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Abstract

This paper studies the dynamics of the analytic family z+1/2+b and describes the topology
of the parameter space, structural stability and J-stability. The mapping class group of almost
all maps of the above family is determined.
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§0. Introduction

Let f:C — T be a rational function with degree greater than one. f™ denotes the
n-th iterate of f. z is a stable point of f if there exists a neighborhood U, z € U, such
that F = {f"|U} is a normal family. The stable set Fi(f) is the set of stable points of f.
Tts complement, J(f), is called the Julia set of f. J(f) is perfect, completely invariant and
never empty. ' » |

A periodic point of.f is a point z for which there exists an integer n such that f" (2) = 2.
The eigenvalue A(2) is defined by '

Az) = (f") (2).
The cycle is called repelling if [A(2)| > 1, neutral if |A(z)| = 1, attracting if 0 < A(Z)| <1
and superattracting if A\(z) = 0. . ,

Fatoul!l and Julial?! proved that the Julia set J (f) is the closure of its repélling periodic
points.

A connected component U of the stable set F(f) is called periodic if there exists an
integer n such that f*(U) = U. A component U of F(f) is eventually periodic if there
is-an integer m such that f™(U) is periodic. Sullivan’s finiteness theorem says that every
component of the stable set is eventually periodic[3]. His proof is based on the techniques |
of Teichmuller theory. Different proofs of the theorem are given by L. Bers and Lu Yinian
independently (451, |

The periodic stable components are completely classified: (1) attracting (superattract-
ing), (2) parabolic, (3) Siegel disk, (4) Herman ring!®71, '
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For quadratic polynomials 2% + ¢, the Mandelbrot set
M ={ce,c® +c,(+c)® +c, -+ ,» 00}

is well understood primarily due to the pioneering work of A. Douady, J. H. Hubbard and
D. Sullivan in the eighties!8!. For general references on complex analytic dynamics, see [9],
[10], [11] and [12].

The outline of this paper is as follows.

In section one, we describe the topology of the parameter space of the family 2z +1/z+b.

In section two, we consider the structural stability and the J-stability and prove that
Julia sets are null measure for some quadratic rational maps.

We determine the mapping class groups for almost all maps of the family z+1/2z+ b in
section three.

§1. The Parameter Space of :+: /- +»

In [13], L. Goldberg and L: Keen gave a description of the topology of the family A(z +

- 1/2+b), where |A\| > 1 and b € C. _

Combining the main theorem in [14] with the ideas and methods of [13], we discuss the
analytic family 2+ 1/z + b in this section. -

First of all, we state some. well-known facts about parabolic fixed point which revealed
by Fatou and Camachol+],

We consider rational functions

f(2) = Az + az2? +a323 R

which are defined and holomorphic in some neighborhood of the origin. We suppose that
the multiplier A at the fixed point is a root of unity, A = 1.

The following topological result belongs to C. Camacol*%l,

Theorem. Let f(2) be as above. Then either f? = id. or there is a local homeomorphism
h and an integer k > 1 such that h(0) =0 and

hofo h"l(z) = Az(1 + 2F").

Remark. h can be chosen to be quasiconformal, but cannot be conformal !
In this section, we consider the special case A =1, ‘

f(2)=z+az"t +---, a#0.

Definition. A connected.open setU , with compact closure U contained in a small neigh-

borhood of the origin, is called an attracting petal for f at the origin if
F@) cUu{o} and () f*@O) ={0}.
, k>0 :

Similarly, U’ is a repelling petal for f if U' is an attracting petal for f -1

Fatou Flower Theorem. If the origin is a fized point of

f)=z+az™ +.-- ,a#0,

with n+1 >2, then there exist n disjoint attracting petals U; and n disjoint repelling petals,
which together with the origin itself form a neighborhood of the origin. These petals alternate
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with each other, as illustrated in Figure 1, so that each U; intersects only U} and Uj_(
where U} is to be identified with Uy,). '

