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ADMISSIBLE ESTIMATES IN THE IMPORTANT CLASS

OF ESTIMATES OF THE COVARIANCE MATRIX**

Xie Minyu*

Abstract

Let X1, · · · , XN (where N > m) be independent Nm(µ,Σ) random vectors, and put

X =
1

N

N∑
i=1

Xi and T ′T = A =
N∑
i=1

(Xi −X)(Xi −X)′,

where T is upper- triangular with positive diagonal elements. The author considers the problem

of estimating Σ ,and restricts his attention to the class of estimates D = {T ′∆∗T+Nb∗X X’:∆∗

is any diagonal matrix and b∗ is any nonnegative constant} because it has the following attrac-
tive features:

(a) Its elements are all quadratic forms of the sufficient and complete statistics (X,T ).

(b) It contains all estimates of the form aA + NbX X
′
(a ≥ 0 and b ≥ 0), which construct

a complete subclass of the class of nonnegative quadratic estimates D∗ = {X′BX : B ≥ 0}
(where X = (X1, · · · , XN )′) for any strict convex loss function.

(c) It contains all invariant estimates under the transformation group of upper-triangular
matrices.

The author obtains the characteristics for an estimate of the form

T ′∆T +NbX X
′
(∆ = diag{δ1, · · · , δm} ≥ 0 and b ≥ 0)

of Σ to be admissible in D when the loss function is chosen as tr(Σ−1Σ̂ − I)2, and shows,

by an example, that aA + NbX X
′
(a ≥ 0 and b ≥ 0) is admissible in D∗ can not imply its

admissibility in D.
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Let X1, · · · , XN be independent Nm(µ,Σ) random vectors, where N > m, µ ∈ Rm and

Σ > 0 are parameters, and put

X =
1

N

N∑
i=1

Xi and T ′T = A =
N∑
i=1

(Xi −X)(Xi −X)′,

where T is the Bartlett’s decomposition of A, that is, T is upper-triangular with positive

diagonal elements. In this paper, we consider the problem of admissibility of the estimate
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of the form T ′∆T + NbX X
′
(where ∆ =diag{δ1, · · · , δm} ≥ 0 and b ≥ 0) on Σ using the

loss function

L(Σ, Σ̂) = tr(Σ−1Σ̂− I)2, (1)

considered by Olkim and Selliah[1] and Haff[2], and restrict our attention to the class of

estimates D = {T ′∆∗T + Nb∗XX
′
: ∆∗ is any diagonal matrix and b∗ is any nonnegative

constant}.
The class of estimates D has the following attractive features:

(a) Any element in D is a quadratic form of the sufficient and complete statistics (X,T ).

(b) D contains all estimates of the form aA + NbX X
′
(where a and b are nonnegative

constants),and the latter constructs a complete subclass of the class of nonnegative quadratic

estimates D∗ = {X ′BX : B ≥ 0} (where X = (X1, · · · , XN )′) for any strict covex loss

function L1(Σ, Σ̂).

It is clear that D contains all estimates of the form aA+NbX X
′
. What remains is only

to show that the latter constructs a complete subclass of D∗. For this purpose, let

Z = (Z1, · · · , ZN )′ = HX,

where H is an orthogonal matrix with the first row( 1√
N

,
1√
N

, · · · , 1√
N

)
.

Then Z1, Z2, · · · , ZN are independent,

Z1 ∼ N(
√
Nµ,Σ), Zk ∼ N(0,Σ), k = 2, · · · , N,

X =
1√
N

Z1, A =
N∑

k=2

ZkZ
′
k,

E(Z1Z
′
1|X,A) = NXX

′
and E(ZkZ

′
k|X,A) =

1

N − 1
A, k = 2, · · · , N. (2)

Now write C = (cij)N×N = HBH ′ ≥ 0. Then

E(µ,Σ)[L1(Σ, X
′BX)]

= E(µ,Σ)[L1(Σ, Z
′CZ)]

= E(µ,Σ){E[L1(Σ, Z
′CZ)|X,A]}

≥ E(µ,Σ){L1[Σ, E(Z ′CZ|X,A)]} ( by Jensen’s inequality )

= E(µ,Σ)[L1(Σ, aA+NbX X
′
)] ( by (2) )

for every (µ,Σ), and a necessary and suffficient condition under which the above equality

holds for every (µ,Σ) is that X ′BX = aA+NbX X
′
, where b = c11 ≥ 0 and

a =
1

N − 1

N∑
k=2

ckk ≥ 0.

(c) D contains all invariant estimates Φ(A) under the transformation group of upper-

triangular matrices Q, that is,

Φ(Q′AQ) = Q′Φ(A)Q (3)
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for all upper-triangular matrices Q.

