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Abstraét

The author studies the technique of paradifferential operator defined on a space of conormal
distribution with three indeces, and then use this technique to prove that a progressing wave
which hits the boundary is reflected according to the usual law.
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M. Brals and G. Métivier®4 have studied the reflection of transversal progressing wave
for semi-linear equations in higher dimensions. However, it has never been touched for
quasi-linear equations. On the other hand, in the quasi-linear case, we have two noticeable
paper, one is Métivier’s on interaction of two shock waves and the other is Alinhac’s on
interaction of two progressing waves with weak singularities[g’zl. S. X. Chenl® discussed the
interaction of a shock wave and a progressing wave with weak singularities, but only in case
of one dimension. As we know, the problem of interaction of a shock wave and progressing
wave with weak singularities can be transformed into the reflection of progressing wave for
quasi-linear systems with free boundary. So the discussion of reflection can be regarded as
a preliminary step for the interaction of a shock wave and a progressing wave with weak
singularities.

In this paper we consider the propagation of regularity when the solution to the mixed
problem of 2 X 2 quasi-linear systems is conormal with respect to a single characteristic
surface in the past. We show that if this characteristic surface hits the boundary of the
domain transversally, and one reflected characteristic surface issues from the intersection,
then the solution will be conormal with respect ‘to the union of these surfaces.

The main result in the paper is described in section 1. The space of conormal distribu-
tions and para-diferential operators are discussed in section 2. We study the regularity of
characteristic surfaces in section 3. Finally, the proof of the main theorem is completed in
section 4 and section 5.
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conjugacy function h : Vo x J(fs,) — C so that for all b in Vo

(i) hp is a conjugacy between fj, on J(fs,) and f, on J(f) and hs, is identity;

(ii) for each z, hy(2) is analytic on b;

(iii) for each b, hy is quasiconformal.

h: Vo x J(fy,) — C is admissible.

Applying the extended A-lemmal'®2%, we see that hj is the restriction to J(fy,) of a
quasiconformal self-map Hy of C. J(f3) = Hy(J(fs,)). Choose b € Vo—O, J(f,) is contained
in a quasidisk. Hence J (fv,) is contained in a quasidisk, and the measure is null.

§3. The Mapping Class Group

D. Sullivan exploits the intimate connection between the classification problem of dynam-
ical system and the theory of moduli for Riemann surfaces. In particular, he defines the
mapping class group (MCGQG) for rational maps, and shows that the mapping class group of a
generic rational map can be built from subgroups of the mapping class groups of punctured
tori. ‘ :

It is natural to identify two rational maps if they are conjugate by a Moebius transfor-
mation. For |a rational map f, we denote by M(f) the space of PSL(2,c) conjugcy ¢lasses
of rgationa,l aps which are quasiconformally (gc) conjugate to f.

Let Q(f) be the space of g¢ hoomorphisms h : € — ¢ for which ko fo foh~! is|again
a ré,tionnal ap. Homomorpk is@s ho, hy are eauivalent if there is a Moebius transformation
q aﬁd an isotopy betwen gohg and h; through elements of Q(f). The quotient space of Q(f)
by thls equivalence relation is the Teéichmuller space of f and we denote it by Teich( f)

Equivale homeomoephlsms n Q( f)' conjugate f to rational maps that are PSL(2 c)
conjugate to|one another. So thei*e is a pI'OJGCthH

| P: Teich(f) —s M(f)

gifren by
| P((R)) =[ho foh™]. |
Let Qo( fﬂ C Q(f) be the subgroup of quasiconformal homeomorphisms which corpmute
with f. The!mapping class group is the quotient Qo(f) obtained by identifying homeomor-
phisms which are isotopic to the identity through elements of Qo(f). It is often infinite and

quite complicated. A
This group acts naturally on the Teichmuller space of f. It acts properly discontinuously
by complex analytic bijections on Teich(f ). The action is given by

[9] o [h] = [h o g]
and the orbit of any [h] € Teich(f) is precisely a fiber of P.
This gives '
- M(f) = Teich( F)/MCG(f).
~ We associate to each rational map f a Riemann surface S (f) which classifies the large

orbits of f except for those touching the closure of all periodic points (which is the Julia set
union a finite set). A large orbit is an equivalence class of the relation z ~ y iff f™(z) = f"(y)
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§1. Main Result

Let us consider a solution v of the problem

_ Lu=ZA,(u)6,u=0, z3 > 0, » (1.1)

o(u) =0, z3=0. (1.2)
Here 9; = 0y, ( =1,2,3), u="*(u1,uz2). Let Q(C R3) be an open neighborhood which
contains the origin and we take 2 small enough.

Qp =QU{zs 20}, ¥2=0NZ%,, %= {x3 =0},

Aj € C*R?*)(j = 1,2,3) are 2 x 2 matrices, ¢ € C°°(R2), and ¢' # 0. Let u €
Hﬁ)’zl(ﬂ.l.) (s> 2) be a solution of (1. 1) and (1.2). :

First, assume that

(H.1) The boundary 09 is non-characteristic,

(H.2) The problem (1.1) and (1.2) satisfies the uniform Lopatinski condition.

Let $_ be a characteristic surface for L, which intersects the boundary Yo in R3. Because
Yo is not characteristic, X_ intersects ¥y transversally along a curve we shall call I". And
we assume that I' goes through the origin in R3. ‘

Second, assume further that ,

' (H.3) There is one (real)-reflected characteristic surface X through T'.
- We denote X4 = {1 = p4(z2,23)}, T' = {23 =0, 21 = h(z2)}(h(z2) = - (x2,0)), and
a,ssumel"CQ+ﬂ{m1>0} It is easy to see -~ o : '

(,D+($2,0) (,0_(51?2,0), . o . _ o (13)

(s (12, 5) oozl 0. (14)

