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MATHER SETS FOR SUBLINEAR DUFFING EQUATIONS
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Abstract

The existence of Mather sets (generalized quasiperiodic solutions and unlinked periodic
solutions) for sublinear Duffing equations is shown. Here the approach is based: on the use of.
action-angle variables and the application of a generalized version of Aubry-Mather theorem
on semi-cylinder with finite twist assumption. ' B
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§1. Introduction .
This paper deals with the existence of Mather sets for the Duffing e‘tliﬁé:iﬁi(‘)n’ . o
E+gl@)=pt), : (L1

with sublinear gfowth condition ‘
(el) .y l|im sgn(z)g(z) = +oo and  lim ﬂmﬁ =0.
: x|—o00 :

aloreo T - :
where p(t) is 1-periodic continuous and g satisfies some regu|lelr conditions we shall mention
later. ' ’

Since the celebrated works of Aubry-Le Daeronlt] and Mather® about a class of important
invariant sets (called Mather sets later) for area-preserving monotone twist homeomorphism
of an annulus, Aubry-Mather theory has been rapidly developed in several fields such as
differential geometry, dynamical systems and solid state physics (see (8], [2], [10], [6] and
[7)- ‘

In general, area-preserving maps can OCCUr as Poincaré maps of continuous. conserva-
tive systems with two degrees of freedom. And then Aubry-Mather theofy has become an
important tool in studyiﬁg dynamics of differential équations. In [9], Moser' gave some nec-
essary conditions for the application of Aubry-Mather theory. His student, Denzlerl®! proved
the existence of Mather sets (i.e., certain generalized quasiperiodic solutions and unlinked
periodic solutions ) for periodic Hamiltonian planar systems. ' '

" Recently, M. Pei proved in his ' Ph.D thesis the existence of Mather sets for some super-
linear Duffing equations by using a generlized Aubry-Mather theorem on infinite cylinder
with infinite twist assumption (see [11], [12]). -
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The essential difference between the superlinear Duffing equations and the sublinear ones
is that the Poincaré maps of the latter do not satisfy the infinite twist assumption. For
this reason, we first have to generalize the Aubry-Mather theorem to semi-cylinder with
finite twist assumption following the idea of Katok[4. Then, using some delicate estimates
of action-angle variables, we embed the Poincaré map of the sublinear Duffing equation into
an area-preserving monotone twist homeomorphism on semi-cylinder and thus obtain the
Mather sets with small rotation numbers.

Our main result is the following

Theorem A. Besides (gl), suppose equation (1.1) satisfies that

(82) lim z=3g(z)=+o00 or m l9(@)28||g(~=)| ™ = +o0;

|| —o00
(g3) There are positive constants €q,ko and d, such that

zg(z) — 22¢'(z) > £0G(z), for || > d;
G(z) < zg(z) < koG(z), for |z| > d;

|z%g" (z)| < koG(z), for |z|>d. -

Then there exists wg > 0, such that for any w € (0,wp], equation (1.1) possesses a solution
20(t) = (2w (t), Z,(t)) of Mather type with rotation number w. It follows that
(i) if w is a rational number p/q, the solutions zi,(t) = z,(t+14), 0 < i < g—1 are

mutually unlinked peroidic solutions of period gq;
(ii) if w is an irrational number, the solution 2,(t) is either a usual quasiperiodic solution

or a generalized one exhibiting a Denjoy’s minimal set
| M, = m§
(iii) all these bounded solutions z,(t) are arranged in order from finity to infinity, i.e.,
tlélli;(wf,(t) + 22 (t)) =400, asw—0. |
Remark 1.1. If g is odd, the condition (gl) implies the condition (g2).
Remark 1.2. The typical example for Theorem A is
# + sgn(z)|e|*(1 +2%) 7 = p(t), @€ (2,3),

where p(t) is 1-periodic continuous.

§2. Area-Preserving Monotone Twist Map on Semi-Cylinder

In this section, we shall prove a generalized version of Aubry—Mé,ther theorem on semi-

cylinder.
Let A = S! x [0,+00) be the standard semi-cylinder, and let S = R x [0, +00) be its

universal covering. We assume that f : A — A is an area-preserving and orientation-
preserving monotone twist homeomorphism, sometimes call it twist map for simplicity. Let

F be a lift of f with the form  °
F(H,I) = (6 + F1(9,I),F2(0,I))
It is easy to see that the function F(6,I) is a strictly monotone function of I.

