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Abstract

This is the continuation of [8]. The main purpose of this paper is to give both general form
of any unitary extension and unitary dilation of a contraction of ΠK associated with its triangle
model.
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§1. Preliminary

Sz. Nagy and C. Foias established the harmonic analysis theory of contractions of Hilbert

spaces[7]. We hope to find the relevent theory on spaces with indefinite metrics, specially

on Pontryagin space ΠK . So it is very important to research the general form of unitary

dilation of contraction on a space with an indefinite metric. Davis, ch.[6] gave the proof

of the existence of J-unitary dilation of any bounded operator in a Hilbert spaces. Yang

Shaozong[2] gave the general forms of J-unitary dilations. We also see [3, 9] in this way. All

these research works have been done in the framework of regular decomposition in a Krein

space and can not show the property of degenerate part of contraction. Yan Shaozong,

Chen Xiaoman[8] founded the triangle model of contraction on Pontryagin space ΠK . It

is an important role in the harmonic analysis theory of contraction on Pontryagin space

ΠK . We characterize the general form of unitary dilation of contraction on Pontryagin

space ΠK and any unitary dilation of contraction on Pontryagin space ΠK relative to its

triangle model. Moreover in the third section we also get a theorem which perfectly depicts

a characterization of minimal dilation, that is, the unitary part in a minimal unitary dilation

associated with the nondegenerate part of the triangle model of a contraction on ΠK becomes

a minimal unitary dilation of the nongenerate part.

The results and symbols used in our paper come from Yan Shaozong[1] without explana-

tion. As this is a continued paper of [9], we recall some theorems for convenience sake.

At first we give some definitions in the following.

Manuscript received November 12, 1991. Revised January 3, 1992.

*Institute of Mathematics, Fudan University, Shanghai 200433, China
**Project supported by the National Natural Science Foundation of China, the Science Foundation

of State Education Commitee of China, and the Fok Yingtung Education Foundation



362 CHIN. ANN. OF MATH. Vol.14 Ser.B

Definition 1.1. If T is a contraction on ΠK and U is a unitary operator from ΠK ⊕H1

onto ΠK ⊕H2 such that

PΠK
U |ΠK

= T, (1.1)

where H1 and H2 are two Hilbert spaces and PΠK
is an orthogonal projection from ΠK ⊕H2

onto ΠK , then we call the unitary operator U a unitary extension of T .

Obviously the unitary extension of contraction on ΠK is not unique.

Definition 1.2. If T is a contraction on ΠK and U is a unitary operator on ΠK ⊕ H

such that

PΠKUn|ΠK = Tn for n = 1, 2, · · · , (1.2)

then U is called a unitary dilation of T . Moreover, if ΠK ⊕H = C.L.S.{(U − z)−1ΠK | z ∈
ρ(U)}, where C.L.S. means closure of linear span, then U is called a minimal unitary of T .

Definition 1.3. If T is a contraction on Pontryagin space ΠK and there exists a standard

decomposition ΠK = N ⊕ {Z+̇Z∗}P such that

T =


S F G B

TN T1 C
TP D

S∗−1


Z
N
P
Z∗

, (1.3)

where S is injective on Z and

[
TN T1

TP

]
is a contraction of N ⊕ P , then (1.3) is called a

triangle model of T , denoted by T = {S, TN , TP , T1, C,D, F,G,B}.
[
TN T1

TP

]
is called the

nondegenerate part of T , denoted by T0 =

[
TN T1

TP

]
.

The following Theorem 1.1 and Theorem 1.2 can be found in [1].

Theorem 1.1. Let ΠK0 = N ⊕ P be a regular decomposition such that

T0 =

[
TN T1

TP

]
(1.4)

and T0N = N . Let TN = V R be a polar decomposition. Then T0 must have a unitary

extension and the general form is the following formula

U =
N
P
H2

TN T1 E′

TP H ′

X ′ Q′ L′

 N
P
H1

(1.5)

and the general solutions of E′,H ′, L′, Q′, X ′ are the following formulae

E′ = −T1T
∗
P (I − TPT

∗
P )

−1/2I∗2 + V (R2 − I)1/2(I −K0K
∗
0 )

1/2V ∗
1 , (1.6)

H ′ = (I − TPT
∗
P )

1/2U∗
2 , (1.7)

L′ = −[U4RK0 + V0(I −K∗
0K0)

1/2]T ∗
PU

∗
2 + [U4R(I −K0K

∗
0 )

1/2 − V0K
∗
0 ]V

∗
1 +W, (1.8)

Q′ = U4(R
2 − I)−1/2RV ∗T1 + V5(I −K∗

0K0)
1/2(I − T ∗

PTP )
1/2, (1.9)

X ′ = U4(R
2 − I)1/2 (1.10)
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and two Hilbert spaces H1 and H2 have orthogonal decompositions