" Finally, we assume
(H 4) L is strictly hyperbohc with respect to the surface

2z — go+(:z:2,a:3) — p_(z2,23) = constant

Let S be a smooth surface. The space of conormal distributions Hlo’“(ﬂ S) is the set of
those u € H{ () such that. Z1u € Hf (Q) forall Z! = Z;, .- Z; | W1th m = |I| < k, where -
Z; are-C vector fields in R? tangent to surface S. | And we deﬁne Hp (Q+, S) to be the
set of restrictions to {2 of functions in. Hloc (€2, 58). With these notations we can state our

main: result. i _ ‘ N o _
Theorem 1.1, Suppose that u € HEY QL) (s> 2+ 4) is a solutz'on of (1.1) and (1.2),
X+, X are characteristic surfaces of class Hg‘;(9+)'(0' >3 +5). And we assume that
1) X is a C*®° surface when ©; < 0; - : o -
2).w € Hyt"™(Qy N {zy < 0}, 730) (resp. u € HEE Q4 n{z1 < 0},5) near o (
resp. X ), . |
3) u € HX,(Q4 N {z1 < 0}) except on Lo UT_.
Then there ezists a small neighborhood w of the origin such that
1) T’ is C°;

2) The surface X4, X_ are C® e:ccept on T
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3) u € HitV ™ (wy,B4) - ( resp. HEPD® (wy, B2), HE® (wy, Do) near T4\ ( resp.
Y_\T, To\I), where wy =w N {z3 > 0} o , ‘
4) u € HX (wy) away from To UL UX..
Remark. In this paper, we only consider system (1.1) in two dimensions. In general, by
the same method we can prove that Theorem 1.1 is valid for.

Lu= ZAj(u)aju =0, zp, >0, | , (1.1)
p(u) =0, 2= 0. | (1.2)

We now recall some notation which will be used in this paper.
1) In this paper, we will use the “dyadic decomposition” (see [5, 12]). Let

L)+ @), 1=#E)+1 P,

o J=0 A : j=0 , .

where ¢ = (¢,£3), &' = (£1,&2) are respectively dual‘\‘ra,ri_ables of x = (2/,23), ¢’ = (a:l,"a_:_z)‘,
0(279¢) = P(27I716) — $(277¢), |

"/’,(E') = 1,0(5',:0), : ‘p,(‘fl‘)-: (P(gI;O)" B : :

P(¢) € C(R?) and suppy C B(1), ¥lpe) =1 (r < 1,B(l) means the ball of radius 7).

) o _
u= Z Up = Z Up,y ' (1.6)

p=-1 p=-1

Then we have

where u_y1 = Sou = PY(D)u, u_, = Spu = ¢'(D")u, .
| up = Apu = (2 PD)u, up = Aju = ¢'(27PD')u,

p—1 p—1
Spu = Z Ug = P(27PD)u, Spu= Z uy = P27 D )u.
. , g=-1 . o =-1 N S
2) Let us note that some result, for instance, Theorem 6.2 of [5] and Lemma IT 1.1 of [13],
can be used in the system with diagonal principal part as follows (see [6])
/P Us ) U\

+B| - | =R, (1.7)
P U, U,
where P is an m x m matric paradifferential operator of order 1, U; are column vectors with

m components, B is an nm X nm matric paradifferential operator of order 0, R is an. nm:
vector.

§2. Paradifferential Operators on Space Hg;k (Q4,%)

For s,s' € R, the Hoérmander space HS (R?) is defined as .
5(B%) = {we S®Y); (L+[ER)°(L+1€7)"ae) € LR}

" When s’ =0, H(R?) is the Sobolev space. The space H % 1oo(§2) is defined by - -

HY 100(Q) = {u € D'(Q); pu € Hy (R?), Vo € C°(0)}-
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For ;. = Qn{z3 > 0}, we define H % loc(§1+) to be the space consisting of the restriction
to €. of functions in H} ,,.(Q). '
Let %' = Yo UX], UX.. be the union of 3 smooth hypersurfaces, where &/, = {z; = +x3},
and let M be the set of smooth vector fields tangent to ',
The spaces of conormal distributions associated to X' are defined by

HY* Q4,5 = {u; Z'u € H 1o o(Q), Z e M, |I| < k}. (2.1)

Following M. Beals and G. Métivier®!, we cé,n easily see that the generators of M are
{ Zo =101 + %303, Z; = w3(x1 + 3)(01 + 83),

- . , 2.2
Zy =02, Z3=z3(x1— 23)(01 — Os). @2

For the space H%*(Q;,%') we have

Lemma 2.1. For s > J%‘, s+s > %, s+ 28" > k>0, H:;k(9+,2’) is an algebra.
Moreover if uy,-++ ,uym € H f}k(ﬂ+, ') and f is a C® function of its arguments, then
f(.'l), ‘u1(-’1:‘), ) um(w)) € H:"k(ﬂ+’ 2,)'

Proof. For k = 0, this lemma is a simple consequence of Proposition 1.7 and 2.4 of [12].
For k£ > 0, we can easily prove this lemma by induction on %.

Let a(z) be a bounded function. The tangential paraproduct operator is defined by (see

[12]) |
Tou= Y Sp_n,a(@)Apu(z), (2.3)

p2No
where z3 is a parameter. For tangential paraproduct operator, we have
Lemma 2.2. Ifa € Hy*(Q4,%), u € HY*(Qy, )t +¢ > 2, t> L k>1, —t<s<
t), then we have ' '

ZT'u =T Zu + Th,u + Ry(a,u) + Ra(a, u), (2.4)
where Z € M, Ri(a,u) € H:,’_’f_p(Q.,.,E’), Rz(a,u) € H:;_’f_;il(ﬂ.l.,z’), p = min(t + ¢’ —
-1 | . |

Proof. a) Let #(¢',z3) denote the partial Fourier transform of v(z',z3) with respect to
z' = (x1,x2), F 19’ denote the inverse Fourier transform of v'(¢’). Let us note

Syol@) = [ =P EPENE, ma)de
- [r iy @ -y a0y
By simple calculaﬁon, we see that | '
z15,v(x) = Sp(z1v(x)) +27Pv¥, (2.5)
‘zAby(x) = A (z1v(x)) + 2"‘(”'*1)"11;?&_Irl (z) - 2"‘”1}#,

where 7 = i%@"”{’)ﬁ({’,m). |
b) It is clear that the lemma holds for Z; = 8,. For Zy, Z1, Z3 (see (2.2)), from (2.5) and