Suppose that
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(Al): Fy is strictly decreasing with respect to I for any 0 € R;
(A2): F preserves the boundary R x {0} and the infinity, which means

Fy(0,0)=0, for 6 R, and lim inf F5(8,I) = 4o0;
I—-4-00 #ER
(A3): F has small twist at infinity, that is

Fi(0,I)>0, for(9,I)€S and lim sup F(6,I)=0;
I—+00 gcR

(A4): F has an infinite graph, namely

+00
ggﬂ F1(6, p(8, 1)) = +00,

where p = p(8, I) is the inverse function of F2 (0, p) = I with parameter 0.

Let fo = flsix{o}- Then fo is an orientation-preserving homeomorphism on S, and its
lift Fj is an order-preserving homeomorphism on R. Denote by a(fo) the Poincaré rotation
number of fo.

Recall that, for two positive integers p and g, a point w € A is called a Birkhoff point of
type (p,q) if for a lift u of w there exists a map

n: Z—8; ne(0,I), with 7(0) = v,
such that 9 is a strictly monotone function, and

(O(n + @), I(n + ) = (8(n) + 1, 1(n)),

(6(n +p), I(n+p)) = F(8(n), I(n)).

The orbit of a Birkhoff point of type (p,q) is called a Birkhoff periodic orbit of type (p,q).

We have the following theorem for existence of Birkhoff periodic orbits. The proof of the
theorem will be given in section 4.

Theorem 2.1. Assume that (A1)-(A4) hold. Then for any positive integers p and q with
p/q € (0,a(fo)), f admits a Birkhoff periodic orbit of type (p,q).

In order to get the existence of Mather sets with irrational rotation number, we need
some estimations for Birkhoff periodic orbits. '

Denote by 71 and 72 the projections from S onto its first and second factor space respec-
tively. ' '

Lemma 2.1. Assume that (A1)-(A4) hold. Then for I >0 and any positive integer N,
there exists I; > 0 such that ' :

eigg{vrz(F*’(o,I)), i=0,%1,--- ,£N.} > Iy, forI2>1I1.

Lemma 2.2. Besides the assumptions of Lemma 2.1, let p/qg > B > 0. Then there exists
K(B) > 0 such that for any Birkhoff periodic orbit 1,b§ of type (p,q) the following estimation
holds,

sup w3 (2 (n)) < K(B).
nez
Proof. Let N be large enough, so that 3 > % From (A3) we have Io > 0, such that

sup(m(F(0, 1)) — 0) < -]1\7 for I > Io.
9cR
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Then we can choose K(B) = Iy, where I; is as shown in Lemma 2.1. In fact, let
zb% 1 Z-8S; ne(0,1),
be a Birkhoff periodic orbit of type (p,q). We have =
m(FN©6,1))—8>1, forany (6,1) € ¥2(Z). . (2.1)
On the other hand, if I > I3, one gets from Lemma 2.1 that
mo(FH0,1) > Ip, i=0,1,--,N—1,
which implies - |

i (FH(0, 1)) = m(F{(0,1)) < <, §=0,1,-- ,N—1.

N’
Therefore T
. : N-1
MEYE,D) 0= Y [m(F0,1) <
i=0
By (21) it follows that .. o
6,1) ¢ 2 (2).

The lemma is thus proved.

Lemma 2.2 means that for any closed 1nterval [,3, al C (0 a(fo)] there exists K(8) > 0
such that for any fraction g € [B,q], the Birkhoff periodic orbits of type (p,q) are in the
closed annulus S! x [0, K(B)]. According to the argument in [4], we can define the twist
modulus wy(+) in S X [0, K(B)] as follows

wfi(r) - 05521 (F1(6,1) — Fy(6,1 +7),m1.(F6,T +7) ~m Feo,n),
0<I<M(ﬂ)—r

Where F is a lift of =1 a . L
M(ﬁ) sup  max { (6, 1) K(ﬂ)ﬂrz(F(@ n)}.
I<K(B)0S v

Thus, using the. Hausdorff topology of compact metric space X =8 x [O M (B)], we can
prove the followmg proposition (see Propositions 1, 2, 3 in [4] for detalls)

Proposition 2.1. Assume that (A1)-(A4) hold. Then 7

(i) The set of all Mather sets for f in X is closed in Hausdorff topology

(ii) The rotation number for Mather set is continuous in Hausdorff topology.