H1 = (R(U2)⊕R(V1))⊕ (R(U2)⊕R(V1))
⊥, (1.11)

H2 = (R(U4)⊕R(V5))⊕ (R(U4)⊕R(V5))
⊥, (1.12)

where K0 = (R2 − I)−1/2V ∗T1(I −T ∗
PTP )

−1/2 is a contraction from ((I − T ∗
PTP )1/2P , (·, ·))

to ((R2 − I)1/2N,−(·, ·)) and U4, U2, V5, V1 and W are metric-preserving bijections

U4 : (R(R2 − I),−(·, ·)) → (R(U4), [·, ·]2),
U2 : (R((I − TPT ∗

P )
1/2, (·, ·)) → (R(U2), [·, ·]1),

V5 : (R((I −K∗
0K0)1/2(I − T ∗

PTP )1/2), (·, ·)) → (R(U5), [·, ·]2),
V1 : (R((I −K0K

∗
0 )

1/2(I −K0K
∗
0 )

1/2), (·, ·)) → (R(V1), [·, cdot]1),
W : (R(U2)⊕R(V1))

⊥, [·, ·]1) → ((R(U4)⊕R(5))⊥, [·, ·]2).
Theorem 1.2. Let T0 be as above. Then the general form of unitary dilation of T0 is

the following

U0 =
N
P
H

TN T1 E′

TP H ′

X ′ Q′ L′

 N
P
H

(1.13)

where general solutions of E′,H ′, L′, Q′ and X ′ are as in Theorem 1.1 and H1 = H2 = H

must be the following general form

H =

[
∞
⊕

K=1
W ∗K(R(U2))⊕R(V1))

]
⊕(R(U2)⊕R(U1))⊕ (R(U4)⊕R(V5))[

∞
⊕

K=1
WK(R(U4))⊕R(V5))

]
⊕H0 (1.14)

and restriction W0 of W on H0 is a unitary operator on H0.

The following theorem is the result of [9]. We refine this result.

Theorem 1.3. If T is a contraction on Pontryagin space ΠK , then there exists a standard

decomposition ΠK = N⊕{Z+̇Z∗}⊕P such that T = {S, TN , TP , T1, C,D, F,G} is a triangle

model of T1, and we have

(1) S is injective on Z, TN = V R is a polar decomposion on TN R ≥ I, V is injective

on N , TP is a contraction of (P, (·, ·)) and B = (1/2)S(C∗C − D∗D − Q), where ReQ =

(1/2)(Q+Q∗) > 0.

(2) K0 = (R2 − I)−1/2V ∗T1(I − T ∗
PTP )

−1/2 is a contractive operator from Hilbert space

(R((I − T ∗
PTP )1/2), (·, ·)) to Hilbert space (N,−(·, ·)).

(3) K1 = (ReQ)−1/2(S−1F − C∗TN )(R2 − I)−1/2 is a contractive operator from Hilbert

space (R((R2 − I)1/2),−(·, ·)) to Hilbert space (Z, ⟨·, ·⟩).
(4) K2 = (ReQ)−1/2(S−1F−C∗TN )R(R2−I)−1/2K0(I−K∗

0K0)
−1/2+(ReQ)−1/2(S−1G−

C∗T1 +D∗TP )(I − T ∗
PTp)

−1/2(I −K∗
0K0)

−1/2 is a contractive operator from Hilbert space

(R((I −K∗
0K0)1/2(I − T ∗

PTP )1/2, (·, ·)) to Hilbert space (Z, ⟨·, ·⟩).
(5) Let K(n+ p) = K1n+K2p, where

n ∈ R((R2 − I)1/2),−(·, ·)), p ∈ (R((I −K∗
0K0)1/2(I − T ∗

PTP )1/2), (·, ·)).

Then K is a contractive operator from

(R((R2 − I)1/2)⊕R((I −K∗
0K0)1/2(I − T ∗

PTP )1/2),−(·, ·)N ⊕ (·, ·)P ) to (Z, ⟨·, ·⟩).
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Moreover if (1), (2), (3), (4) and (5) are satisfied, then T is a contraction on ΠK .

Proof. The proof of Theorem 1.3 is finished if we prove (3), (4) and (5). Obviously, (iv)

in Theorem 2.2 of [8] is written as

R(S−1F − C∗TN ) ∪R(S−1G− C∗T1 +D∗TP ) ⊂ (KerReQ)⊥,

and for any n ∈ N , p ∈ P,

∥(ReQ)−1/2[S−1F − C∗TN )n+ (S−1G− C∗T1 +D∗TP )p]∥2⟨·,·⟩
− ∥(I − T ∗

PT )
1/2∥2 − ∥(R2 − I)1/2n+R(R2 − I)−1/2V ∗Y1P∥2

+ ∥(R2 − I)−1/2V ∗T1p∥2 ≤ 0, (1.15)

where ∥ · ∥⟨·,·⟩ is the norm induced by ⟨·, ·⟩. Let p = 0 in (1.15). Then

∥(ReQ)−1/2(S−1F − C∗TN )n∥2 ≤ ∥ ∗R2 − I)1/2n∥2.