U

Us

Ui

Figure 1

Each attracting petal U; determines a parabolic basin of attraction Q;, consists of all zp
for which the orbit zg — 21 = f(20) — +++ — 2 = [™(20) — -+ eventually lands in
U;. §4,-++,8, are disjoint open sets. ”

Now we restrict our interest in the parameter space of the family fo(2) = z+1/z+b
with critical points £1. Ajy(0o) is the parabolic basin corresponding to oo. It is PSL(2,¢) ‘
conjugate to the form (1/z+z+b)™' = z(1 — bz + (b—1)22 +-+-) in the neighborhood of
the origin. There exist two attractions for b = 0, i.e., Ao (o) has two components. There
exists only one attraction for b # 0, Ap(oo) is connected. The main theorem of [14] implies
that J(fy) is connected iff Ap(co) contains only one critical point for b # 0, and J(fo) is
connected. ' '

Set U = {b € ¢|J(f») is a Cantor set } and O = {b € c| there are integers m, n > 0 so
that fi*(4+1) = f(—1)}, the set of orbit relations.

O C U and the Mandelbrot set M, = {b|J(fs) is connected}= ¢ — U; U contains the
imaginary-{0}.

It is easy to check that M, C {b=1u+iv| -2 < u,v < 2} and [-2,2] C M.

There exists a conformal map ¢, which is defined in some half-plane such that ¢p 0 fpo
¢;1(z) = z +1, where ¢, is analytic on pl12l, , ‘

" The curve of Repy=constant is the leaf of foliation whose singularities occur precisely
along the backward orbits of +1 and —1. There are two possibilities for the structure of the
~ foliation:

(1) Both critical points lie on the same leaf of the foliation. This occurs exactly when b
is on the y axis.

(2 f» has a preferred critical point. In this case, there is a distinguished leaf of the
foliation which is a figure eight curve and has a preferred critical point as its cut point.

The principal loop of o passes throﬁgh the parabolic fixed point oo, and the secbndary
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loop passes through the pole 0. The region bounded by the principal loop is the largest
dynamically defined region on which ¢ is a conjugacy.

The critical points +1 and —1 are preferred in the right and left half b—planes respectively
(R and L).

If b€ RN O, it has the form fP*(+1) = f*(—~1),m > n.

Let Q(z) = 2% + 2. The map @ has a single parabolic fixed point at 0 with multiplier 1,
a critical point at ¢y = —1/2 and a critical value wy = Q(c4+) = —1/4. The filled-in Julia
set K is connected and locally connected(8!. There is an analytic map

@ : int(K) — ¢

which conjugates Q(2) to w — w + 1 for z near 0.

As for fb, we denote by 7o the preferred component of the leaf containing cy. 7o is a
figure eight curve whose principal loop passes through 0, and secondary loop passes through
the preimage —1 for 0.

Definition. A generalized figure eight curve in C is a union of simple closed curves
consists of '

(i) a primary loop which separates the sphere into two disks;

(i) n(= 1) secondary loops, each of which is attached to the primary loop at a unique
point and.all of which are contained in the same disk.

Let v, = Q@ "(v0). Then =, is a generalized figure eight curve with 2" secondary loops
‘and v, C A(n+1)UQ~"(0) for all n. Each B(n) contains a single point of the set @—"(0).
A = Q(v0) C A(70) U {0} is a disk (see Figures 2(a) and 2(b)).

B(ﬁ +1) B(n+1) ,

Cy

Yo

B(n+1) B(n+1)

Figure 2.2 Figure 2.b
Lemma 1.1. There is an injective holomorphic map

E:R~— M, — int(K) —

which has the followmg properties:
i) If f(vy) = fP(v=),v4 = fo(+1) and v_ = fi(—1), then E(b) = w satisfies

Q"(wy) = Qm(w—_),w+ = £b,(’U+) and w_ = é'b('u__) =w

ii) As b — OR,w = E(b) — OA.
Proof. We define the map F in the following way.
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Since f](c0) = Q'(0) = 1, there is a unique univalent analytic function &, from a neighbor-
hood of 0 in int(K) which conjugates fj to and is normalized so that &(+1) = —1/2 = c,.