From Theorem 2.1 and Proposition 2.1, we obtain immediately _

Theorem 2.2. Assume that (A1)-(A4) hold. Then for any w & (0,a(fo)], f has a Mather
set M, with rotation number w.

As for application, we will need to estimate the lower boundary of a Mather set. Define

the indexes of v € S as following .
N;(u) = max {n|m (f"(w)) — m1(u) < i}, i =1,2.
Lemma 2.3. Besides (A1)-(A4) suppose that
Ni(u) < +o0, forues, z—12 _ . (2.2)

Then there exists w(lp) > 0, such that for any w € (0, w(Io)] the Mather set M, with rotation
number w is in 81 x [I, +00).
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Proof. By the deﬁnitiop. of index, it can be easily seen that for any u, there exists a
neighborhood U(u) of u, such that |

i) - Ni@)l| < 1, foru € Uw), i=1,2.

Then the indexes are bounded uniformly in any compact region. Therefore, for any Iy > 0,
there exists N > 0, such that

ma(u) > Iy, for u € S with Na(u) > N. (2.3)
For this N, we can choose I(IV) > 0, such that
Ni(w') > N, foru €S with mp(u') > I(Ny). | o (2.4)

Let
w(lo) = inf  (m(F(w)) — mi(u)).
m2(uw)<I(N)
Denote by M,, the Mather set with rotation number w € (0,w(lp)]. From the definition,
there must be a u' € M,, such that m(u') > I (N)..By (2.4). it implies that Ni(u') 2 N.
And then : : .

T (FN @)~ m(w) < 1. C o (2.5)
On the other hand, for any u € M, we have j € Z, such that |
m(w) < m(u)+ 4§ < mw) + 1 (2.6)

Because F' is order-preserving on M, (2.6) implies that
m(FY ) < mEF (@) +j < w(F¥@W)) + 1. 2.7)

Thus, by (2.5)-(2.7), we know ' }
7!'1(FN(U)) - 7!'1(%) < 2,
which means Na(u) > N. Consequently, m2(u) > Io by (2.3). This completes the proof of
our lemma.

§3. Mather Sets for Sublinear Duffing Equation

At first, we consider a planar Hamiltonian system , :
6= f1(0,1,t),  I=rf0,11), (3.1)
where f; and f, are-continuous and 1-periodic functions. We assume the uniqueness and
existence of the solution for initial value problem of equation (3.1). Moreover, this solution
‘has continuous derivatives with respect to initial data.
Let (8(t; 60, Io), I(t;60,10)) be the solution of equation (3.1) with initial condition 6(0) =
8o and I(0) = Ip. Sometimes denote it by (6(t), (t)) simply. Let the Poincaré map P of
equation (3.1) be . '
P . _(00) IO) He(l; 001 IO),I(l; 90?10))-

It is easy to see that P is an area-preserving diffeomorphism on St X [0,+00). Set

20 = 22001000, 5a(®) = ZHO0.10,1),
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8s(0) = T2, 1), 1), Aa(t) = 22000, 1), ).
In [11], the following results are proved.

Lemma 3.1 Suppose that

(1) Ai(t) = 0, uniformly ont€[0,1), aslp— +oo, i=1,2;

(2) A3(t1) . A4(t2) — 0, asly— +o00, forty,ts € [0, 1]

Then we have

ol 06
5};(151 0071) =14 0(1)’ _%;(tﬁ 001I0) =1 +0(1)’

for I >> 1 and t € [0,1].

In addition, if

(3) Ag(t) <0, forly>>1andte(0,1],
then

gli(t; bo,1p) <0, forIy>>1andte(0,1].
0
Lemma 3.1 shows that under the assmptions (1),(2) and (3) there exists I. > 0, such that

P monotonically twists in Sy x [L, +00).
Now we turn to Duffing equation (1.1) with the necessary regular conditions as for system
(3.1). It is easily seen, under the condition (g1), that the orbits