As Ker((R2 − I)1/2 ⊂ Ker(ReQ)−1/2(S−1F − C∗TN ) we can define (ReQ)−1/2(S−1F −
C∗TN )(R2 − I)−1/2 as a contractive operator from (R((R2 − I)−1/2),−(·, ·)) to (Z, ⟨·, ·⟩).
Then (3) is proved. Let n = −R(R2 − I)−1V ∗T1. Then (1.15) becomes

∥(ReQ)−1/2[−S−1F − C∗TN )R ∗R2 − I)−1V ∗T1P + (S−1G− C∗T1 +D∗TP )p]∥2<·,·>

≤ ∥(I − T ∗
PTP )

1/2P∥2 − ∥K0(I − T ∗
PTP )

1/2P∥2

= ∥(I −K∗
0K0)

1/2(I − T ∗
PTP )

1/2P∥2

for any p ∈ P . We have

Ker((I −K∗
0K0)

1/2(I − T ∗
PTP )

1/2

⊂ Ker(ReQ)−1/2[−(S−1F − C∗TN )R(R2 − I)−1V ∗T1 + (S−1G− C∗T1 +D∗TP )]

and define

− (ReQ)−1/2(S−1F − C∗TN )R(R2 − I)−1V ∗T1(I − T ∗
PTP )

−1/2(I −K∗
0K0)

−1/2

+ (ReQ)−1/2(S−1G− C∗T1 +D∗TP )(I − T ∗
PTP )

−1/2(I −K∗
0K0)

−1/2

as a contractive operator from the Hilbert space

(R((I −K∗
0K0)1/2(I − T ∗

PTP )1/2), (·, ·)) to (Z, ⟨·, ·⟩).

By reorganizing the contractive operator, (4) is proved.

The left side of the inequality (1.15)

= ∥(ReQ)−1/2(S−1F − C∗TN )(R2 − I)−1/2((R2 − I)1/2n+R(R2 − I)−1/2V ∗T1p)

(ReQ)−1/2[−(S−1F − C∗TN )R(R2 − I)−1V ∗T1p+ (S−1G− C∗T1 +D∗TP )p]∥2⟨·,·⟩
− ∥(R2 − I)n+R(R2 − I)−1/2V ∗TP ∥2 + ∥(R2 − I)−1/2V ∗T1p∥2 − ∥(I − T ∗

PTP )
1/2∥2

= ∥K1((R
2 − I)1/2n+R(R2 − I)−1/2V ∗T1p) +K2(I −K∗

0K0)
1/2(I − T ∗

PTP )
1/2p∥2⟨·,·⟩

− ∥(R2 − I)1/2n+R(R2 − I)1/2V ∗T1p∥2 − ∥(I −K∗
0K0)

1/2(I − T ∗
PTP )

1/2p∥2

≤ 0.

Let

K3 =

[
(R2 − I)1/2 R(R2 − I)−1/2V ∗T1

(I −K∗
0K0)

1/2(I − T ∗
PTP )

1/2

]
N
P

,
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K3(N ⊕ P ) = R((R2 − I)1/2 ⊕R((I −K∗
0K0)1/2(I − T ∗

PTP )1/2).

Then K is a contractive operator from

(R((R2 − I)1/2 ⊕R((I −K∗
0K0)1/2(I − T ∗

PTP )1/2), (·, ·)N ⊕ (·, ·)P ) to (Z, ⟨·, ·⟩),

which is equivalent to (1.15). The proof is finished.

In the following we give a lemma, which is used to compute general solutions in the second

section.

Lemma 1.1. Let T1 be a linear operator from Hilbert space H1 to Hilbert space H2

and T2 be a linear operator from H1 to Hilbert space H2. And let ∥T1x∥ ≤ ∥T2x∥ for any

x ∈ H1. Then the general solution of operator-valued equation T1 = V ∗T2 where V is an

isometric operator from R(T1) to H(⊃ R(T2)) is as follows: H = R(T2) ⊕ R(T2)
⊥

and

V x = T ∗x + V0(I − TT ∗)1/2x, where Ty = T1T
−1
2 y for any x ∈ H and y ∈ R(T2), T is

a contractive operator which is uniquely extented on R(T2) and V0 is a metric-preserving

operator from R((I − TT ∗)1/2) to R(T2).

