

)
reduces to E′

n ≃(
2

√
2i

−
√
2i Γn−1

)
and Proposition 3.1 becomes a proposition for R2-lattices. Moreover, the

R2-lattices M9,3 ≃
(

11 2 + 2
√
2i

2− 2
√
2i Γ8

)
and M7,3 ≃

(
15 3 + 2

√
2i

3− 2
√
2i Γ6

)
are inde-

composable by Lemma 2.7, and M3,3 ≃

 2 1
1 2 1 +

√
2i

1−
√
2i 3

 is indecomposable by the

method of proof for L3,15.

This completes the proof of Theorem 1.2.

Remark 3.1. 1. By the same argument as in the proof of Theorem 1.2, we can show

that, for any natural numbers n and a, there are n-ary indecomposable positive definite

Hermitian lattices over R7 (= Z[θ] with θ = 1
2 (1+

√
7i)) with discriminant a, except for one

exception: n = 2 and a = 1. In this exceptional case, there are no lattices with the desired

properties. In fact, in the proof of Theorem 1.1, we need only to replace 1 + i and 1− i by

θ and θ̄ respectively, and then analogous results on R7 = Z[θ] are obtained. Moreover, we

need only to supply the following facts:

1◦ Clearly the R7-lattice N3,3 ≃

 3 1 + θ
1 + θ̄ 2 1

1 3

 is indecomposable.

2◦ By Lemma 2.7, N7,1 ≃
(

7 2 + θ
2 + θ̄ Γ6

)
and N9,3 ≃

 11 3 + 2θ
3 + 2θ̄ 3 1

Γ7

 are

indecomposable. Then take h0 ≃ N7,1 and h1 ≃ diag(0, · · · , 0, 1). By Lemma 2.5, the

R7-lattice N7,3 ≃

 7 2 + θ
2 + θ̄ Γ5 1

1 3

 is (h0 + h1)-indecomposable.

This completes the proof of our claim.

2. By establishing an algebraic criterion for the indecomposability of positive definite

Hermitian Rm-lattices, the author proves recently analogy as Theorem 1.1 for the case

R3 = Z[θ3] with θ3 = 1
2 (1 +

√
−3), except for ten exceptions: a = 1, n = 2, 3, 4, 5, 7; a = 2,
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n = 2, 3; a = 4, n = 2; a = 5, n = 3; a = 10, n = 2. This result will appear elsewhere[15].
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