(2.6) it follows that v
ZiTou = T4’Zjau +T,Zu+ Ry (7=0,1,3),
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[12]), and we have
27| S — o (O )y, AR(BP B |2 < COPleHI—h—late)~hog,
2“1’[”Aq(631A)*_No q—No(alzB)p“Lz < Cz—p(p Hl=ly—la+t')— gtz Eap

where (€r,p), (€4,p) € [2(N?), p=min(t+¢' — 3,t — 1), p' =s+ ' — 3. From Lemma 1.2
of [12] it follows that Iy € HJ . 4(R), Iz € Hf,_,;p Q) CH ,+p+6(Q) (smce s<t).
For I3, we can write
Z Z{z—ﬂ ZA (B Y2y Dgrta(D B);}'.
la|<Np p

The spectrum of every term in I5 is mcluded ina “hall- ring” (see [12]), and
2P Ag(OP ANy Apta(OF Byl 1o < ComalpHo)-plt=hto=g,

with 4., € 13(N?). From Lemma 1.4 of [12] it follows that I3 € HZ %() C Hs, +pt6(82)-

Thus we have proved J € Hp, 5(),80 J € H 1 5(94) .

d) Let us suppose that J € H 3,_’:_;1; (Q4,%') is proved for A € H bk=0-1(0,,5') and
Be H) k—=0-1(Q),,%). We will prove that if 4 € HiP~ 6(Q+,2'), Be H:,’k_6(9+,2’_), then
j € S (04,3,

Let us note that ‘
' afl(w); = 277 (w), + (z1w).

Then, it is easy to see

=Y 27 (2100 D)5, O B + (O )y, (7100 B

p=—1
+ 27 PHDL((Z + (w3 — 21)01)04 A);_, (012 B)}
+ (8 1A)p—No((Z0 + (23 — 21)8:)07 B); }.
And v;}e have
[Z0,81] = 18], [21,0]] = 18] (w1 — m3) = 18" (Zo + 1)
Since Z;A € Hy*™', Z;B € H:,’k"l,'and every term in Z;J has the same form as J,
following the 1nduct10n hypothesis, we obtain Z1J € H:,_’f_ p-::-ﬁ Similarly, we can prove that
Z;J € H’,_’f_pis (j=0,2, 3), this means J €H ,+p+6(ﬂ+,2’) |
e) From c) and d), we have J € H? + ot 5(Q+, ¥') by induction. Now we consider R; (j =
0,1,3). Let us note that R; can be separated into two parts: one satisfies 6 =[- 11 -l =
1, Ac H* 1 Be H%F=, the other satisfies § = 0, A € HY*, B € H%*. Thus we have
R;=R;,+ R',g, and R;1 € H ,+p(Q+, Y, Rj2 € Hs,_’f_pil(ﬂ+,2 ). The lemma is proved.
Using Lemma 2.2, we can prove _
Lemma 2.3. If a,b € H;*(Q.,2) (¢t > Lt +t > 2), uw e HY*Q,,5) (~t < s < 1),
then
)Tlue H (Q+,2’)
2) If T is a pamproduct operator defined wzth other chozces (No and the dyadic partition
of unity), then T.-T", maps H; k(Qy, %) into Hf,ip(ﬂ.,.,z’), with p = min(¢+t'— 2,1 —2);
3) R="T.T, — T, maps H5*(Q,%') into H o +p(Q+, .
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Proof. From Propositions 1.8, 19 and 1.10 of [12], 1t is easy to see that Lemma 2.3 holds
for k = 0. Using Lemma 2.2, we can prove the lemma by mductlon on k. :

Lemma 2.4. Ifvq,:-- (Q+,E’) (s> %,s+58 >3 3 s+28 > 1 k> 0) and,
v;(j=1,- . ,m) are real functzons and have compact support in Q+, F is a C* function,
then we have

PN

F(vi, + Um) = ETF, v; + R. (2.10)
__.1 . :

Here Re H%¥ (Q4,Y), p= - min(s+ ' — § ,8— ).

s'4+p L o . e :
Proof. For k = 0, this lemma is a 81mple consequence of Proposition 2.4 of [12]. Let us

assume that the lemma holds for k—1.-For Z € M, we have. o L
ZF(v1,-* vm) = F, Zvy +- o+ Fy Zvm, - (2.11)
where F!, Zvy + -+ Fy _Zy, is a C* function of the variables v; and Zv; (j =1, ,m).
Followmg the induction hypothes1s, we have- . o
F! Zvy+ -+ Fy Zvm = ZTF,, 7o,V F ZTF, Zv; + Rl, (2.12)
gl

with R; € H ",’fr p1(9+, ¥). On the other hand, using Lemma 2.2 for (2.10), -we have

ZF(’Ul, . ,’Um) —ZTF” Zv; XV +ZTF/ Z'UJ +ZR+ZR(F1, ,'UJ), (2.13)
il
with R(Fy, ,'UJ) € H +p(Q+, . Followmg (2 11) (2.12) and (2. 13), we have

ZR e H 19y, 5), so Re Hy b Q2.
Let Qo = Q+ﬂ{w1 = 0}, Mo = M|q,. Then My is the set of smooth vector fields ta,ngent‘

to A= {ml = 0,23 = 0} on €, the generators of My are 8y, ©303. We now introduce the
space H?; e (QO,A) as follows

(QO,A) {uMue H,,, loc(Qo), Me Mo, 7] < k} (2.14)
Because (Z'u,)lg0 = M (ulg,) for Z € M, M € My, we can deduce the following results by

induction on k.
Lemms 2.5. For any u € H¥*(Q4,X') (s> 3 L k> 0), the trace

Ulgj=res = W(AT3, T2, T3) € H*~ 5”“(90 A)Y(\ = -1,0,1).
For the space H:,’k (Qo, A), we: can easily prove the following result by induction on‘k.
Lemma 2.6. Ifvy,-- (QO,A) (s+s >1s> z’k > 0), f is a C™ function
of its argument then f (y, 'ul(y), 'vm(y)) € H:,k(ﬂo, A), where Yy = (mz,wg)
For a E'Ht, *(Q0,A), be Hy (QO,A) t+t >1,t>3% k > 1), 1t is easy to see '
o MT'b = T (Mb) + Thead.  (2.15)
By (2.15), we know that the analogues of Lemmas 2.3 and 2.4 hold for the space HY k(Qo, A).
Lemma 2.7. Ifa,b€ H (QO,A) ¢+t >1,t>5k21), ue HEF(Q0,A) (-t < 8 <
t), then
1) Tiue Hy (QQ,A), . S
2) T, s a paraproduct opemtor defined with other choices (No and the dyadic partition
of unity), then Tj— T, maps H (QO,A) znto ,+p(Qo,A), with p = min(t— §,t+t’ —1);
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3) R="T,T; ~ T,, maps H}*(Q,A), into HZ (Q0,A).