Proof. As ∥T1x∥ ≤ ∥T2x∥ for any x ∈ H1, the operator equation T1 = V ∗T2 is equivalent

to T1T
−1
2 = V |R(T2). And as T is a unique extension on R(T2) of T1T

−1
2 , the operator

equation is equivalent to T = V ∗|R(T2). It is equivalent to T ∗ = PR(T2)
V . Let V be a

metric-preserving operator from R(T1) to R(T2) ⊕ R(T2)
⊥

and V = A + B where A and

B are bounded operators from R(T1) to R(T2) and R(T2)
⊥

respectively. T ∗ = PR(T2)
V is

equivalent to A = T ∗. So ∥(I−TT ∗)1/2x∥ = ∥Bx∥ for x ∈ R(T1). Then B = V0(I−TT ∗)1/2

and V0 is a metric-preserving operator fromR((I − TT ∗)1/2 intoR(T2)
⊥
. The above process

is invertible, and then the lemma is proved.

§2. The General Form of Unitary Extension of
Contraction on ΠKΠKΠK Associated With Its Triangle Model

In this section we only consider unitary extension of contraction on ΠK associated with

its triangle model.

Theorem 2.1. Let T be a contraction on ΠK and its triangle model as in (1.3). Then

the general form of its unitary extension (U,H1,H2) is

U =

Z
N
P
Z∗

H2


S F G B A′

TN T1 C E′

TP D H ′

S∗−1 0
0 X ′ Q′ M ′ L′


Z
N
P
Z∗

H1

(2.1)

where

U0 =
N
P
H2

TN T1 E′

TP H ′

X ′ Q′ L′

 N
P
H1

(2.2)

and U0 is a unitary extension of T0 =

[
TN T1

TP

]
. And so the general solutions of E′,H ′, L′,

N ′ and X ′ are (1.6)-(1.10) of Theorem 1.1. Moreover,

M ′ = V0(ReQ)1/2, (2.3)
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A′ = SC∗[−T1T
∗
P (I − TPT

∗
P )

−1/2U∗
2 + V (R2 − I)(I −K0K

∗
0 )

1/2V ∗
1

− SD∗(I − TPT
∗
P )

1/2U∗
2

+ S(ReQ)1/2V ∗
6 [U4RK0 + V5(I −K∗

0K0)
1/2]T ∗

PU
∗
2

− S(ReQ)1/2V ∗
6 [U4R(I −K0K

∗
0 )

1/2 − V5K
∗
0 ]V

∗
1

− S(ReQ)1/2V ∗
6 W, (2.4)

where V1, U2, U4, V5,W are as in Theorem 1.1, and V6 satisfies the following form

V6 = V
(0)
6 + V

(1)
6 , (2.5)

V
(0)
6 x = K ′x+ V0(I −K ′K ′∗)1/2x for any x ∈ R(K) (2.6)

where V
(1)
6 is a metric-preserving operator from R(ReQ) ⊖ R(K) to (R(U4) ⊕ R(V5))

⊥ ∩
(V

(0)
6 )⊥, K ′ = KU∗

4 + KV ∗
5 , K(n + p) = K1n + K2p for any n ∈ R((R2 − I)1/2), p ∈

R((I − T ∗
PTP )1/2) and V0 is a metric-preserving operator from R(I−K0K

∗
0 )

1/2 to (R(U4)⊕
R(V5))

⊥.

Proof. Let unitary extension of T be

U =

Z
N
P
Z∗

H2


S F G B A′

TN T1 C E′

TP D H ′

S∗−1 J ′

Y ′ X ′ Q′ M ′ L′


Z
N
P
Z∗

H1

, (2.7)

U† =

Z
N
P
Z∗

H1


S−1 −C∗ D∗ B∗ M ′∗

T ∗
N 0 −F ∗ −X∗

−T ∗
1 T ∗

P G∗ Q′∗

S∗ Y ′∗

J ′∗ −E′∗ H ′∗ A′∗ L′∗


Z
N
P
Z∗

H2

. (2.8)

The equation U†U = I is equivalent to the following five series of operator equations:

(1)



I +M ′∗Y ′ = I,

−X ′∗Y ′ = 0,

Q′∗Y ′ = 0,

Y ′∗Y ′ = 0,

L′∗Y ′ = 0;

(2)



S−1F − C∗TN +M ′∗X ′ = 0,

T ∗
NTN −X ′∗X ′ = I,

−T ∗
1 TN +Q′∗X ′ = 0,

Y ′∗X ′ = 0,

J ′∗F − E′∗TN + L′∗X ′ = 0;

(3)



S−1G− C∗T1 +D∗TP +M ′∗Q′ = 0,

T ∗
NT1 −X ′∗Q′ = 0,

−T ∗
1 T1 + T ∗

PTP +Q′∗Q′ = I,

Y ′∗Q′ = 0,

J ′∗G− E′∗T1 +H ′∗TP + L′∗Q′ = 0;
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(4)