Since b € R — M,, the map &, can be analytically continued in the region bounded by the
loop of the leaf foliation of v which passes through oo, and we define E(b) = &,(v—). Since
+1 is preferred for b € R, &,(v_) lies outside of A.- The conjugacies depend holomorphically
on b, so that F is holomorphic. By the construction, & satisfies properties i) and ii).

Furthermore, E is injective. If & (v_ (b)) = &y (v-(b')), the map & 1o ¢, conjugates fp to
fw in a neighborhood of co in. Ap(co). ,

Lift £, 0 &|Us to f~(Up) so that &t 0 & sends v_(b) to v_(b'), etc.

& ! 6 &, can be extended to a conformal conjugacy of fy to fir on the stable set Ap(00).
From the proof of Lemma 5 in [14], we know that 15 ¢, is continuous on €. For b €
U =c — M,, the Julia set J(fs) is null measure. We should prove this fact in'section 2. It
follows from a theorem of [16] that the map &/ o0&, extends further to a conformal conjugacy
between f, and fir on the whole sphere C. The assumption b,b’ € R implies that b =1b'.

The following lemma proved in [13] will be used repeatedly.

Lemma 1.2. Suppose that S is a Riemann surface homeomorphic to ¢ —n disks and let
wy,w- € S. There is ezactly one isomorphism class of degree 2 ramified simply over w
and w_. There projections are normal, and the total space is homeomorphic to ¢ —2n disks.

Now we state the main result in this section, which is similar to the generic case in [13].

Theorem 1.1. The map E : R — M, — int(K) — A is a homeomorphism.

Proof. We construct an inverse to the map using the same method as that used in [13].

For any fixed point w_ € int(K)— A, there are two distinct elements of @ 1(w-). Choose
one and label it c_. Let N be the smallest integer such that w_ € A(¥n) U B(7yn). Choose
a primary loop 8 of a leaf of foliation such that this simple 'analytic curve bounds a disk
Qo which contains v, wy,ci and w_ but not c_ (see Figure 3). '

Figure 3
Lemma 1.2 implies that there exists a holomorphic degree 2 covering 7 : Q — Q
ramified over w, and w_ with ©; doubly connected.
Since 2, contains one critical point c;,Q(0) is a disk and Q : o — Q) is a 2:1
covering ramified over w4 (w— is not in Q(£20))-
Set 2, = n71(Q(Q)). Then 1 : Q) — Q(Qo) is also a 2:1 covering ramified over w,.
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There exists a homeomorphism 4 : Qg — £} satisfying m; 043 = Q.

Define Q1 = i3 o 71y :— Q) C Q3. @ is a holomorphic endomorphism which is a
branched covering of its image ramified over 41 (w,.) and %;(w-). The point 4;(0) is a fixed
point of ¢}y which lies on the boundary of Q;. Q;/ ~ Q1 is a sphere with four or three
punctures, where ~ @ is the equivalent relation of grand orbit for Q.

We proceed inductively. The hypotheses are:

(i) For 0 < j < m, Q; = — 27 disks.

(ii) For 0 < j < m, Q; : Q; — §; is a holomorphic endomorphlsm which is a 2:1 branched
covering of its image. Each @ has a parabolic fixed point 2,,(0) = 4, 0%p—10- 021(0) € 0Q,.

(iii) For 0 < j < n — 1, there is a holomorphic embedding ;.1 : ©; — ;1.1 satisfying
Qj+104j4+1 = ij410Q;. Lemma 1.2 gives a planar Riemann surface (2,11 homeomorphic to
¢ — 2™+ disks and a 2:1 normal branching covering

Tnt1 : Qnpr — OQn
ramified over w4 (n) =iy 04y_30---04y(wy) and w_(n) =iy 0ig_g0---0iz(w-). Qu(Qn)
is homeomorphic to ¢ — 2"~! disks.