1
Th —2-y2 +G(z)=h

of the autonomous system ) : .
t=y, y=-g(z) (3.2)
are closed curves which are star-shaped with respect to the origin O for A > hy with some -

constant hp > 0. Denote by 7(h) the time-map of equation (3.2), and I(h) the area bounded
by the closed curve 7. That is,

c+(h) L
W=vE [ Ih- G, :
c—(h)
cy (k) .
I(h) = 2v2 [h — G(s)]? ds
c—(h)

with ¢ (h) > 0 > c_(h) uniquely determined by

Gles(h) = Gle-(R)) = h.
It-is easy to see that i%?) = 7(h). Denote by T'(zo, yo) the time in which the orbit v comes
from (c4(h),0) to (zo,yo) with h = 142 + G(xo). Let

_ T(z0,%0)

‘ G(mo,yo) = 'T(h) .

Then
U: S x [ho,+00) = R*\{0}; (8(modl),I(h)) — (zo,¥0),

is a 1-1 map. Moreover, we know that ¥ is a symplectic transformation. Equation (3.2) and
(1.1) are then transformed to ‘ '
1

oy 1P @3)
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and
1 .
0= W(l —zn(0, Dp(t)), I=w=e(6,D)p(t) (3.4)

respectively, where h = h(I) is the inverse function of I(h) = I, and zp, %¢ are partial
derivatives of z with respect to h and 0, respectively.
In the following, let ¢;, ¢z and ¢ be some constants, and let  and h be large enough
Lemma 3.2. Suppose that (g1) and (g3) hold. Then we have the following estimates

() < o) < ciﬁ’f), i=01, D
()] < CI(h)‘ (3.7)

The proof will be given in section 4.
Lemma 3.8. Under the same assumptions of Lemma 3.2 we have

zp =o0(1), yn="0(1); ' (3:8)
o] < o T o=l fe=l, 59)

Moreover - '
hlans| = o(1) - (3.10)

provided that the assumption (g2) holds.
The proof is similar to that of Lemma 7 in [11]
Next we consider the solution of equation (3.4). For simplicity, let

h(t; 60, Io) = h(I(t; 60, To))-

Lemma 3.4. Under the same assumptions of Lemma 3.2 we have

h(t1; 6o, Io)
—_ =1 1 I 1 and t1,1 0,1},
h(tz;eo,fo) +0( ), fO'I‘ o>> 1 ana 1,12 G[ ]
which implies that

I(t1;60,10)

I(t2;00,1I0) L+o(1),

T(h(tl;oo,fo)) <e
T(h(tz;eo,fo)) =7
for Iy >> 1 and ty,t2 € [0,1].
Proof. Note that

é %@ _ |__y_p( ). < E = max |p(t)]

2vh 0<t<1

Then
Vh(tii00, 1) | o _Elts—ts
v/ h(ta; 00, Io) ~ y/h(t2; 00, Io)

Because h(t; 0o, Io) >> 1 & Io >> 1, the conclusions follow from (3.11) and Lemma 3.2.

(3.11)
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Lemma 8.5. Suppose that (g1)-(g3) hold. Then there exists I, > 0, such that the
Poincaré map P of equation (3.4) is an area-preserving, order-preserving and monotone
twist homeomorphism on S* x [I,,+00). In addition, P satzsﬁes (A2), (A3) and (A4) except
the preservation of the boundary R x {I.}. -

The proof will be given in section 4.

Now we can prove Theorem A. _

Proof of Theorem A. From Theorem 2.2 and Lemina 2.3, we only need to construct a
twist map P from P, such that P satisfies the assumptions of Lemma 2.3 in S x [I’, +00)
with some constant I’ > 0. Moreover, there exists I” > I', such that P = P for I > I". We
divide the proof into two steps. ‘ : ‘

Step 1. Construct an area-preserving homeomorphism P which preserves S! x {I'} and
satisfies P = P for some constant T > I,

Consider the following Hamiltonian

HO:1,1) = h(I) - K(Da(0,p(t) . '(3..12)

where (6, I) is determined by ¥, and K (I) is a C? function which satisfies
K(DI<1, K< 7 and KD < 7. (3.13)
The Hamiltonian system with Hamiltonian (3.12) is .
6= (h)(l — K'(I)x(0, T(h)p(t) — K(Dzn (6, Np(t)), (3.14)

I =K(I)e(6, Dp(2).
Denote the Poincaré map of equation (3.14) by |
P: wnHW+mwnuwwn)
Note that

dh
— = K(I)yp(¢). | o
dt (3.14) ‘

Thus similar to the proof of Lemma 3.4, we can get
|91(6,1)] < —é:, for I large enough.