S−1B − C∗C +D∗D +B∗S−1 +M ′∗M ′ = 0,

T ∗
NC − F ∗S∗−1 −X ′∗M ′ = 0,

−T ∗
1C + T ∗

PD +G∗S∗−1 +Q′∗M ′ = 0,

I + Y ′∗M ′ = I,

J ′∗B − E′∗C +H ′∗D +A′∗S∗−1 + L′∗M ′ = 0;

(5)



S−1A′ − C∗E′ +D∗H ′ +B∗J ′ +M ′∗L′ = 0,

T ∗
NE′ − F ∗J ′ −X ′∗L′ = 0,

−T ∗
1E

′ + T ∗
PH

′ +G∗J ′ +Q′∗L′ = 0,

S∗J ′ + Y ′∗L′ = 0,

J ′∗A′ − E′∗E′ +H ′∗H ′ +A′∗J ′ + L′∗L′ = I.
And UU† = I is equivalent to the following five series of operator equations:

(1′)



I +A′J ′∗ = I,

E′J ′∗ = 0,

H ′J ′∗ = 0,

J ′J ′∗ = 0,

L′J ′∗ = 0;

(2′)



−SC∗ + FT ∗
N −GT ∗

1 −A′E′∗ = 0,

T ∗
NT ∗

N − T1T
∗
1 − E′E′∗ = I,

−TPT
∗
1 −H ′E′∗ = 0,

−J ′E′∗ = 0,

−Y ′C∗ +X ′T ∗
N −Q′T ∗

1 − L′E′∗ = 0;

(3′)



SD∗ +GT ∗
P +A′H ′∗ = 0,

T1T
∗
P + E′H ′∗ = 0,

TPT
∗
P +H ′H ′∗ = I,

J ′H ′∗ = 0,

Y ′D∗ +Q′T ∗
P + L′H ′∗ = 0;

(4′)



SB∗ − FF ∗ +GG∗ +BS∗ +A′A′∗ = 0,

−TNF ∗ + T1G
∗ + CS∗ + E′A′∗ = 0,

TPG
∗ +DS∗ +H ′A′∗ = 0,

I + J ′A′∗ = I,

Y ′B∗ −X ′F ∗ +Q′G∗ +M ′S∗ + L′A′∗ = 0;

(5′)



SM ′∗ − FX ′∗ +GQ′∗ +BY ′∗ +A′L′∗ = 0,

−TNX ′∗ + T1Q
′∗ + CY ′∗ + E′L′∗ = 0,

TPQ
′∗ +DY ′∗ +H ′L′∗ = 0,

S∗−1Y ′∗ + J ′L′∗ = 0,

Y ′M ′∗ −X ′X ′∗ +Q′Q′∗ +M ′Y ′∗ + L′L′∗ = I.
From above ten series of operator equations we have

Y ′ = 0, (2.9)

J ′ = 0. (2.10)

And by observing and arranging these equations we get two series of twenty equations at
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last:

(L)



T ∗
NTN −X∗X = I,

T ∗
PTP − T ∗

1 T1 +Q′∗Q′ = I,

−E′∗E′ +H ′∗H ′ + L′∗L′ = I,

T ∗
NT1 −X ′∗Q′ = 0,

T ∗
NE′ −X ′∗L′ = 0,

T ∗
PH

′ − T ∗
1E

′ +Q′∗L′ = 0,

S−1F − C∗TN +M ′∗X ′ = 0,

S−1G− C∗T1 +D∗TP +M ′∗Q′ = 0,

S−1B − C∗C +D∗D +B∗S∗−1 +M ′∗M ′ = 0,

S−1A′ − C∗E′ +D∗H ′ +M ′∗L′ = 0;

(2.11-2.20)

(R)



TNT ∗
N − T1T

∗
1 − E′E′∗ = I,

TPT
∗
P +H ′H ′∗ = I,

−X ′X ′∗ +Q′Q′∗ + L′L′∗ = I,

T1T
∗
P + E′H ′∗ = 0,

TNX ′∗ − T1Q
′∗ − E′L′ = 0,

TPQ
′∗ +H ′L′∗ = 0,

SC∗ − FT ∗
N +GT ∗

1 +A′E′∗ = 0,

SD∗ +GT ∗
P +A′H ′∗ = 0,

SB∗ − FF ∗ +GG∗ +BS∗ +A′A′∗ = 0,

SM ′∗ − FX ′∗ +GQ′∗ +A′L′∗ = 0.

(2.11’-1.20’)

The equations (L) are equivalent to the equations (1)-(5) and (R) are equivalent to (1’)-(5’).

(2.11)-(2.16) and (2.11’)-(2.16’) are equivalent to U†
0U0 = I and U0U

†
0 = I (see 2.2). Then

the general solutions of E′,H ′, L′, Q′ and X ′ are the same as in Theorem 1.1. We only find

the general solutions of M ′, A′ satisfying (2.17)-(2.20) and (2.17’)-(2.20’).