Set Q741 = '”;-ll-l(Qn(Qn))' .

Both mpt1 @ Q1 — Qn(Q) and Qn : Qn — Qn(2y) are 2:1 covering projections

ramified over w4 (n) and w_(n).
Therefore, the uniqueness of Lemma 1.2 implies that there is a holomorphic 1somorphlsm

int1 : Qp — Qn+1 satisfying 741 0 tpt1 = Qn on Oy,
Defin€ Qn+1 : Qnt1 — Qg1 bY Qni1 = ént1 0 Tntr. Then
Qnt1 0 fnt1 = Int1 © Tntl © bng1 = Gnt1 © Qn.
@n+1 is a holomorphic endomorphism with parabolic fixed point 2p41(0) = inq1 0 2,(0) €
0 41-
We complete the inductive step.
The direct limit Q. of the system (£2,,%,) is the quotient of the union ngﬂﬂn by all the

identifications of the form z ~ i,().
Qo is a Riemann surface of infinite type whose fundamental group is given by

71(Roo) = nango((Zn)* 2y (Qn) - 71 (Qnt1)).
A two fold self-covering
Qoo : oo — Qo

is defined by
Qoo([2]) = [@n(2)], 2 € Q.

The map Qo is holomorphic and ramified over [wy] and [w-] and has a parabolic fixed
pomt at [0].
Doo/ ~ Qoo ™My~ Qpfp/~vQa Sphere with four or three marked points.
Consider first that the grand orbits of [w.] and [w_] are disjoint. Qoo/ ~ Qoo is a sphere
with four marked points.
Let O, be the region obtained by deleting from ., the grand orbits of [w,] and ['w_]
QF./ ~ Qoo is a sphere with four punctures.
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Suppose that a fixed b # 0 lies on the y axis, and the quotient space Ay(cc)/ ~ fp of the
stable set Ay(co) of f by the grand orbit equivalent relation is a sphere with four punctures,
where A}(0o) is the region Ay(oo) — { grand orbits of +1 and —1}.

Let f* : Af(c0)/ ~ fo — Q¥/ ~ Qoo be a quasiconformal homeomorphism with
Beltrami coefficient p*. Lifting f* to A}(co0), we get a quasiconformal homeomorphism f
from A} (oco) to %, with Beltrami coefficient u which is a conjugacy between fp| A (00) and
Qoolqz, , where y is compatible with f;, that is,

w(fo(2)) f5(2)] fy(2) = u(2), 2 € Aj(00).
Extend p so that x4 =0 on € — A} (c0).

There is a unique quasiconformal mapping g : ¢ — ¢ such that go frog
function of the form fy(,,_) for a unique b(w-) € R — M.

It is easy to check that the correspondence w.. — b(w-) gives an inverse of E.

If the grand orbits of [wy] and [w..] are the same, then %,/ ~ Qo is a sphere with three
punctures. The above construction defines a unique b(w_) € O.

Let H(Mj,) denote the set of such b-values that f, has an attracting cycle From the main
theorem of [14], it is clear that H(M,) is contained in M,. Applying the implicit function
theorem we see that H(M,) is an open set. A connected component W of H(Mp) is called
a hyperbolic component of M. It is not known whether H(Mp) equals the interior of M.

We prove the following theorem by means of the method of Sullivan.

Theorem 1.2. For each hyperbolic component W of My, the multiplier pw induces a
conformal isomorphz’sm'

—1 is a rational

pw W — D

which can be extended to a homeomorphism of W onto D.
Proof. For b€ W C R, [, has an attracting cycle {2(b), fo(2(0)),- -, FF=(0))}
pw () = (f§)' (2(6)).

For any y € D, let g, be the mapping z — (2 + ) /(1 —l—ﬁz) It is a proper holomorphic
mapping from D to D with degree 2 and g, (0) = 0, ,,(0) =

Suppose b € W. Let po = pw (b) and U be the connected component of int(Kp) contamlng
—1, where Kp = C — Ap(00).