On the other hand, for any K (I) satisfying (3.13), we can prove that

K’(I)wo'p(t)+—1£(—%%’z");mﬂ—+0, for Iy — +00 and € [0, 1]; (3.15)
k) " 2K'(1) -mp - p(t) |, K(I):zmn - p(t)
-G - KWan- PO) =KD 2300 - R e
[E(Dzge-p(t)]] —0, forly—+oo and t,t€[0,1].  (3.16)
t=ty

Hence, by using Lemma 3. 1, we get I ’ > 0, such that
|6¢1(9 I)‘ <5, l"ﬁl(a < —I-, for I > I'
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Remark that, besides the restriction (3.13), I' is 1ndependent of K(I). Then we can set
K(I)=0, forI<I', and K'(I)=—j, for < I < I,
with some suitable constants I; and I. It follows that
K(I)=K(I1)+/IIK'(I)dI——>+oo, as I — +o00.
) a :

So there exists I} > I, such that K(I3) = 1. Let
K()=1, forI>1Ij
Then for I > I} the Hamiltonian (3.12) is the Hamiltonian for (3.4). And therefore Pis

exactly the map as we describe at the beginning.
Step 2. Choose a non-negative and smooth function a(J ), such that

a(I)=0, forI>2I;
¥ o I 31
o) > max 16:09), for 1€ (507)
‘ 1<Zs<21
o/(I) < =2 max

0<0<1
f<s<2r

a1 I 31y
_6?(0.’3)|’ for I € (E’_z"),

3l ,
/ —
(1) <0, forIe‘(z,Zf).
Deﬁneﬁby _
P: (0,1) 0+ 1+ oI +91),] +91).

It can be easily shown that ,

(1) P isan area-preserving map on S* x [I', +00) * which preserves S* x {I'};

(2)13 P=P forI>I"='27; *

(3) 2o/ (I + 1)1+ %) <0, forI>1I';

(4) ¢1 +o(l+) >0, forI>T.

Thus P satisfies (A1)-(A4). :

Next by the elementary phase-analysis for equatlon (1.1) and equatlon (3. 2), we can prove
that P satisfies the condition (2.2). Because we have done only some changes in finite I-
interval, P also satisfies condition (2.2). This means that P'is a twist map which satisfies
all agsumptions of Lemma 2.3.

Hence, by using Theorem 2.2 for any w € (0, a(P| r=1))s P has a Mather set M, with
rotation number w. Moreover, for I" we have wo = w(I") as shown in Lemma 2.3, such that
M, C 8* x [I",+00) for w € (0,wp]. Therefore, M,, is a Mather set for P. Using standard
arguments (see [3], [11] or [12]) we shall obtain all conclusions of Theorem A.

§4. Prodfsvof Theoretn 2.1, Lemma 3.2 and L.emma 3.4

4.1. Proof of Theorem 2.1 :
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We shall work with universal covering S. Define the space ®, 4 by

®p0={¢:Z—R | ¢is nondecreasing: ¢(n + q) = ¢(n) + 1;

0 <6 < ¢(n+p) —d(n) < Fo(p(n)) - ¢(n) },
where 6 will be determined later.

At first, we shall prove that ®, , is nonempty for § small enough.
Since a(fo) > g, we can easily see that

F§(60) — 69 > p, for some fixed 6 € R. (4.1)

Define F(0) = s6 + (1 — s)Fof for any § € R, where s € [0,1] is-a parmeter. By (4.1)
there exists ¢t € [0,1] such that F/(6g) — 8y = p. Moreover, F; is an order-preserving
homeomorphism on R and F;(6 + 1) = F;(0) + 1. :

Note that there are g points F3(6),--- ,F{(6p) in the interval (6g,8p + p] and F1(f +
1) — (8o + 1) = p. Therefore, by order-preservation of F;, we have

# | {F{ (6o +1),7 € Z} N (60,60 + 7] |= g,

where #|B| denotes the algebraic number of points contained in set B.
Similarly

# | {F{ (6o +k),r € ZY N (00,00 + 1] |=q, k=0,1,--- ,p—1.
Moreover, #|E| = pg with E = {F] (6o + k),r € Z,k =0,1,--- ,p — 1} N (60,00 + p].
Now we are going to define a map ¢ : Z — R. Let
#(0) =60, $(i) € E, i=0,1, - ,py,
#(i) < ¢(¢') if and only if <4,
Then extend it to whole Z by the recurrence formula
¢(ipg + j) = ¢(j) +ip, fori€Z andj=0,1,---,pg—1.