Lemma 2.8 If vy,--- ,v,, € ‘H:,’k(Qo,A’) (s > ;,s +s8 >1,8+2¢ > 1k >0) and
vj(j =1,--- ,m) are real functions and have compact support in S, F is a C*® function,
then we have

F(vi, -+ ,vpm) ZT{W v; + R, ’ (2.16)
- j=1
where R € H:,frp(ﬂo,A’), p=min(s' — 1,54 ' —1).

In this paper, we also use the space H**(b(2, A) of function u such that MTu € H? _(b2)
(with |I| < k, M € M’, M’ is the set of smooth vector fields tangent to A on b2). The
analogues of Lemmas 2.6, 2.7 and 2.8 can be found in [1].

§3. Regularity of Characteristic Surface

In this section, ¢ denotes either <p+ or .. We assume that ¢ € H (), (QO = Q+ N
{z1 = 0}, 0 > 0). Let l(u(z),¢) = Z A(u(z))¢; be the symbol of operator L Qsee (1.1)),

T = XAj(u(z), &2,€3) (j = 1,2) be the i'oots of equation del(l(u(z),,&s,£3)) =0 Wlth respect
to 7. It is evident that A; are C° with respect to £»,£&3 and u(z) (2 + €2 #40), and are
homogeneous of degree 1 with réspect to &2,&5.

For simplicity, write y = (z2,z3), 1 = (£2,£3) and denote by A(u(z),y) either A;(u(z),y)

or Ay(u(z), y).
If A is a proper root with respect to characteristic surface {z; = ¢(z2,23)}, then ¢(y)
satisfies

=1 = Xu(p(¥),9), vy)- (3.1)

In this statement ¢, denotes the vector (82, 03¢). By (1.4), we have a dlﬁeomorphlsm of
class H7(2,) as follows

"1, w2, 73) = (281 — 04 (2,33) — (32, T3), T2, P4 (T2, T3) — - (w2, 23)).  (3.2)
The inverse diffeomorphism ¢ is given as follows
1
((@1,72,23) = (5(931 + 04 (2, %(w2, 73)) + 0~ (22, Y(22,23))), T2, 9(x2,23)). (3.3)
Here 1 is the inverse function of (¢4 — ¢_)(%2,23) in x3, and satisfies
23 = (4 — p-)(z2,¥(z2, 3)). (34)
Then Y3 = ((XL), ¥o = {(Zo), I'=¢(A).
Let Ma denote the set of smooth vector fields tangent to A in Q. As usual we introduce
Hy Q4 A) = {£;2'f € H3 100(24), Z € Ma, [T| < k).
Lemms 3.1. If p4(72,23) € H*3:%(Qg, A), then there eist functions G4(w1,22,23) €
H*LE(QL A), such that G:l:lml—o = @+ (2,23), and 8;G+ # 0.
Proof. We shall set Qo = QN {z; = 0}. We first note that there is a continuous

extension operator E from H*+%:*(0), A) into H s+3%({0, A) (see Lemma 2.1 of [4]). Then
we will prove that there is a function G (%1, 22,23) € H*T1E(Q, A), such that G|y =0 =
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Ep.(z2,3), 8:G. # 0. First, we set

1=1(n)+ i B(2~n),

p=—1
where 7 = (£2,€3) is the dual variable of y = (z2,73), B(n) = ¥(27'n) — P(n), P(n) €
C$*(R?) and suppy C B(0,1), ¥|por = 1 (for a certain r, 0 < 7 < 1, B(0,1) de-

O
notes the ball centered at 0 and of radius ). Then we have u = 3 up with uy =
p=-1

WY(—iBa, —i03)u, up = Apu(p 2 0), where A, = B(—27Pi0s, —27Pi03).
Next, let a(xs,z3) = Bo+(®2,23),
Gi(m1,m2,23) = Y, 0(2Pw1)Apa(@2,23),
p=-1

where () € C(R), 6'(0) # 0, 9(0) = 1. It is easy to see that Get|e,=0 = a(x2,73) and
8,G 1]y # 0. Since 8(2Pz1)Apa(z2,73) € C*(R?) and for any a = (a1,a2,03) € N3 we
have :

[ s dsaten e = [ 0000w e [ 10505yl Pdoade
< (o / (07369 Pat) (0227 HH70572)
< CurCpaps? 2041710
with (Ca, Cp,az,as)p € 12, following Theorem 10.1.5 of [15] we see that Gy € H*T(Q).

Finally, for any function p € C§°(R), we will prove that

if f(z2,w3) € H+#!(Q2,4), then

f(@1,32,%3) = i p(2P2:) D, f € HHHHR,A), (3.5):

p=—1

by induction on l. Assume that (3.5);—1 is valid and note
Mp = {181,301, 02,%103,2303}

By direct calculation we have

2101 f = Y (2P21)p (P 1) D],

p=—1
zsoif= 3 p(@m)(@p(asf) + A ),
p=-—1
9of = Y, p(2P31)Dp(02f);
p=-1
210sf = 3 (2P21)p(22:) (27 Bo(851));
p=—1