There exists a homeomorphism ¢ from U to D such that ¢ o fEop
Suppose o] < 7 < 1, put B = D,and A, = q;l(B) for 4 € D. For |p| < r, it is easy to
check that B C int(A,) and B = D, contains the critical values of g,. By Riemann-Hurwicz
formula, A, is simply connected. Set £ = 0~ 1(Ay,). We can construct a quasiconformal
mapping 1, from E to A, for each y € D, such that ¢u o fb = g, 0 ¢, on the boundary
ofE and ,, = ¢. For each y € D,, we define g, : cC—Cbyg,="r onC — E and

zbu o0 gy o, on E. We define an almost complex structure o, on E by o, = 9,00,
Where oo is the standard complex structure. Extend o, to the set U f "(E) = int(Kp)

-1 =g¢, :D— D.

satisfying gj0, = oy, 0y = 00 On ¢ — int(Kp). By the theorem of Ahlfors—Bers, there
exists a unique quasiconformal homeomorphism ®,, such that ®, 0 g, o @ ~1 has the form
z+1/24b(u). b(u) depends continuously on x4, and b(uo) = b and b(u) € W for 4 € D, and
pw (1)) = . p — b(u) is a continuous section of pw on Dy. Let r — 1. We conclude
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that pw : W — D is a covering with no branching point. Since D is simply connected,
pw : W — D is a conformal isomorphism. The boundary of W is a real-analytic curve
(see [8]). pw can be extended to a homeomorphism of W onto D.

Remark. For quadratic polynomials, the same result was proved by A. Douady and J.

H. Hubbard!®l. , .
Theorem 1.2 implies that each hyperbolic component has a unique b-value for which the

attracting cycle is superattracting. We call this point the center of the hyperbolic component.

A point b is called a Misiurewicz point if the orbit of the other critical point of f is
eventually periodic, but not periodic. One can prove that for any Misiurewicz point b the
Julia set J(fb) = Kb = E - Ab(oo) :

In order to understand the complexity of the boundary of M, we state a proposition as
follows.

Proposition 1.1. (1) The boundary of M, is contained in the closure of the Misiurewicz
points. :
(2) The boundary of My, is contained in the closure of the centers of hyperbolic components.

Proof. From the Montel’s theorem, it is easy to prove this proposition.

Let Wi be the subset of M), for which f, has an attracting (supera,ttractil_lg) fixed point.
fv is PSL(2, ¢ ) conjugate to a polynomial-like mapping in the sense of [17].

Theorem 1.3. For any b € Wi, the Julia set J(fy) of fy is connected and locally

connected.
Proof. S_uppose that fz(2) = 2+ 1/2+b has an attracting or superattracting fixed point

2(b). Let hy(2) = (z— 2(b))~'. Then gy(2) = hyo foohy ! is of the form A(b)z — az/c(z+c),
|A(B)| > 1 or A(b)2?+ 2. Choose a suitable simply connected open set U such that g, 1(U) is
simply connected and contained in U. g: g7'(U) — U is a polynomial-like mapping with
degree 2. By the straightening Theorem, g; is hybrid equivalent to a quadratic polynomial
g which has a parabolic fixed point. J(g) is connected and locally connected[8!. Therefore,

J(fp) is connected and locally connected.

§2. The Structural Stability and the Measures of Julia Sets

In this section, we discuss the structural stability of the analytic family
f(b,2) = fio(z2) =2+1/2+b: (c — M,) xC —C,

global stability and J-stability in the sense of [16]. Using these facts, we prove that the
measure of J(f3) is null for each b'€ ¢ — M,,.

We claim that the Julia set J(f3) is contained in the y axis for b lying on the y axis.

In fact, for A = ic, let h(z) = iz be a rotation.

g(2) =ho fyoh™(2) —z—l/z+c CER.