So ¢ is a nondecreasing function.
To prove ¢(n + ¢q) = ¢(n) + 1 we remark that

F{(¢o+k)=F](6p)+k, k=0,1,--- ,p—1.

Then the numbers of points in (6 + k,00 + k+1], k=0,1,-.-,p— 1, are the same. From
this we deduce that ' '

pkqg) =0 +k, k=0,1,---,p—1
Moreover
F{(¢(n) + k) = F{(¢(n)) +k, for any ¢(n) € $(Z).
This implies that
o(n+kq)=¢(n)+k, k=0,1,---,p-1. (4.2)

By putting k.= 1 in (4.2) we come to the conclusion ¢(n + q) = ¢(n) + 1.
Next suppose that there are p' points 61, , 6, in E U (8, F; (00)] Then

th(eo) < th(al)’ 1Fti(ap') < Fti+1(00)) i=1a27"' s q — 1a : (43)
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by the order-preservation of Fy(#). In addition, any point u in E has the form:
u = F}(6;), forsomeie {1,2,---,9~1}andje€{0,1,---,p'}.

Consequently, there are p’q points in E which implies that p' = p, namely ¢(p) = Fy(6o).
Similarly ¢(n + p) = Fi(¢(n)). And then

¢(n +p) — ¢(n) = F(8(n)) — ¢(n) < Fo(d(n)) — ¢(n).
In order to get the lower boundary of §, such that ¢ € @, 4, we need to estimate
inf ($(n + p) — $(n))-
By using FJ(6p) = 0 + p, we obtain a 6, € R, such that
Fy(0.) — 0, > %’
which means v
Fy(04) — 0. = (1 — £)(Fo(6s) — 6,) > g-. (4.4)
On the other hand
0< Fpp = 6g_;lcf‘(Fo(H) -0 < Slelg(Fo(a) —0) = Fy < +o0.

Thus, by (4.4), we have _
inf (¢(n + p) — ¢(n)) > inf (Fi(4(n)) — é(n))
neZ n€Z ‘
23
>(1- > —.
Therefore, § < g—% implies that ¢ € ®, 4. In the following, we write ¢ instead of ¢o as
shown above .
Define an operator L, 4, on @, , by

g—1
Lpg(9) =D w(T($(n), d(n +p))),

n=0
where T'(9,6') is the region bounded by F({6} x [0, +00)), {8’} x [0,+00) and R X {0}; and
1(T(6,8')) denotes the area of T'(4,6').
From (A1) and (A3) we know that T'(6,6') is detemined uniquely by 6 and ¢’. Moreover,
1(T'(8,6")) is monotonic decreasing with respect to 6’ for any fixed 6.
It is easy to show that
sup u(T(6,0")) =T < +oo.

—0>BFm.
0'—0> 2Em

Then
Lyp,q(do) < qT".
In addition, by (A4), there exists §p > 0, such that
W(T(0,8))) > 2qT*, for 0< 8 —0 < &o. (45)

We want ¢ is not in the “boundary” of &, 4. So we require that

§< min{%,&o}.
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We also denote by ®, , the extended space.

Given natural induced topology to ®, 4, then ®, , is a compact and nonempty space. In
fact, the embedding

(: @pq—RYZ; ¢ (60), -+, 6(g—1))

is closed. Thus ®,,, is a closed subspace of the compact spacé R9/Z. Consequently, ®, 4 is
compact. And then the continuous function L, , has minimal value on ®, 4.