To show (c), let A = I in (3). Then

Φ(Q′Q) = Q′Φ(I)Q. (4)

Take Q =diag{±1,±1, · · · ,±1} in (4). Then Q′Q = I and (4) becomes

Φ(I) = Q′Φ(I)Q (5)

for all such matrices Q. It follows from (5) that Φ(I) is a diagonal matrix. Now write

A = T ′T . Then

Φ(A) = Φ(T ′T ) = T ′Φ(I)T ∈ D,

namely, the proof of (c) is completed.

Now let us compute the risk fuction of T ′∆T +NbX X
′

R(µ,Σ,∆, b) = E(µ,Σ){tr[Σ−1(T ′∆T +NbX X
′
)− I]2}.

If we write Σ−1 as Σ−1 = LL′, where L is upper-triangular with positive diagonal elements,

then

L(Σ, Σ̂) = tr(Σ−1Σ̂− I)2 = tr(L′Σ̂L− I)2, (6)

L′X ∼ Nm(L′µ,N−1I) and (TL)′(TL) = L′AL ∼ Wm(n, I) with n=N-1. (7)

Note that TL is upper-triangular with positive diagonal elements. Then

R(µ,Σ,∆, b) = E(µ,Σ)tr[(TL)
′∆(TL) +Nb(L′X)(L′X)′ − I]2 ( by (6) )

= R(L′µ, I,∆, b) ( by (7) ).
(8)

From (8), without loss of generality, we may assume that Σ = I. Right now, from indepen-

dence of T and X, one has

R(µ, I,∆, b)

= Etr(T ′∆T )2 + 2tr[E(T ′∆T )E(NbX X
′ − I)] + Etr(NbX X

′ − I)2, (9)

where all expectations are computed with (µ, I). From Bartlett’s decomposition theorem,

the elements tij of T are all independent,

t2ii ∼ χ2
n−i+1 (1 ≤ i ≤ m) and tij ∼ N(0, 1) (1 ≤ i < j ≤ m),

where χ2
k is the random variable which has the central χ2 distribution with k degrees of

freedom. Hence

Etr(T ′∆T )2

=

m∑
i=1

δ2i (n+m− 2i+ 1)(n+m− 2i+ 3) +
∑
i<j

δiδj(n+m− 2j + 1) (10)

and

E(T ′∆T )

= diag{δ1n, δ1 + δ2(n− 1), · · · , δ1+, · · · ,+δm−1 + δm(n−m+ 1)}. (11)

Since
√
NX ∼ Nm(

√
Nµ, I), we have

E(NbX X
′ − I) = b(I +Nµµ′)− I = Nbµµ′ − (1− b)I (12)
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and

Etr(NbX X
′ − I)2

= b2E[χ2
m(N∥µ∥2)]2 − 2bE[χ2

m(N∥µ∥2)] +m

= b2[(m+N∥µ∥2)2 + 2m+ 4N∥µ∥2]− 2b(m+N∥µ∥2) +m,

(13)

where χ2
m(N∥µ∥2) is the random variable which has the noncentral χ2 distribution with m

degrees of freedom and noncentral parameter N∥µ∥2. Putting

δ = (δ1, · · · , δm)′, β = N(µ2
1, · · · , µ2

m)′,

h = (n+m− 1, · · · , n+m− 2k + 1, · · · , n−m+ 1)′, (14)

B = (bij)m×m and C = (cij)m×m, (15)

where µk is the k-th element of µ,

bij =


(n+m− 2j + 1), i < j,

(n+m− 2j + 1)(n+m− 2j + 3), i = j,

(n+m− 2i+ 1), i > j,

and

cij =


1, i < j,

(n− i+ 1), i = j,

0, i > j,

and substituting (10), (11), (12) and (13) in (9), we then have

R(µ, I,∆, b) = δ′Bδ − 2(1− b)δ′h+m[b2(m+ 2)− 2b+ 1]

+ 2b[δ′C + (bm+ 2b− 1)1′]β + b2(1′β)2

.
= g(β, δ, b),

(16)

where 1 is the m-vector with all elements being 1.

If we put

f(t, β) = g[β, δ + t(δ∗ − δ), b+ t(b∗ − b)], 0 ≤ t ≤ 1, δ∗ ∈ Rm and b∗ ≥ 0,

from (16), we then have

Lemma. A necessary and sufficient condition for the estimate T ′∆T +NbX X
′
of Σ to

be inadmissible in D is that there are δ∗ ∈ Rm and 0 ≤ b∗ ≤ b such that

f ′
t(0, β) < 0 (17)

for every β ∈ Rm
+ = {β = (β1, · · · , βm)′ : βi ≥ 0, 1 ≤ i ≤ m}, where

f ′
t(t0, β) =

∂f(t, β)

∂t

∣∣∣
t=t0

.