In the following we reason (2.17’)-(2.20’) from (2.11)-(2.20) and (2.11’)-(2.16’). From

(2.17)-(2.19) we have

F = SC∗TN − SM ′∗X ′, (2.21)

G = SC∗T1 − SD∗TP − SM ′∗Q′, (2.22)

A′ = SC∗E′ − SD∗H ′ − SM ′∗L′. (2.23)

We substitute (2.21)-(2.23) in the left sides of (2.17’)-(2.20’).

The left side of (2.17′)

= SC∗ − (SC∗TN − SM ′∗X ′)T ∗
N + (SC∗T1 − SD∗TP − SM ′∗Q′)T ∗

1

+ (SC∗E′ − SD∗H ′ − SM ′∗L′)E′∗

= SC∗(I − TNT ∗
N + T1T

∗
1 + E′E′∗)− SM∗(−X ′T ∗

N +Q′T ∗
1 + L′E′∗)

− SD∗(TPT
∗
1 +H ′E′∗)

= 0
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(reasoned from (2.11’), (2.14’) and (2.15’)).

The left side of (2.18′)

= SD∗ + (SC∗T1 − SD∗TP − SM ′∗Q′)T ∗
P + (SC∗E′ − SD∗H ′ − SM ′∗L′)H ′∗

= SD∗(I − TPT
∗
P −H ′H ′∗) + SC∗(T1T

∗
P + E′H ′∗)− SM ′∗(Q′T ∗

P + L′H ′∗)

= 0

(reasoned from (2.12’), (2.14’) and (2.16’)).

The left side of (2.19′)

= SB∗ +BS∗ − (SC∗TN − SM ′∗X ′)(T ∗
NCS∗ −X ′∗M ′S∗)

+ (SC∗T1 − SD∗TP − SM ′∗Q′)(T ∗
1CS − T ∗

PDS∗ −Q′∗M ′S∗)

+ (SC∗E′ − SD∗H ′ − SM ′∗L′)(E′∗CS∗ −H ′∗DS∗ − L′∗M ′S∗)

= S[S−1B +B∗S∗−1 +D∗(TPT
∗
P +H ′H ′∗)D − C∗(TNT ∗

N − T1T
∗
1 − E′E′∗)C

+M ′∗(−X ′X ′∗ +Q′Q′∗+ L′L′∗)M ′]S∗

+ SC∗(TNX∗ − T1Q
′∗ − E′L′∗)M ′S − SC∗(T1T

∗
P + E′H ′∗)DS∗

+ SM ′∗(X ′T ∗
N −Q′T ∗

1 − L′E′∗)CS∗ + SM ′∗(Q′T ∗
P + L′H ′∗)DS∗

− SD∗(TPT
∗
1 +H ′E′∗)CS∗ + SD∗(TPQ

′∗ +H ′L′∗)M ′S∗

(reasoned from (2.11’)-(2.16’))

= S(S−1B +B∗B∗−1 +D∗D − C∗C +M ′∗M ′)S∗ = 0 (reasoned from (2.19)).

The left side of (2.20′)

= SM ′∗ − (SC∗TN − SM ′∗S′)X ′∗

+ (SC∗Y1 − SD∗TP − SM ′∗Q′)Q′∗ + (SC∗E′ + SD∗H ′ − SM ′∗L′)L′∗

= SM ′∗(I +X ′X ′∗ −Q′Q′∗ − L′L′∗)− SC∗(TNX ′∗ − T1Q
′∗ − E′L′∗)

− SD∗ − SD∗(TPQ
′∗ +H ′L′∗)

= 0

(reasoned from (2.13’), (2.15’) and (2.16’)). Then the ten series of operator equations (1)-(5)

and (1’)-(5’) are equivalent to the following two series of equations (a) and (b):

(a) U0 is a unitary extension of T0.

(b) equations (2.17)-(2.10).

The general solutions of (a) are given in Theroem 1.1 and we only find the general solutions

of A′ and M ′ satisfying (2.17)-(2.20). Substituting B = (1/2)S(C∗C −D∗D−Q) in (2.19),

we have M ′∗M ′ = ReQ, where ReQ = (Q+Q∗)/2. As ReQ ≥ 0 by Theroem 1.3 there exists

a metric-preserving operator V6 from (R(ReQ), ⟨·, ·⟩) to H2 such that M ′ = V6(ReQ)1/2.

Then we must determine R(V6) such that V6 satisfies (2.17) and (2.18).