Now let ¢; be a minimal point and ,_
10,6') = m3({6'} x [0, +00) U F({6} x [0, +00)).
Define 41 (1) by a
P1(n) = (¢1(n), I(41(n - p),$1(n)).
From (4.5) and
Lp,q(¢1) < Lp,q(¢o) < 9T,

we obtain '
WG +p) = hi(0) >8 )

Then we can prove that ¢; : Z — S defines a Birkhoff periodic. orbit of type (p,q) for f.
Otherwise, according to the method used in [4], we can choose € small enough and contruct
Pe € Bp g, such that

Lp,q(¢e) < Lp,q(¢1)-

This is a contradition.
Our proof is thus complete.
4.2. Proof of Lemma 3.2 _
Usmg the representatlon of polar coordmates T=7 cos a, y =rsino, we have
S Y - 27",'7'2 -
I(h) = = ?{rzda and T(h) =/ —————do
2/ 0 Jo wg(@) +y?
Moreover, ~;, is star-like with respect to the origin O, so we can consider 7 as the function
of h and ¢. As in [11], we know: that -

= [T @) o, .
T(h>—/0 e 7 s, wn

" " 3(2¢'(z) — zg(2)) (e%¢' (@) + 47) — (z9(2) + ) (239" (2)) >, -
7'(h) = rdc 4.8

®= (29(e) 417 w09
Then the estimates (3.5), (3 7) and the right hand of (3.6) come from (4.7), (4.8), assump-
tions (g1) and (g2).

We are now going to find the lower boimdary of 7'(h). Let us work on the first quadrant.
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Denote that

%jr(h):_-/: zg(z) — a* g(w) 2 do,

(z9(z) +92)°
" ’
I, = / r? do,
0
76+ :
1(64) = / 2 do, (4.9)
0 v

where 6, is the angle between positive Y-axis and the line segment 0Q with @ = (c4+(3), Vh).
We see that

T+ < C+(h) . \/2_’_1: and I(6+) > %C+(§) . \/E

Moreover, G(z) > & for z > c4+ (%) since G(z) is nondecreasing. Hence, for h large enough,
one gets

3 554 gg(a) — 2%¢'()
T+(h)2/o @y |

0 G(z) , 1(54)
Z /0 (zg(x) + y2)3r2 do 2= (4.10)

On the other hand, we remark that

(G(:L)) A N SR g()()>0 for |:L‘l>d
which implies that

h . | -
ce(h) < 2c+(§). (4.11)
It follows from (4.9)-(4.11) that

' s
2
(h)> = / r? do.
+( ) h2 o
In other cases, similar discussion shows that
c
r(h) > 5 I(h).
This completes our proof.

4.3. Proof of Lemma 3.5
Remark that for equation (3.2), the conditions for Lemma 3. 1 can be deduced by the

following conditions

0O L9 0, tor Iy = oo (1.12)
—;;—((h’% - 29e(0(t2), I(t2)) — 0, for Ip — +oo and ¢5,t2 € [0,1]; (4.13)
7'(h(t)) >0, forlp>>1, and %ww(f)(t),ﬂt)) — 0, for Iy — +oo. (4.14)

On the other hand, we know that
m@(e’ I) = T(h)@h y9(011) = —T(h)g(.’l?),
z99(0,1) = —72(h)g(z), zon(0,1) = 7' (h)y + ya7(h).
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Thus by Lemma 3.2-Lemma 3.4 and some elementary computations, we easily obtain (4.12)-
(4.14). Therefore, P is an area-preserving monatone twist homormeophism on S* x [, +00)
except the preservation of boundaries; where I, is a suitable positive constant.

Using the following well-known fact for sublinear Duffing equation

7(h) — +o00, Cash— +00,
by (3.6), (3.8) and Lemma 3.4, we can easily show that P is an orientation-preserving map
satisfying (A3) and preserving the infinity. ,
Now let m1(P(6o, In)) = 61, * m3(P(o, Ip)) = I1. By the definition, we have
- 1(05 60, Io) = Iy = I(0; 64, 1p).
Thus from Lemma 3.4, there exist positive constants ¢3 and ¢y, such that

T(h(I(t; 11,00))) _ .
ST ) S

which implies that , o v
' _ 7(h(I(t1;1y;60))) :
cs < < ¢g,
® = r(h(I(t2; 1o, 60))) ~
for suitable positive constants c5 and cg.

Therefore, by (3.8), we have

400 +o00 . +o; (T o
Fi (8o, Io) dI; > 0_5/ T _dh >/ 7)) 41 = oo
h

La  T(R(I1)) = Jnq,,) T(A(11))
where I, > I, is a suitable constant.
Note that the above estimation holds uniformly for 8 € S, which means that P satisfies
(A4). The proof is thus completed. ; N _, )
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