2305 f = Z p(2P 1) (Ap (303 f) + 22 AF (851)),

p=-—1
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where A¥ = g#(2PD"), p#(n) = i8,8(n). Since
| zaf € H'WWW 0L, 230 f, Bpf € H'T 3171, 83 f € H'™ 3,
by the induction hypothesis, ©181 f, 2201 f, 8,f, £185f and z38; f belong to H**+LI-1 50
fe HH'”(Q A). Let f=a,f = G’+ and p(t) = 0(t), we have G € H*+1E(Q, A). Let
Gy= G:t|a:3>o, the lemma is proved. ‘
By Lemma 3.1, we have diffeomorphism of class H s+1, ’“(Q+, A) as follows
(@1, T2, T3) = (Gi(wl,wz,w?,),wz,ﬂca), . (36)
and ax({z; = 0}) = B, ax(A) =T Let o* be the inverse dlﬁ'eomorphlsm of ay.. Denote
by ®.. the first component of ozl Then
(I):}:(Gj:(ml,wz,wa),:l:z,a?g) = Tj. (37)

And %, can be written as {(z1,%2,%3)|®4(21, T2, 73) = 0}. .
Because ¥+ intersects X transversally, without loss of generahty we can assume

IT = det <61(I)+ 81<I>_) £0.

0P, 03P
By IT # 0, we have a difféomorphisrﬁ as follows ,
X (@1, 22, 23) = (P4 + P, 33, B_ — D). (3.8)
The inverse diffeomorphism x is given as follows A
X(wl,mg,mg) = (\Ifl,azz, \Il3), | (3.9)

where Uy, U3 satisfy

T, = \Ifl(@.p + <I>_,:I:2, (I)_,-— (I>+), (310)
T3 = \113(<I>+ +®_,25,P_ — CI).l.),
and :
z1 = (P + D) (P, wz,\pg),
1 ( + )( ’ .' (311)
T3 = (‘I)_. - ‘b+)(\1’1,$2, \113)

Then x(24) = Ty, x(A) =T, x(Zo)=
Lemms 3.2. If ¢1(x2,73) € H”z’k(QO,A), then U;(z1,z2,73) € HYVR(QL A)(§ =
1,3
I)’roof a) By Lemma 3.1, we have G’i(wl, a:z,xg) € Het1k(Q,, A). From (3.7) it follows
that (V®1) o ax € H**(Q4, A).
Let Mr be the set of vector fields tangent to I'. It is easy to see that
My = {8_81,8_085,8_05, 2301, 2303, 303, (38_)0; — (9,8_)%}.
We now introduce the space H**(Q,,T), (¢ < s) by induction on k. Let H*°(Q.,,I) =
H*(2.,). We assume that
The space H**~ 1(Q+,I‘) has been defined, and if
{ f € H¥*1(Q, A), then foaz' € Ht»k"l(m,,r).' (8:12)p-1

In particular, we have V@, € H**~1(Q,,T) for ¢ < s, and define H**(Q.,,T) to be the set
of those u € H*~1(Q,T) such that Zu € H**~1(Q4,T") for Z € Mr. For f € HY (., A),
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Z € Mp, we have

Z(foaz') =(2f)caz", - (3.13)
where Z € Ma. Following the induction hypothesis and (3.13), we obtain Z(f o ai') €
Ht*—1(Q,,T); this means that fo a7l € H**(Q,4,T). In particular, we have V&3 €
H**(Q,T), so (3.12) is valid. '

b) From (3.10) and a), we know that (V¥;)ox~t € H*F(Qy,T) and ¥; € H¥ (= 1,3).
~ For Z € Ma, we have : i
Z(V¥;) = (Z(VE) o x™) o x. - (3.14)
Using (3.14), we can prove that ¥; € H s+1k(Q,, A) (j = 1,3) by induction on k.
Remark. Because Ma D Msy, we have HHLR(Q,, A) C HoYHR(Q,, 2, 80 ¥ (4=
1,3) also belong to H*+1*(Q,,%'). B
Lemma 3.3. [fvox € H"*(Q4,2) (t < s+1), oz € H5+5%(Q, A), then
| vp(@1,72) = 0((2,85), 32,5) € H (0, ).
Proof. Because ("1 ox(Z') =X/, it is easily seen that
2, (z3, T2, T3) — P+ (T2, Va(xs3, T2, 3)) — o (z2, Uy(x3, T2, 33))
=P+ (w27 \1’3($3, T2, .’33)) — - ("BZ, ‘I’g(fL’;}, 3:2,\{1/'3)).
Then U1 (z3, T3, 23) = P+ (@2, ¥3(23,72,%3)), and
v 0 Xlzy=va =‘U(‘I_"1($3,$2,-'L'3), %2, U3(®3, 22, T3))
) =jv((p-|;(m2, ‘I’g(mg,¢2,$3)),$.2?“I’3($3?¢2,(173)). o A (315)
We.shall write g(z2,23) = U3(x3, T2, T3), and. deﬁne 8 nia,ps (wq,x3) into (z2, 9(z2,23)).
On the other hand, from (3.10) it follows that z3 = \I’3(<P_(:1:3,:c2,w3),x2,<I>_(m3,_mz,,m3))__.
Writing f(x2,23) = ®-(z3, Z3,%3), we know that the inverse diffeomorphism of B is given
as follows | ' ' '
| B (22, 35) = (@2, f(22,3)). (3.16)
With (3.15) and (3.16), we have
. (o4 (x2,3), T2, 23) = (VO Xla':l:ms) 0Bt (3.17)
Since v 0 X|s;=z5 = (V0 X)(%3,%2,73) € H t=3:k(Q,A), and 7 is 2 diffeorriqrphism of class
H#+5:%(Qp, A), we have v(p4 (22, T3), 2, T3) € H—3%(Qq, A). For v(p_(x2,73), T2, %3),
the proof is the same. | .
Now we shall prove the main result in this section.
Proposition 3.1. 1) Ifu € H1(Qy4), ¢ € H7(Q) (0 > 6), then p € H*+2 ().
2) Ifuox € H8+1’k(9+,21)’ (aiu)ox € Hs’k(Q+7EI)1 (aiah'u’)ox € Hs—l’k(Q+a ZI) (i, h =
1,2,3), then we have ¢ € Hs"'%”-‘(ﬂo,A). ‘
Proof. a) Differentiate equation (3.1) with respect to x;. and z; (j,! = 2,3). Then with
Ag; # 0 (since {3 =0} is non-characteristic for L), we have