For any 20 € R =R U {oo}, g7*(20) € R. Then J(g) C the closure of{ Y Yo (%)} CR
( see [10] or [9]), that is, J(f,) = h(J(g)) is contained in y axis.

For b € ¢ — M, U O, the critical points-£1 of f, lie in Ay(c0) but are not in the same

grand orbit.
First of all, we prove that the set ¢ — M, U O is open.
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Proposition 2.1. The set ¢ — M, U O is open.

Proof. For any by € ¢ — M, UO and b; lying on y axis, let Ap,(00) and Ay, (c0) be the
parabolic stable regions. Then A} (c0)/ ~ f3, and Aj (c0)/ ~ fy, are homeomorphic to the
sphere with four punctured points, where ~ is the grand orbit equivalent.

There is a quasiconformal homeomorphism

h: Ag, (00)/ ~ fo — Apg(00)/ ~ foo-
Lifting h to A}, (c0), we see that h : Af (c0) — Aj (c0) is a quasiconformal homeomor-
phism satisfying ho fy, = fs,0h. Since mes(J(fs,)) = 0, h can be extended to C, conjugating
fo, t0 fo,- ’

Let u(z) = hz(2)/h.(z) be the Beltrami coefficient of h. The Ahlfors-Bers Theorem!!8]
implies that there is a unique quasiconformal homeomorphism h(z) with Beltrami coefficient
t - u(2) satisfying hy(co) = 00, hs(1) = 1, hy(—1) = =1, where [t <|| u [|7*.

Since p(z) is fy,-invariant, h; ' o fy, o by is analytic with the form z + 1 /z + b(t) which
is analytic on |¢| <|| & ||, (0) = bo and b(1) = by. It is obvious that b(t) € ¢ — Mp UO
for |¢| <|| # ||~*. By the Open Mapping Theorem, by is an interior of ¢ — Mp U O, that is, ‘
C — M, U O is an open set.

Corollary 2.1. For any b € ¢ — M, U O, the Julia set J(fy) of fv is contained in a
quasidisk and hence is null measure.

Proof. For any b € ¢ — M, U O and b; lying on the y axis, there is a quasiconformal
homeomorphism & : € — C such that ko f, = fi, 0 h. J(fs) = B~ (J(fs,)) is contained in
a quasidisk. B '

Proposition 2.2. The analytic fo(2) = 2-+1/z+b is structural stable on sets ¢ — MpUO
and W — { the center }, where W is a hyperbolic component of Mp.

Proof. From Theorem 1.2, Proposition 2.1 and Theorem C in [16], this proposition is a
straight consequence.

Proposition 2.3. Let A € D be an open annulus of infinite modulus. Then the bounded
component of ¢ — A is a point.

Proposition 2.4. The set U = {b € c|J(fs) is a Cantor set } =c — Mp is open.

Proof. From the proof of Theorem 1.1, the map E : R— M, U0 — int(K) — AU {z €
int(K)—A|Q™(z) = Q™(w..) for some m > n > 0} is conformal. For any b € RNO, there are
integers m > n > 0 such that f*(v_) = f*(v4). Then w = E(b) satisfies Q™ (w) = Q" (wy.),
m>n >0, w e int(K) — A. There is a simply connected neighborhood V' of w so that
V C int(K) —A and

(V — {w}) N {z € int(K) — A|Q™(2) = Q"(wy) for some m >n >0} =0.
E:E-YV — {w}) — V — {w} is conformal. E~*(V — {w}) is an open annulus of infinite
modulus. Proposition 2.4. implies that E~1(V — {w}) is a punctured disk and is contained
in R— M,UO. The continuity of E implies b = E~Y(w). bis an interior of R— M,,. Combine
this with Proposition 2.1, we conclude that U is an open set. ‘

Proposition 2.5. The analytic family fo(2) = 2+ 1/2+b is J-stable on the set U =
¢ — M. The measure of J(fs) is null for b€ U.