Proof. Necessity. Let T ′∆∗T +Nb∗XX
′
(∈ D) beat T ′∆T +NbX X

′
. Then from (16),

g(β, δ, b) ≥ g(β, δ∗, b∗)

for all β ∈ Rm
+ with the strict inequality for at least some β, which implies b∗ ≤ b and

f(0, β) ≥ f(1, β) (18)



No.4 Xie, M. Y. ADMISSIBLE ESTIMATES OF COVARIANCE MATRIX 439

for all β ∈ Rm
+ . Noting that f(t, β) is a strict convex function of t for every β ∈ Rm

+ , and

from (18), we have (17).

Sufficiency. Note that

f ′
t(t, β)

= 2(δ∗ − δ)′B[δ + t(δ∗ − δ)] + 2(b∗ − b)[δ + t(δ∗ − δ)]′h

− 2[1− b− t(b∗ − b)](δ∗ − δ)′h+ 2m(b∗ − b){(m+ 2)[b+ t(b∗ − b)]− 1}
+ 2(b∗ − b){[δ + t(δ∗ − δ)]′C + [(b+ t(b∗ − b))(m+ 2)− 1]1′}β
+ 2[b+ t(b∗ − b)][(δ∗ − δ)′C + (m+ 2)(b∗ − b)1′]β

+ 2(b∗ − b)[b+ t(b∗ − b)](1′β)2

= f ′
t(0, β) + 2t{(δ∗ − δ)′B(δ∗ − δ) + 2(b∗ − b)(δ∗ − δ)′h+m(m+ 2)(b∗ − b)2

+ 2(b∗ − b)[(δ∗ − δ)′C + (m+ 2)(b∗ − b)1′]β + (b∗ − b)2(1′β)2},

(19)

and

f ′
t(0, β) = 2(δ∗ − δ)′[Bδ − (1− b)h+ bCβ] + 2(b∗ − b){m(m+ 2)b

−m+ δ′h+ δ′Cβ + [2(m+ 2)b− 1]1′β + b(1′β)2}.
(20)

When b∗ < b, taking t1 (0 < t1 < 1) such that

(b∗ − b)[b+ t1(b
∗ − b)] < 0,

and noting (19), we see that there is a sufficient large positive constant M such that

f ′
t(t1, β) < 0 (21)

for all 1′β > M . On the other hand, from (17), (19) and the continuity of f ′
t(t, β) in the

closed interval {(t, β) : 0 ≤ t ≤ 1,1′β ≤ M}, there is a sufficient small t2 (0 < t2 < 1) such

that

f ′
t(t2, β) < 0 (22)

for all 1′β ≤ M . Now put t0 = min{t1, t2}. From (21) and (22), and noting that f ′
t(t, β) is

an increasing function of t for every β ∈ Rm
+ , we have

f ′
t(t0, β) < 0 (23)

for every β ∈ Rm
+ . (17) and (23) imply that

T ′[∆ + t0(∆
∗ −∆)]T +N [b+ t0(b

∗ − b)]XX
′

beats T ′∆T +NbX X
′
.

When b∗ = b, (19) and (20) become

f ′
t(t, β) = f ′

t(0, β) + 2t(δ∗ − δ)′B(δ∗ − δ). (24)

and

f ′
t(0, β) = 2(δ∗ − δ)′[Bδ − (1− b)h+ bCβ], (25)

respectively. From (17) and (25), we have

lim
∥β∥→∞

f ′
t(0, β) < 0. (26)
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(17) and (26) imply that there is a constant d > 0 such that

f ′
t(0, β) < −d (27)

for all β ∈ Rm
+ . From (24) and (27), there is a sufficient small t0 > 0 such that (23) holds.

So

T ′[∆ + t0(∆
∗ −∆)]T +N [b+ t0(b

∗ − b)]XX
′

beats T ′∆T +NbX X
′
.

In the light of the above statements, the proof of the Lemma is completed.

Now put

D = (d1, · · · , dm) = Bδ − (1− b)h

and

ek =


dm, k = m,

dk −
m∑

i=k+1

ei
n− i+ 1

, 1 ≤ k < m.
(28)

By using the above lemma, we can obtain a necessary and sufficient condition for the estimate

T ′∆T +NbX X
′
of Σ to be admissible in D, as the following result shows.