We substitute M ′ = V6(ReQ)1/2 in (2.17) and (2.18) and get the following equations:

(S−1F − C∗TN ) + (ReQ)1/2V ∗
6 U4(R

2 − I)1/2 = 0, (2.24)

(S−1G− C∗T1 +D∗TP ) + (ReQ)1/2V ∗
6 U4(R

2 − I)1/2RV ∗T1

+ (ReQ)1/2V ∗
6 V5(I −K∗

0K0)
1/2(I − T ∗

PTP )
1/2 = 0. (2.25)
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In the following we solve equations (2.24) and (2.25). From (2.25) we see that (2.24)

is equivalent to V ∗
6 U4 = K1. Substitute the expression of K1 in (2.25). Then (2.25) is

equivalent to V ∗
6 V5 = K2. Let K(n + p) = K1n + K2p for any n ∈ R(R2 − I) and p ∈

R((I −K∗
0K0)1/2(I − T ∗

PTP )1/2). K is a contractive operator from

(R(R2 − I)⊕R((I −K∗
0K0)1/2(I − T ∗

PTP )1/2,−(·, ·)N ⊕ (·, ·)P )

onto (R(K), ⟨·, ·⟩) where R(K) ⊂ Z∗,K ′ = KU∗
4 + KV ∗

5 is a contractive operator from

R(U4)⊕R(U5) onto (R(K), ⟨·, ·⟩). Let V ′(n+ p) = U4n+ V5p for any n ∈ R(R2 − I) and

p ∈ R((I −K∗
0K0)1/2(I − T ∗

PTP )1/2. Then V ′ is a metric-preserving operator from

R(R2 − I)⊕R((I −K∗
0K0)1/2(I − T ∗

PTP )1/2

onto R(U4) ⊕ R(V5). From Lemma 1.1 we know that there exists V
(0)
5 from R(K) to

(R(U4) ⊕R(V5)) ⊕ (R(U4) ⊕R(V5))
⊥ and V

(0)
6 x = K ′∗x + V0(I −K ′J ′∗)1/2x, x ∈ R(K),

V6 = V
(0)
6 + V

(1)
6 , where V

(1)
6 is a metric-preserving operator from R(ReQ)⊖R(K0) to

(R(U4)⊕R(V5))
⊥ ∩R(V

(0)
6 )⊥

and V6 is the general solution of K = V ∗
6 V

′, which is equivalent to (2.14) and (2.15).

Theorem 2.1 is proved.

§3. The General Form of Unitary Dilation of Contraction
on ΠKΠKΠK Associated With Its Triangle Model and a

Theorem About the Minimality of Unitary Dilation

Theorem 3.1. Let T be a contraction of Pontryagin space ΠK and U be a unitary

dilation of T . Then all the general solutions are as in Theorem 2.1 in the special case that

H = H1 = H2 and H must be the following form

H =

[
∞
⊕
k=1

W ∗k(R(U2)⊕R(V1))

]
⊕[R(U2)⊕R(V1))]

⊕ [R(U4)⊕R(V5)]⊕
[

∞
⊕
k=1

W k(R(U4)⊕R(V5))

]
⊕H0, (3.1)

where W0, which is the restriction of W on H0, is a unitary operator. And R(V6) must

satisfy the following conditions:

(1) R(V6)⊥
∞
⊕
k=0

W ∗K(R(U2)⊕R(V1)),

R(V6)⊥
∞
⊕
k=1

WK(R(U4)⊕R(V5)),

(2) R(V6)⊥W kR(V6), k = 1, 2, · · · .
Proof. Obviously Tn

0 = PUn
0 |N⊕P , for n = 1, 2, · · · , where P is an orthogonal projection

from ΠK⊕H onto N⊕P and U0 is a unitary operator on N⊕P ⊕H. We know that H must

be the form (3.1) by Theorem 1.2 and all the general solutions are the same as in Theorem

2.1. From equation T 2 = PΠK
U2|ΠK we reason the following equalities:

A′X ′ = 0, (3.2)

A′Q′ = 0, (3.3)
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A′M ′ = 0, (3.4)

E′M ′ = 0, (3.5)

H ′M ′ = 0. (3.6)

As A′ = SC∗E′ − SD∗H ′ − SM ′∗L′, the equality (3.2)-(3.4) are equivalent to the following

(3.7)-(3.9):

M ′∗L′X ′ = 0, (3.7)

M ′∗L′Q′ = 0, (3.8)

M ′∗L′M ′ = 0. (3.9)

We substitute (1.6)-(1.10) and M ′ = V6(ReQ)1/2 in (3.5), (3.6) and (3.7)-(3.9) and get the

following equations:

[−T1T
∗
P (I − TPT

∗
P )

−1/2U∗
2 + V (R2 − I)1/2(I −K0K

∗
0 )

1/2V ∗
1 ]V6(ReQ)1/2 = 0, (3.10)

(I − TPT
∗
P )

1/2U∗
2V6(ReQ)1/2 = 0, (3.11)

(ReQ1/2V ∗
6 [−(U4RK0 + V5(I −K∗

0K0)
1/2)T ∗

PU
∗
2

+ (U4R(I −K0K
∗
0 )

1/2 − V5K
∗
0 )V

∗
1 +W ]U4(R

2 − I)1/2 = 0, (3.12)