(95 + (AEa)—l(Aﬁz)aZ)‘ijm + (Aﬁa)_l)‘nn‘waj"Pym + Z,Ap,q‘»"wpwq =Ry, (3.18)

P9
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Let t =uoy, 9 =voy, W=wox (x is defined in (3.9)).: Then we have
T+ Ao(@, 3)® = g(3,9), zeRy, (4.5)
o (@)D = P(#,7), = € b ‘ o (4.6)
Here . |
L =05+ A10, + A8, Ay = (d3) "4y,
Ay = (As)" Ay, Ap = 0101 + Ay (6)0oth + Az()0571,
Ay = Ay(@), Az = 015 + Ay ()0, W3 + Az ()93 V3.
Since {373. = 0} is non-characteristic for L, A; is non-degenerate. Thus it makes sense to
write (A3)~!. |
Let us suppose
i e Hoth ’°(9+,2'), i€ H (., 2'), W€ H””l k., ), (4.7

Blogmo € HVF (R, ). (48

We will prove that (4.7)x4+1 and (4.8)x+1 are valid below. :

" From Proposition 3.1 and Lemma 3.2 it follows that ¥, U5 € HotLE(Q, ¥ ) Followmg
Lemma 2.1, we have A; € H%F(Q.4, %) (7=0,1,2), g€ H**(Q,,%).

We make tangential paralinearization for (4.5). Then

P = (63 + T‘%181 + T‘,qzaz + TJ%O)QT) = R + Rs, : (4.9) .

Ry = T} o Ay — T, o Az — ThAo + 9(@, %) € HY*F (0, X),

R, is the regularlzmg remainder term. Following Lemma 2.4, we have R; € H. Hy ™% "’(Q.,., 2’ )
(when s > 4+ 3).
We denote by f() the restrictions to {xg = 0} of function f. Then we can rewrite (4.6) as

follows
¢' (fio)o = (o, Do)- | | (4-5)' '
Making paralinearization for (4.6)’, we have | |
Té/(ao)ﬁ)o Two(pn(u[))uo + Ta~ ¢u0 -+ TB ¢vo + Rg. ' (4;10)

Since 1y € H*~1*, using Lemma 2.6 of [1], we obtain R € H**(bQ, A) (when s > 4). .

Lamma 4.1. There exists an operator Té). _wz'th symbol Q(z) € H>*(Q,X'), such that

- THP - PT, =R,
whereﬁ '=~aa + T1,3131 + T1’3232 + T1,30 and o v . : . o
By(z) = diag(A1(z), A2(2)), - Ai(z) € H**(24,E) (= 1,2), |

By, B; € Hs’k(Q_;_,Z’), R maps H'g,’k_l(ﬂ+,"2,) into _st—z’k(ﬂ+,2,) (when §>2+ %).

Proof. By hypothesis (H.4) we know that there exists an invertible matrix Q(z) €
H*k(Q,, "), such that QA; = B1Q and Bi(z) =diag(Ai(z), A2(z)) € H**(Q,, %), A #
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Let Ba(z) = Q(w);fz(w)Q‘l(m). Then we have By(z) € H 3”“((2.;.,2’_), and choosé Bo(z)
such that '

Bo@)@(a) = QeVo(a) + 32 9, (6o + Fata + Tata) ()0,002).

It is easy to see Bo(z) € H**1(Qy,%'). Using Lemma 2.3, we conclude that R maps
Ho4~1(Q,, 5) into Hi 2¥(Q4,%') (when s > 2+ 3). |
Let w = Té?'w By Lemma 4.1 and (4.9), we have |
(63 + TB1 31 + TB282 + TBo)w F . (4.11)
where F € Hz-z"“(m,z'), € H '@y, Y), Bj € H” BQy,2) (G = 1,2), Bo €
Hak 1(Q+ EI)
For boundary condition (4.10), because TQ is a tangential paraproduct operator, we have
’ Tlem—o - Tles——owl“’i*—O
Denoting Tg, = Té)leO, Wo = |pg=0, and using Lemma 2. 4 of [1], we see that (4 10)
becomes : -
| T{P/(uo)’lﬂo = T.é!'h 110 + T]IEZ'T)O + G o A ) | (4.12)
where G-€ H¥*(bQ, A), E; € H*3F(bQ,4), Bz € H*5*(bQ, A).
Lemma 4.2. For Z e M, |I| < k +1, we have ,
Z,Bl= Y Tp,,ZiZ7+ > T}, 27 P+ Ry,
|JI<iIl,JCI B FARSS (W et
where o ' .
| Bjse Hs—l,k—|I|+|Jl Ay € oL+
R; maps H**~1(Q4,%') into o 3k-IHIN(Q, BY).
(The proof will be given in section 5)
. For |I| = l from Lemma 4.2 and (4.11) it follows that

Bzla+ Y, Tp,,Zi2’0=F, (4.13)
|71=11]-1 |
where
Fr=— Y, Tp,ZiZ'w~ 3 T,,2"F+Z'F - Ry,
FARTE BNV IP

We use Lemma 4.2 and obtain FI e HI¥* -, o,
Let M’ = M|g,=0. Then it is easy to see M' = {£,8;,05}. Aumme M € M. By (4.12)
we see that
Topr(0) M 0 = GI, (4.14)
where G; = [T, (uo),M Jwo + MY (Tg, @0 + Tr,% + G). Let I = I’ U {n}, Xo = x|w3~0
Writing
M T, = MY T, Myio + M [T, My]io

= M7 T, (Y a1 (V(F1)0)(0nv)o) © X
2 )

+ MY [Ty, Malo, (5n=1,2);
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we have
G1 = [Ty (ag), M@0 + MY (T, o + @)
+ M7 T, (3 a1 (V(¥2)o) o)) + M7 (T, Mo
J

Because W € H*~1%(Qp,A) (see (4.8)x), fip € H*3*(Q,A), ar;, To € H*4H(Qp, A),
we have Gr € H*~ 4= I+1(pQ A). _

Let Uy = *((Z"®w,---,2™w) for |I;| = 1(j = 1,-+- ,h), Z € M. Then Upjg,=0 =
Y MM, - - -, M™ o) for M € M'. Then one can rewrite (4.13) and (4.14) as follows

PU,+T.U, = F, 4.13)
B

T (0) (Ultlzs=0) = Gi. (4.14)'

The proof of (4.7)x11 and (4.8)..1 will thus be finished once we have established the following
results. _ :
Lemma 4.3. If u satisfies the conditions of Theorem 1.1, and (4.7); is valid, then
Uy € HH Q4 0 {z1 < 0}), withl < k+1.