Theorem. A necessary and sufficient condition for the estimate T ′∆T +NbX X
′
of Σ

to be admissible in D is that

(i) when b = 0, δ = B−1h; or

(ii) when b > 0,

ek ≤ 0, k = 1, 2, · · · ,m, (29)

and

m(m+ 2)b2 −mb+ δ′h− δ′Bδ + [2(m+ 2)b− 1][(1− b)m− n−11′Bδ]

+ [(1− b)m− n−11′Bδ]2 ≤ 0.
(30)

Proof. We first prove the case of b = 0. Right now b∗ = 0 and f ′
t(0, β) = 2(δ∗−δ)′(Bδ−h)

by (20). Hence f ′
t(0, β) ≥ 0 for all δ∗ ∈ Rm if and only if δ = B−1h. From the above lemma,

the proof of the case is completed.

We next consider the case of b > 0. From (29), we can take

β = β0 = (β0
1 , β

0
2 , · · · , β0

m),

where β0
k = − 1

b(n−k+1)ek ≥ 0, k = 1, 2, · · · ,m. Hence,

Bδ − (1− b)h+ bCβ0 = D −D = 0 ( by (28) ) (31)

and

1′β0 = n−11′Cβ0 = n−1b−11′[(1− b)h−Bδ]

= b−1[(1− b)m− n−11′Bδ] ( by (31) ). (32)
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Substituting (31) and (32) into (20), and from (30), we then have

f ′
t(0, β

0) = 2(b∗ − b){m(m+ 2)b−m+ δ′h+ b−1δ′[(1− b)h−Bδ]

+ [2(m+ 2)b− 1]b−1[(1− b)m− n−11′Bδ] + b−1[(1− b)m− n−11′Bδ]2}
= 2b−1(b∗ − b){m(m+ 2)b2 −mb+ δ′h− δ′Bδ

+ [2(m+ 2)b− 1][(1− b)m− n−11′Bδ] + [(1− b)m− n−11′Bδ]2}
≥ 0

for all δ∗ ∈ Rm and all b∗ ≤ b. From the above lemma, the proof of the sufficiency of the

case is completed.

Necessity. If there is a k0 such that ek0 > 0, taking

b∗ = b, δ∗kO
< δk0

and

δ∗k =


δk, k < k0,

δk − 1
n−k+1

k−1∑
j=k0

(δ∗j − δj), k > k0
(33)

we have

f ′
t(0, β) = 2(δ∗ − δ)′[Bδ − (1− b)h+ bCβ] ( by (20) and (33) )

= 2(δ∗ − δ)′C
[(e1

n
,

e2
n− 1

, · · · , em
n−m+ 1

)′
+ bβ

]
( by (31) )

= 2(δ∗k0
− δk0)[ek0 + b(n− k0 + 1)βk0 ] ( by (33) )

< 0.

for all β ∈ Rm
+ . It follows from the above lemma that T ′∆T +NbX X

′
is inadmissible in D.

This is contradictory to the assumption of the necessity. Hence (29) holds.

If (30) does not hold, taking b∗ < b and

δ∗ = δ − b−1(b∗ − b){δ + n−1[2(m+ 2)b− 1]1+ 2n−1[(1− b)m− n−11′Bδ]1}

and substitiuting for them in (20), then we have

f ′
t(0, β) = 2(b∗ − b){m(m+ 2)b−m+ δ′h+ δ′Cβ + [2(m+ 2)b− 1]1′β

+ b(1′β)2} − 2b−1(b∗ − b){δ′ + n−1[2(m+ 2)b− 1]1′

+ 2n−1[(1− b)m− n−11′Bδ]1′}[Bδ − (1− b)h+ bCβ]

= 2b−1(b∗ − b){m(m+ 2)b2 −mb+ δ′h− δ′Bδ + [2(m+ 2)b− 1][(1− b)m

− n−11′Bδ] + [(1− b)m− n−11′Bδ]2 + [(1− b)m− n−11′Bδ − b1′β]2}
≤ 2b−1(b∗ − b){m(m+ 2)b2 −mb+ δ′h− δ′Bδ + [2(m+ 2)b− 1][(1− b)m

− n−11′Bδ] + [(1− b)m− n−11′Bδ]2}
< 0

for all β ∈ Rm
+ . It follows from the above lemma that T ′∆T +NbX X

′
is inadmissible in D.

This is constradictory to the assumption of the necessity, so (30) holds.

In the light of the above statements, the proof of the Theorem is completed.
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Remark. From (b), D contains all estimates of the form aA + NbX X
′
(a ≥ 0 and

b ≥ 0), which construct a complete subclass of D∗. Therefore, that aA+NbX X
′
(a ≥ 0 and

b ≥ 0) is admissible in D can imply its admissibility in D∗.But its converse is not correct.

For example, (n+m)−1A is admissible in D∗ from Theorem 2 in [3], but it is inadmissible

in D from the above theorem.
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