(ReQ1/2V ∗
6 [−(U4RK0 + V5(I −K∗

0K0)
1/2)T ∗

PU
∗
2

+ (U4R(I −K0K
∗
0 )

1/2 − V5K
∗
0 )V

∗
1 +W ]U4(R

2 − I)−1/2RV ∗T1

+ V5(I −K∗
0K0)

1/2(I − T ∗
PTP )

1/2 = 0, (3.13)

(ReQ1/2V ∗
6 [−(U4RK0 + V5(I −K∗

0K0)
1/2)T ∗

PU
∗
2

+ (U4R(I −K0K
∗
0 )

1/2 − V5K
∗
0 )V

∗
1 +W ]V6(ReQ)1/2 = 0. (3.14)

Then the equations (3.10)-(3.14) are equivalent to the following five equations:

U∗
2V6 = 0, (3.15)

V ∗
1 V6 = 0, (3.16)

V ∗
6 WV4 = 0, (3.17)

V ∗
6 WV5 = 0, (3.18)

V ∗
6 WV6 = 0. (3.19)

So R(V6)⊥R(R2) ⊕ R(V1), R(V6)⊥W (R(U4) ⊕ R(V5)), and R(V6)⊥WR(V6). As Tn =

PΠK
Un|ΠK for n = 3, 4, · · · by induction, similar to the discussion above, we have

E′L′nM ′ = 0, H ′L′nM ′ = 0, M ′∗L′n+1X ′ = 0, M ′∗L′n+1Q′ = 0, M ′∗L′n+1M ′ = 0

for n = 1, 2, · · · , i.e.,

V ∗
2 W

nV6 = 0, V ∗
1 W

nV6 = 0, V ∗
6 W

n+1U4 = 0, V ∗
6 W

n+1V5 = 0V ∗
6 W

n+1V6 = 0
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for n = 1, 2, · · · . Then

R(V6)⊥W ∗n(R(U2)⊕R(V1)), R(V6)⊥Wn+1(R(U4)⊕R(V5)),

and R(V6)⊥Wn+1R(V6) for n = 0, 1, 2, · · · . The theorem is proved.

Let T = {S, TN , TP , T1, C,D, F,G,B} be the triangle model of a contraction T on ΠK

associated with a standard decomposition ΠK = N ⊕ {Z+̇Z∗} ⊕ P and U be a minimal

dilation of T , i.e., Tn = PΠK
Un|ΠK

for n = 1, 2, · · · and

C.L.S. {(U − z)−1ΠK |z ∈ ρ(U)} = ΠK ⊕H.

Then such a minimal unitary dilation is unique to unitary equivalence, and suppose U0 =

P ′U |N⊕P⊕H where P ′ is an orthogonal projection from ΠK ⊕ H onto N ⊕ P ⊕ H, and

T0 =

[
TN T1

TP

]
. Then according to Theorem 3.1, T0 is a contraction of N ⊕ P , and U0 is

a unitary dilation of T0. However U0 does not have to be a minimal unitary dilation of T0.

In the following we give a criterion to judge whether U0 is a minimal unitary dilation of T0.

Corollary 3.1. Let U be the minimal unitary dilation of T . Then U0 is the minimal

unitary dilation of T0 too if and only if K∗ is a preserving-metric operator from

(R(ReQ), ⟨·, ·⟩) to (R((R2 − I)1/2 ⊕R((I − T ∗
PTP )1/2),−(·, ·)N ⊕ (·, ·)p).

Proof. H0 = 0 is equivalent to that U0 is the minimal unitary dilation of T0 too.

By Theorem 3.1 and Theorem 2.1 we see that K ′∗ is a preserving-metric operator from

(R(K), ⟨·, ·⟩) to R(U4)⊕R(V5) and R(K) = R(ReQ). Then the corollary is proved.

The following corollary is easily deduced from Corrollary 3.1.

Corollary 3.2. If U0 is the minimal unitary dilation of T0 too, then

dimR(ReQ) ≤ dimR(R2 − I) + dK , (3.20)

where dK is the defect number of K0, i.e., dK = dimR((I −K∗
0K0)1/2).

Obviously we know U is the minimal unitary dilation of T it when U0 is the minimal

unitary dilation of T0. The following corollary is in [9]. Here it is a simple corollary of our

result.

Corollary 3.3. If T is an isometric operator on ΠK , then U is the minimal unitary

dilation of T if and only if U0 is the minimal unitary dilation of T0.

Proof. From the triangle model of isometric operator T we have ReQ = 0, S−1F −
C∗TN = 0 and S−1G − C∗T1 + D∗TP = 0 (T1 = 0 here). So K1 = 0 and K2 = 0 (see

Theorem 1.6). Then K = 0. K∗ is satisfied with the condition of Corollary 3.1. The

corollary is proved.
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