Proof. Clearly, we need only to prove @ € H*~L%+1(Q, n{z; < 0},%'). For any point
z* € Q¢ N {z1 < 0}, we say that u € H**(z*,5y) if there is a function § € C° and
6(z*) = 1 such that 6u € H**(Q;,Z4), where T4 stands for X or £_. Following the
conditions of Theorem 1.1, we have

{w € H*~1%°(g* %), for z* near %,

. (4.15)
w € H*™H%°(z*,X_), for z* near X_.

Using Lemma 3.2 and Propoéition 3.1, we know from (4.7), that ¥; € H**1*(Q,, %) (j =
1,3). Thus (V®4) o x € H**(Q, %) (by (3.11)).
We will prove
If the function g € H*~1¥(z*, %) (resp. H"'l’k(a:*v, X))
for z* near $o N {z; < 0} (resp.X._ N {z; < 0}), then (4.16)
gox € H*VE(g0 5) (resp. H*~VF (2, ), with 20 = x~1(z*).
It is easy to see that x is a diffeomorphism of class H'1(94), s0 gox € H-Y(24). Thus
(4.16)0 is proved. We assume that (4.16)k.; is valid and note that
Ms_\r = {2-((0324)01 — (019+)03), (0:2-)0; — (022-)d4,
(81D_)d5 — (8:9_)0; }, '
Mg, = {01,02,2303}. v
In the expression above, Mx_\r, Mg, denote the sets of smooth vector feilds tangent to
Y_\I' and Xy respectively.
For the set of smooth vector fields tangent to 3, we have
M is generated by {81, ,,730s} near X ﬂ {z1 < 0},
M is generated by {(z1 + 23)041,0s, 83 — 01} near £ N {z; < 0}.
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- If 20 near ¥ N {x; <0}, for any Z-€ {8y, 82,2303}, by direct calculation we have -
Z(gox) = 3 aj(0iVn, 2305 L0, in/Wn, 230s¥n /W) Zig) o x, 1=1,% m=1,3,

j _
where a; are C* functions with respect to 0, W,y ;23030 /T, Zj € Msx,. Because
U, € HH05(Q,, %) and Wplpe=o = 0, we have.a; € H*#(Q4,X'). Following the induction
hypothesis, we know that g o x € H*~1#(X?, o0 {z1 < 0}).

If 20 near ¥ N{z; < 0}, for any Z € {(z1+23)01, 83,03 — 01}, by calculation and (3.11)
we have o B N

Z(gox)= :Z’bj((W"f) ©X)(Z;9) o X,

where b; are C* functions with respect to (Vfbi)o X, Zj E,Mz‘_.'\f. Begaﬁse (V@ﬂ;)_o X €
H**(Q4,Y'), we have b; € H ok, X). Followihg the induction hpr}thesiS,vwe knqw ‘_that
goyx € Ho~Lk(z0 % n{z; < 0}), and (4.16)y is proved. Lemma 4.3 will be proved once
we use (4.16); for w. ‘ o o

Lemma 4.4. If F, € H:"3(Q), Gi € HEZH(09) and U; € Hyyo' (24 N {1 < 0}), then
U € Hiy (4), Uiles=o € Hige' ().

(The proof can be found in [7] anf [11]).

Proposition 4.1. If (4.7) is valid, (4.7)k+1 is also true.

Proof. Following Lemmas 4.3 and 3.4, we have’ '

U € Hfo;1(9+), Ul|m3=0 € Hs_l(bQ),

loc
Thus B
w E Hs_l’k+1(ﬂ+,2'), Wo € Hs_l’k'*'l(bﬂ, A).

Let us note that @& = t(82u, 8,02u, 83u) o . Since {zz = 0} is. non-chaacteristic for L (see
(4.1)), differentiating the equation (4.1) with respect to z; (j.= 1, 2) and the diffeomorphism
x (see (3.9)), we have

t(82u, 015w, OFu, 01951, Bpyu) 0 X € H* W1 (Qy, 3.

By the chain rule for differentiation, we have

3 o
9;((Byu) o x) = Zah,,(v\pn)(aha;u) ox (= 1,2,3;1=1,2; n= 1,3),
h=1 '
where ap,,; are C* functions with respect to V¥,,. By Proposition 3.1 and Lemma 3.3, we
know that 8,¥,, € H**(Q4,%) (j =1,2,3; n=1,3),80 0 € HoFH(Q, T).

Using the same method as above, we can only prove that @ € Hs+L5(Q,, ¥') because we
only know that ¥,, € H*+1#(Q, ¥'). But now we have proved that W e H~VEFL(Qy, B,
7 € HoH+1(Q,, %), 4 € H¥F+1(Q,,Y'). Using Proposition 3.1 and Lemma 3.3 again,
we have ¥, € H*rLk+1(Q, 3'). With the same method as above again, we have & €
Ho+LAH1(Q, 5 and (4.7)g41 is proved. | | | ' -

Finally, we prove Theorem 1.1.

1) If u € HENQ4), vz € 7o (), following Proposition 3.1 1), we have o4 €
Hf’:c'l(ﬂo). By Lemma 3.2, we know that x is a diffeomerphism of class H*t*, so (4.7)o
is true. Using Lemma 4.4 for (4.11) and (4.12), we conclude that (4.8)p is true.
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2) By Propositions 3.1 and 4.1, we know that (4.7)g, (4.8); and o € H 3+%’k(90, A) are
valid for any k. Then & € H*+1o(Q,, %), ¢ € H*F5°(Qo, A). Because

I'= {23 = 0,21 = h(z2)} and h(z2) = ¢_(22,0) = p_|a € C%,

T is a smooth curve. From ¢ € H*t%:°(Qp, A), it follows that £, are C* except I'.
Using the same method as in the proof of (4.16);, we can prove that

u € Ho oo(Q+ Z;+) (resp Hoth OO(Q-}-’ ) Ha+1’°°(9+1 20))
near £ \I' (resp. _\T', Yo\l with Q4 ‘small enough.