Proof. By the Theorem B in [16], the analytic family fy(2) = z + 1/2 + b is J-stable on
the set U. Moreover, if by € U, there exists a neighborhood vg in U of by and a continuous
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for m,n > 0. The Riemann surface S(f) has one component for each cycle region together
with special marked points corresponding to orbits of critical points in the regions. For the
missing detail, see [7].

Let T'(f) denote the Cartesian product of the polydisk of the Julia set and the Teichmuller
space of S(f).

In [7], D. Sullivan has proved the following theorem. .

Theorem. The Teichmuller space Teich(f) of quasiconformal deformations of a rational
map f is in canonical one to one correspondence with the complex manifold T(f).

From M(f) = Teich(f)/MCG(f) and the above theorem, it follows that MCG(f) =
T (M(f)).

For generic, shift-like quadratic rational maps, the complete presentations of the mapping
class group are given in [13].

In this section, we describe the mapping class group of the quadratic map with form

fo(z)=z+1/2+b.

Let f be a rational map, Aut(f) be the group of Moebius transformations commutmg
with f. It is a finite group.

For any fy(2) = 2+1/z+b, b # 0, it is easy to check that Aut(fb) = id. Aut(fo) = {2z, —2}.

Theorem 3.1. The mapping class group MCG(f) has no non-trival subgroup for any
bec.

Proof. MCG(fo) = m1(M(fo)) = id. Let G be a finite subgroup of MCG(fs),b # 0.
There exists a rational map g, quasiconformally conjugate to f, such that G is realized as a
subgroup of Aut(g)?!. g is PSL(2,C) conjugate to fi for some b’ € c*.

Aut(g) = Aut(fy) = Zd

Therefore, G = id.

Theorem 1.1. gives a conformal homeomorphism E between R — M,, and int(K) —

We conclude that the b's satisfying orbit relations are isolated points in ¢ — M, which
accumulate on M,. Therefore m1(C — M, U O) is an infinitely generated free group, which
is generated by

(i) one loop enclosing each orbit relation,

(ii) one loop enclosing M,,, denoted by 7.

It is certainly possible to choose these loops of (i) so that each is contained either in right
or in left half-plane. If {v,} is the set of generators for n; (R — M, U O), then {v;, —v;,70}
are generators of 7;(C — M, U O).

fbec —M,U0, M(fo) =C — M,UO;ifbe O, M(fp) is a single point.

Let W be a hyperbolic component of M,. Then M(fy) = W —{ the center } for b€ W —{
the center }; M(f3) is a single point for b being the center of W.

If fy, has an indifferent cycle of period k, we claim that M(f,) is a single point.

For any quadratic rational map g(z) = z + 1/z + b’ quasiconformal conjugating to f,,
ie., [g] € M(fs,). Let ¢ be the quasiconformal mapping, pog = f,, 0. Denote by u(z) the
Beltrami coefficient. By the Ahlfors-Bers theorem, there is a unique quasiconformal mapping
¢t with Beltrami coefficient ¢tu(2) so that it o foo 001(2) = 2+ 1/24b(t) for |¢] <|| p |2
b(t) is analytic on |t| <|| p |72, b(0) = by and b(1) = ¥'. If &' # by, b(Jt| <|| p ||*) is an
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open set. f; has an indifferent cycle of period & for b € b(|t| <|| p ||~*). It is impossible.
Therefore, b = by, i.e., M(fp,) is a single point.

If b is a Misurewicz point, the same result can be showed by using the above methods.

We summarize the analysis above in

Theorem 38.2. The mapping class group MCG(fy) of fo is

(i) MCG(fp) = m(c — Mp U O) is infinitely generated with generators {'yJ, —vj,Yo} for
bec — M,UO0; MCG(fy) =id. forbe O.

(ii) Let W be a hyperbolic component of M,. Then MCG(fy) = Z for b € W — {the
center}; MCG(fp) = id. for b being the center of W.

(iii) MCG(fy) = id. if fo has an indifferent cycle or b is a Misurewicz point.
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