§5. Commutator Argument

In this section, first we prove Lemms 4.2. For Lemma 3.4, because its proof is 81mpler
than Lemma 4.2 and the idea is the same as Lemma 4.2, we only sketch it.
Proof of Lemma 4.2. Let 0 (P) denote the pricipal symbol of operator P. Then

o(P) = & + Bié1 + Babo

= LB+ Id)(E + &) + 5(B1 — 19(61 — &) + Bako

where B; € H® "’(Q.,.,Z") (=1,2) (see (4.11)). Because {:Ul +x3} are characteristic
surfaces for P, we have

Det(Bj % Id)|z; +:05=0 = 0.
So we can write _
By = diag(1 + (z1 — ms)pa (@), —1+ (81 + z3)pa(x))-
Denote _
Ay =85+ 01+ T, ay@dr A~ =0 =01+ Tioy o))

A = diag(A+,A-), u(x) = diag(pa, p2)-

We have
P=A+Tp,0; +Tp,, (5.1)

where A = diag(0s + 01,83 — 1) + T, diag((z1 — x3)01, (z1 + x3)01).
For generators of M, we can easily verify

[0s £ 81, Zo) = Bs £ 8y, [05 01, 21) = (w1 & 323)(8y % 8s), 52)
[33 :l:.61, Z2] = , [63 + 81, Z3] = (5131 F 11}3)(81 F 63), )
and
(@1 F 25)1, Z0] =0, [(@1 F 23)01, Z1] = w3(®1 F 23) (03 £ 1), - 53)
[(z1 F #3)01,Z2] =0, [(m1 F 23)01, Z3] = wa(zs F 1)(01 =+ O3). '

From (5.2), (5.3) and Lemma 2.2, for any Z; € M (1 =0,1,2,3), we have
[Zl,A] o (m)d1ag(63 + O, O3 — 61)
+ (T, () + R(u))d1ag((_w1_ — x3)01, (@1 + x3)01)

+ (T, () Ca(x)diag(s(z1 — x3)(01 + 03), x3(®1 + -ws)(31v— 33)), 65
- . 5.4
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where Ci(z),C2(z) are C*° matrices, R(p) maps H*~2kF(Qy,5') into HI 2Ry, %)
(when s > 3 + 3).

On the other hand, from (5.1) it follows that
diag(@s + 81, 63 - 61) P T (m)dla,g((azl - 1173)81, (3}1 + 1123)31) T3232 TBo

Noting (z1 & 23)8 = Zo — z3(01 F 83), and taking 3 small enough such that Det(I d =
z3p(z)) # 0, we have :

diag(ds + 81,05 — 81) = T (o) (P — Thoy Zo — T, Z2 — Tp,) + Ba, (5.5)

where Cs(z) = (Id — z3p(@))™! € HZ™ ¥ (Q4,5), Ry = {~T5,Thop — Thu (o “)}dia,g(ag +
1,05 — 81). Following Lemma, 2.3, Ry maps H*~? k into HS~3*(Q,,%") (when s > § 4 3).~

* Summing up (5.1), (5.4) and (5.5), and using Lemma 2.3, we know that

(2, P] = Z Th, ,Z; + T4, P+ Ry, - . (5.6)

where B, A € H*1F-1(Qy, X), Rl maps H*~1¥ into HZ ™k~ 1(Q , 2.

Assuming that Lemma 4.2 holds for k, we will prove that Lemma. 4.2 also holds for k +1.
Tn fact, for I = I' U {1}, |I| = k + 1, following the induction hypothesis, we have

[z, P = (2", P + 2, P|Z"

=z( Y Th,,22"+ ) T, 2% B+ Rr)
J1<I7 ORI |
+(Th, ,Z; + Ty, P + R)Z"

=S Th, BZ; 2+ Y Thys, %%+ S R(B;,1)Z; 2’
+ 1%, 227 P+ Y Tha,) 2" P+ R(Ar)Z7 P
+ ZiRp + Y Th, Z;2" + T4, 2" P+ T),[P, 27 ] + RZ". (5.7)
Applying the induction hypothesis td [IN’, ZI '] again, we have
(2!, P| = (Z Ty, ZiZ;2° + Y\ Ths, n%i %"
315, ,2,2" - Y Ths, % 7)
+ (ZTAJ, 7227+ Than?”
AT 2 = Ty, 2" )B4 R, (69
where ,
Rr =Y R(B;1)Z;Z’ + R(A)Z" P+ ZiRy
— TRy + RiZ" =Y (T4, Th, , — Thin, )22’
- (@ T4, — Tay 4,)27 P.
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Is it easy to see that .
B e H*~ 1,k—|I|+|J] _ = H* —1,k— |I|+(|J[+1)(Q ZI)

Bj € ge-Lk-1 Hs—1,k—|1|+|1'|(ﬂ472,_),
Ay € Ho b= = go-Lh=lI4U 140 (. 3y
A GHs 1,k—~1 _Hs lk |I|+|I’|(Q+ 2/)
AjA; € H*! b pe-ik- HHI(Q, 5 (81 = min(k — 1,k — [I'] +]J']),
A1Bj,y € H™H0 C Ho7Vk- III+IJ|(9+ ') (62 = min(k — 1,k — |I'| + |J)).

Then regularity of coeﬁic1ent are proved Using Lemmas 2.2 and 2.3, we we see that R,
maps Ho~L¥ into H2~3F~1IHY Q. 5) and Lemma 4.2 is proved. - '
Proof of Lemma 3.4. Note that Mg = {82,x303}. By direct calculation, we have

[ My, Q) =CiQ+Th,; ;Mj +Ri, . o (59)

where C; is a constant, R; ; € H 3“%”?“2(90-, A), R maps H*~%*~1 into itself. Using the
same method as in the proof of Lemma 4.2, we can prove Lemma 3.4 by induction on k.
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